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SOME EXAMPLES IN TOPOLOGY

BY

S. P. FRANKLIN AND M. RAJAGOPALAN

Abstract. §1 is concerned with variations on the theme of an ordinal compactifi-

cation of the integers. Several applications are found, yielding, for instance, an

example previously known only modulo the continuum hypothesis, and a counter-

example to a published assertion.

§2 is concerned with zero-one sequences and §3 with spaces built from sequential

fans. Of two old problems of Cech, one is solved and one partly solved.

Since the sections are more or less independent, each will have its own introduction.

Sequential spaces form the connecting thread, although not all the examples are con-

cerned with them.

1. Spaces such as ßN and /*i provide ready examples of separable compact

Hausdorff spaces which are not sequential^). But these are of "large" cardinality,

i.e. 2C. The space a>x +1 with the order topology is a nonsequential, compact

Hausdorff space of "small" cardinality, i.e. K,, but, unfortunately, it is not separa-

ble. This leads one naturally to ask if there is a nonsequential, but separable,

compact Hausdorff space of small cardinality. Such a space can be produced

simply by conjoining known theorems as follows.

Magill [M, Theorem 2.1] showed that if any Hausdorff space Kis the continuous

image of ßX\X, with A'locally compact Hausdorff, then there is a compactification

yX of X with yX\X homeomorphic to K. Parovicenko [P, Theorem 1] proved that

every compact Hausdorff space of weight á Xi is the continuous image of ßN\N.

From these results one obtains

Example 1.1. There is a compactification yN of N with yN\N homeomorphic to

coy +1, and hence there is a nonsequential, but separable, compact Hausdorff space

of cardinality Xj.

By providing a specific construction of the space yN, which is done below, we

can assure (modulo the continuum hypothesis (CH)) that no sequence in TV con-

verges to cuj g yN. Then by modifying the topology of yN at the point œu we get

Example 1.2. (CH) There is a sequentially compact, Hausdorff c-space(2) which
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(1) A set is sequentially open if no sequence outside converges to a point inside. A sequential

space is one in which every sequentially open set is open.

(2) A c-space is one in which the closure of each set is the union of the closures of its

countable subsets.
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is not sequential. This corrects a mistake of the first author, showing that the

proposition in [F4] is false. This space, however, is not regular. The existence of

such an example which is regular is still an open question.

Several fairly complicated examples have been given of separable and normal

but nonparacompact spaces (see [RJ, [McA]). Having yN in hand, the simple

expedient of omitting the point wx from yN yields

Example 1.3. yA7^«^} is a first-countable, locally compact space of cardinality

Xi which is normal and separable, but not metacompact (and hence not paracompact).

CH is not needed here.

Example 1.3 is similar to that of [Rj].

In response to a question of E. Michael, Mrs. Rudin [R2, §1] constructed,

modulo CH, a normal, sequentially compact, but noncompact space with a

separable, metric, locally compact, dense subset. Again modulo CH, we can

construct such a space with even nicer properties (i.e. first-countability, local

compactness) as well as a simpler proof.

Example 1.4. (CH) yN can be constructed so that yA/\{oj1} is a first-countable,

zero-dimensional, locally compact, normal, sequentially compact, but not compact

space with a countable, discrete, dense subspace.

W. W. Comfort asked, in a private communication, whether or not a separable,

sequentially compact, but noncompact space can be constructed without appeal

to the continuum hypothesis. We can now answer this affirmatively.

Example 1.5. There is a separable, sequentially compact, locally compact, normal

space which is not compact. The construction does not depend on CH. However,

first-countability is lost. This raises the new

Question. Can & first-countable separable, sequentially compact, but not compact

space, be produced without appeal to CH ?

For any space X, let sX be its sequential coreflection, i.e. the same set with the

sequentially open sets as topology (see [F3, Proof of 5.2]). This leads us to

Example 1.6. syN is a separable, sequentially compact Hausdorff space which is

not compact.

The continuum hypothesis is not required. However, without it, we cannot be

sure the space is regular, i.e. that the point ojx can be separated from the now

closed set <*x. Hence we feel that Example 1.6 is not a satisfactory answer to

Comfort's question. With CH, the point co1 can be made isolated in syN so that

syN is another space with all the properties of Example 1.4.

With a little care, it can be insured that syN is not regular yielding

Example 1.7. There is a compact Hausdorff space whose sequential coreflection

is not even regular. This shows that in general one can expect little preservation of

properties under topological coreflections.

Zenor [Z] has introduced a property between countable paracompactness and

paracompactness, and has shown that together with Hausdorffness it implies

regularity. He gives an example to show that a countably paracompact Hausdorff
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space need not be regular. Example 1.7 shows that this may also be the case even if

the space is separable and sequentially compact.

Constructions. We first define recursively a family {Ua}a<<ai of nonempty

clopen subsets of ßN\N such that Ua^Uß whenever a<ß. Let U0 be any proper

nonempty clopen set, and having found suitable Ua for each a<y, let Fa

= (ßN\N)\Ua. Since any G6 formed from nonempty open sets in ßN\N has a non-

empty interior [G-J, 65.8, p. 99], let A be a nonempty clopen subset of f) {Fa \ a < y}

and write A=B\J C with each of B and C nonempty and clopen, and B n C= 0.

Let Uy = (ßN\N)\B. Clearly Ua g Uy for all a < y and the existence of B insures that

the process can continue, i.e. that Fy# 0.

Adopting the same method employed in the usual proof of Urysohn's lemma (see,

for example, [V] or [K]), we construct a continuous function from ßN\N onto o^ +1.

The theorem of Magill, previously quoted, now assures the existence of the desired

compactification yN, with yN\N homeomorphic to wy +1.

Since ojy +1 can be thought of as a closed nonsequential subspace of yN (N being

locally compact), yN cannot be sequential, and so Example 1.1 is complete.

Let Y=yN\{w1}. Then ßY=yN is totally disconnected and hence zero-

dimensional, being compact [G-J, 16.17, p. 247]. Thus Fis also zero-dimensional

[G-J, 16.11, p. 245]. We will use this fact to show that Fis normal.

If A and B are disjoint closed subsets of F, and Ay and By are their respective

intersections with coy thought of as a subset of Y, one of them, say Au is compact

[G-J, 5.12(b), p. 74]. Then there is a clopen subset U of Y containing Ay and

missing B. Then U U A is a clopen subset of Y containing A and missing B.

Indeed, points of A\U are isolated, whence i/u A is open; they can accumulate

only in Ay^ U, whence U kj Ais closed. Thus Fis normal.

If C is any compact open subset of wy^ Y, then for some compact open

t/s Y, C= U n üJi. By removing the countably many points of U n N one at a

time, we see that C is a Gó. But each point of a^ç Fis the intersection of countably

many such C. Hence each point of F is a G6. Since Y is locally compact (being an

open subset of yN), it is first countable.

Noting that F has cardinality X1; and that, having o>y as a closed subset, it is not

metacompact completes Example 1.3.

We now turn our attention to syN. Since the cardinality of yN is Xj it is

sequentially compact [F4, Corollary, p. 598]. But syN, having the same convergent

sequences, must then also be sequentially compact. Since yN is not sequential,

syN carries a strictly finer topology and is therefore not compact. Thus Example 1.6

is complete.

In the original construction of yN a transfinite sequence {t/a}a<C01 of clopen sub-

sets of ßN\N was employed. By confining our construction to the complement of

some given proper clopen subset U, we can assure that {J {Ua\ a<coy} is not dense

in ßN\N. Every such U is of the form (cl^ A)\N for some subset A of N [G-J, 65.4,

p. 99]. Any sequence in yN which is an enumeration of A must converge to ajy.
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Indeed co1 is its only cluster point by the continuity of the function ßN~^ yN, sind

hence its limit point, since we are in a compact Hausdorff space.

Now suppose we have separated the point w1 from the set cuj by disjoint open

subsets V and W of syN. V then must eventually contain any sequence in N con-

verging to the point oji. Hence (cl^ F\{cui})yV is in fact the complement in ßN\N

of the closure of U {Ua | aKw^. This leaves the closure of that union open, a

contradiction [G-J, 6W.3, p. 100]. Thus if some sequence in N converges to the

point oj1 in yN, then syN is not regular. This completes Example 1.7.

The continuum hypothesis can be used to assure that no sequence from N

converges to to... The transfinite recursion used to construct the {Ucc}C!<túl can be

continued so long as (J {Ua} is not dense in ßN\N. That Gd's in ßN\N have non-

empty interiors insures that the process will not terminate for some 8<ux. This

was the crucial fact of the first construction. However, by cardinality, the process

must terminate for some 8^oju i.e. [J {Ua}a<i is dense in ßN\N. Since there are

exactly c clopen sets in ßN\N (again [G-J, 6S.4, p. 99]), and a new one is created for

each a, the cardinality of S is less or equal to c. Assuming CH, the cardinality of S

is N, and hence there is a cofinal subset of 8 of type u>1 (otherwise (J {Ua}a<â could

not be dense). The Ua's indexed by this subset form a strictly ascending chain of

clopen sets indexed by co, whose union is dense in ßN\N. If yN is constructed from

this chain, then no sequence in N will converge to the point mt.

In this case, removing a>i leaves yN^coj} sequentially compact (recall that yN

is always sequentially compact, regardless of its construction). Since the other

properties are independent of the choice of the U„s this completes Example 1.4.

A similar example occurs by taking syN in this case, since w1 then becomes isolated

(being sequentially open) and hence syN has the same properties as yA^to,}.

Having carefully constructed yN so that no sequence in N converges to the point

coj, let & be the trace on N of the neighborhood filter of co, in yN. Let # be any

ultrafilter containing IF. Let A" be a space whose underlying set is yN, and in which

the neighborhoods of points are as in yN, except that a basic neighborhood of the

point £t>i is of the form {co-¡} u U, where U e %. The space X is clearly sequentially

compact due to the careful construction of yN.

The space Zis not sequential since {a>i} is sequentially open but not open. It is a

ospace since each point other than cuj has a countable neighborhood base, and w1

has a base of countable neighborhoods. X is clearly Hausdorff, completing Example

1.2, but fails to be regular since the point u>1 does not have a basis of closed

neighborhoods. This leaves the question : Is a sequentially compact regular c-space

always sequential? An affirmative answer would be enough to restore faith in

the now doubtful Theorem B of [F4].

For Example 1.5, let 8 be as above. Without CH we can only conclude that

to!^S^c and that S has no countable cofinal subset. Defining a function

ßN\N^- S+l as before, we obtain a compactification X' of N with remainder

^"^=8+1 in the order topology. Since X' is totally disconnected and therefore
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zero dimensional, X= X'\{S] is also zero dimensional. Since S has no countable

cofinal subset, of two disjoint closed subsets of 8, one must be compact. These two

facts are all that is required to prove that X is normal (see page 308).

It remains to show that X is sequentially compact. If we assume that c<2Ni,

this follows as before. However this is only replacing one independent set theoretic

assumption (CH) by another, albeit weaker, one (c < 2Ki). This can be avoided as

follows. Suppose {xn} is any sequence of distinct points in X. If {xn} n 8 is infinite,

{xn} has a convergent subsequence since 8 is sequentially compact. If not, we may

assume that {xn}ç/v. Then {xn}* = clßiy {xn}\{xn} must intersect some Ua since their

union is dense. Now Ua = A* for some Aa^N and A* n {xn}*=£ 0 implies that

Aa n {xn} is infinite. This intersection, thought of as a subsequence of {xn},

has cluster points, relative to ßN, only in Ua, and hence has a as its only cluster

point relative to X'. Thus the subsequence converges to a in I and the proof is

complete.

We wish to thank W. W. Comfort for several valuable comments concerning this

section.

2. An important subclass of the sequential spaces are the Fréchet spaces, i.e.

those in which the closure of any set is simply the set of all its sequential limits.

Clearly every first countable space (and hence every metric space) is Fréchet.

Examples of Fréchet spaces which are not first-countable fairly abound: the reals

with the integers identified, the plane with the .Y-axis shrunk to a point, any CW

complex which is not locally finite, etc. An example of a sequential space which is

not Fréchet can be found in [F2, Example 2.2].

In 1937 E. Cech asked if there was a Fréchet space (in the convergence space, not

the topological, sense (see [N, p. 3]) in which no point had a countable basis of

neighborhoods. J. Novak produced such a convergence space [N, §6, p. 16] which

was not a topological convergence, and remarked that he did not know a topo-

logical example [N, p. 17].

We now have such an example; it will be presented in §3. On hearing of our

example, Professor Novak informed us that he also had such an example (quite

different from ours) which he described in terms of convergence groups of sets,

convergence being order convergence relative to inclusion.

This section is devoted to an account of what we believe to be an example which

is essentially the same as Novak's, in a different, and more accessible guise, that of

zero-one sequences.

Example 2.1. There is a zero-dimensional topological group which is a Fréchet

space but is not first countable.

Let 2mi be the topological product of two point discrete spaces {0, l}a indexed by

the countable ordinals a»x. Let X be the subspace of 2mi consisting of all functions

taking the value 1 at most countably many times.

X as a subspace of 2wi is a topological group under pointwise addition and hence
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is homogeneous and completely regular. It is also zero dimensional, since 2rai is.

It fails to be locally compact since it is a nonopen dense subset of 2mi.

No point of X is a G6 ; thus X is not first countable. Indeed, countably many

basic open sets can restrict only countably many coordinates and hence cannot

intersect in a point, even in X.

If pc X and g eel F, then there is~ a countable subset F' of P with g eel F', i.e.

A' is a ospace. Indeed, let a0 = supg-1(l) and choose a countable subset P0 of P

containing a function belonging to each of those basic neighborhoods of g which

restrict only coordinates ^<*0. Let «i 2: sup {a < co1 | /(a) = 1 for some fe P0}.

Choose a countable subset F, of Pmeeting every basic neighborhood of g restricting

only coordinates ^ aa. Having chosen Pn similarly for an, let

an+1 S: sup {a < o)1 \f(a) = 1 for some/E Pn}.

Thus we construct recursively a sequence of ordinals a0, au ... (without loss of

generality we may take them strictly increasing—we are indebted to F. G.

Slaughter, Jr., for this simplification) and a sequence of countable subsets of F

having the property that each basic neighborhood of g which restricts no

coordinate a strictly between an and an+1 (i.e. an<a^an+1) meets Fn. Since each

basic neighborhood of g restricts only finitely many coordinates, it leaves some

(an, «n+i] unrestricted and so meets Fn. Hence g e cl [J Fn, which is countable.

Finally Zis a Fréchet space. Indeed, if g e cl P, choose a countable subset F' of

P with g e cl F'. Let {aly a2,...} be some enumeration of the set of coordinates

mapped to 1 either by g or by some/e P'. For each n<w0, let

Fn = {feF'\f(ai) = g(ai),iún).

Then for each n,geclFn (hence P„# 0) and if we choose/, arbitrarily from

Fn, {fn} will converge (pointwise) to / This completes the proof.

The authors are indebted to M. Venkataraman for suggesting that Novak's

example might be recast in this simple way, and to T. Soundararajan for a key idea

in the original proof.

It has recently come to our attention that an as yet unpublished result of Noble

[Nj] considerably generalizes Example 2.1. A 1,-subspace of a product space is one

consisting of all those functions agreeing with a given fixed function except at

countably many indexes. Noble proves [N1; Theorem 2.1] that any S-subspace of a

product of first countable spaces is Fréchet. Example 2.1 is an immediate specializa-

tion.

3. Since every first-countable space with unique sequential limits is Hausdorff,

and every first-countable space is Fréchet, it is natural to ask whether every Fréchet

space with unique sequential limits is Hausdorff. Several examples have been given

to show this is not the case (see for example [F,]).

Again it was E. Cech who asked whether there was a Fréchet space with unique

sequential limits in which no pair of points have disjoint neighborhoods.
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In this section, we propose to give a totally different (and countable) solution to

the problem of §2, and then to give a partial answer to the problem of Cech

mentioned in the preceding paragraph.

The method employed in both cases is that of attaching of spaces, which can be

traced from Urysohn [U] to Hewitt [H] to Shimrat's homogeneous extension [S]

to the more recent applications in [A-F] and [FB]. The construction of Sm in [A-F]

provides a good warm-up for the examples of this section.

Example 3.1. There is a countable, zero-dimensional, Hausdorff, homogeneous,

Fréchet space which is not first countable.

Note that this space, being a-compact and regular, has many nice topological

properties, i.e. paracompactness, etc. It fails to be locally compact, as did Example

2.1. It would be interesting to know if a homogeneous Fréchet space could also be

locally compact without being first countable.

Example 3.2. There is a countable, homogeneous, sequential space with unique

sequential limits in which no pair of distinct points have disjoint neighborhoods.

Since every Fréchet space is sequential, this may be considered as partial solution

to Cech's problem.

Construction of 3.1. We begin by constructing a sequential fan F Take

denumerably many copies of a convergent sequence together with its limit point

(i.e. copies of {1/« | « e N} u {0} as subsets of the real line) and identify the limit

points, calling the new point 0 and the new set F Provide F with the quotient

topology after having taken a disjoint topological sum of the convergent sequences

with limits. The resulting sequential fan F has each of its countably many points

isolated except for 0, which fails to have a countable basis of neighborhoods. The

space F, however, is certainly a zero-dimensional, Hausdorff, Fréchet space. (Some

of these assertions can be most quickly verified by recognizing F as a closed subset

of the real line with the integers identified.)

We now begin the attaching process in earnest. Let Fj = Fand construct F2 by

attaching to each isolated point x of Fy a copy Fx of F (all these various copies being

kept scrupulously disjoint before attaching) identifying x with the zero 0* of F".

For a topology, each isolated point of each Fx will remain isolated in F2; a basic

F2-neighborhood of 0* will be simply a basic F*-neighborhood considered as a

subset of F2 ; for a basic F2-neighborhood of 0 (e Fy) in F2, choose an Fy-

neighborhood Uof 0 and take Uu IJ {Fx \ xe U} with the appropriate identifica-

tions. Clearly Fy is a closed subspace of F2, F2 is a Fréchet space, and most im-

portantly, no point in Fy has a countable basis of neighborhoods in F2.

We proceed by recursion. Having constructed Fn_1; a copy of F is attached at

each isolated point of Fn _ y to arrive at Fn. If Fx is attached at x we will say that

y^x for each y e Fx. This relation is defined at each stage of the construction; its

transitive closure is a partial order on Fn. Define the rank of a point p in Fn as 0

for p = 0 in Fy, and as the least / such that p e F, otherwise. For p e Fn of rank «,

let p be isolated. Otherwise, let U be a neighborhood of p in Fp (take F° = Fy). Then
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the sets U* = {y e Fn | y Sx for some x e U} will form a neighborhood basis for p.

Again each F¡ for i<n is a closed subspace of Fn, Fn is a Fréchet space (this requires

a little thought), and no point of rank < n has a countable basis of neighborhoods

inPn.

Now let Pm=U Fn. We may either take the inductive limit topology (the Pn's

together with their inclusion maps form an inductive system; Pm is the limit) or,

preferably, we may extend the partial order to Fa and use the U* as basic neighbor-

hoods as before. It amounts to the same thing. Each Fn is a closed subspace of

Fa, Fa is Fréchet and no point of Fa has a countable basis of neighborhoods.

It is obvious that Fa is Hausdorff. Each U* is clopen (recall that U is a neighbor-

hood of p in some Fp); whence Pm is zero dimensional. For each p e Fm let I(p) be

the principal ideal generated by p, i.e. I(p) = {y e Fa \ yúp). Then each I(p) and

each Fa\I(p) is homeomorphic to Fa. Homogeneity follows easily by finite induc-

tion. This completes Example 3.1.

It would be interesting to know if Pw can support a group structure as does

Example 2.1.

One should note that having specified any infinite cardinal m, an example

similar to Fa can be constructed having all the same properties (except count-

ability) with the character of each point 2:m. One simply must put more sequences

in the fan.

If one wanted only a sequential space instead of a Fréchet space in Example 3.1,

it could be had simply by taking Shimrat's homogeneous extension of P. The

Fréchet property is lost through quotients generally, where sequentialness is not.

The space in this case would apparently be much more complicated as a set than Pm.

Construction of 3.2. Example 3.2 is significantly more complex than is

Example 3.1. This is so on two counts: first the basic building block is more com-

plicated; secondly, the attaching is performed at two points each time instead of

at one, and this is done for "almost all" pairs of points.

The basic building block D is sort of a "sequential fan with two pivots".

Precisely, D consists of an infinite sequence Bu B2,... of pairwise disjoint count-

ably infinite sets of isolated points (Bn is called the nth blade) together with two

additional distinct points 0 and 0' whose neighborhoods are described as follows.

To form a basic neighborhood of 0, one may discard finitely many points (including

possibly zero) from each even numbered blade, as well as finitely many odd num-

bered blades in their entirety; the basic neighborhoods of 0' are formed similarly

with odd and even interchanged. The resulting countable space is D.

It is clear from the definition that 0 and 0' have no disjoint pair of neighborhoods.

If 0 is in the closure of some subset A of D, then either A n Bn is infinite for some

even n, in which case any enumeration of A n Bn is a sequence in A converging to

0, or A has a nonempty intersection with infinitely many blades of odd index, in

which case a point chosen arbitrarily from each of these intersections gives rise

again to a sequence in A converging to 0. Using the dual (in the sense of odd and
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even) we conclude that D is a Fréchet space. Any sequence in D\{0} converging to 0

must be either infinitely many times in some even numbered blade or else only

finitely many times in each of infinitely many odd numbered blades. In any event,

it cannot also converge to 0'. Hence sequential limits are unique and we have another

example such as was mentioned in the first paragraph of this section, i.e. a non-

Hausdorff, Fréchet space with unique sequential limits.

The non-Hausdorffness occurs only at the points 0 and 0'. We will use the attach-

ing process to construct a space Da in which every pair of distinct points looks like

a complicated version of the pair 0, 0'.

Let D0 be the two point discrete space {a, b}. To get Dy, simply attach a copy of

D to D0 identifying 0 with a and 0' with b. We will say that the pair of distinct points

are joined if they have been identified with the points 0 and 0' of some copy of D.

Thus a and b are joined in Dy. To get D2, to each pair of distinct nonjoined points

of Dy attach a copy of D. In general, having constructed Dn, for each pair {x, y}

of nonjoined points of Dn choose a copy D{x,v} of D and attach it at x and y, thus

arriving at Dn+1. Each Dn is a proper subset of Dn+1. Let Da be the union of all

the Dn.

We topologize Da a bit at a time. Having given D0 the discrete topology and

each copy D{x,y) of D the topology described above for D, each Dn+1 can be

regarded as a quotient of the disjoint topological sum of Dn and countably many

copies of D. Give Dn the quotient topology. As before, Da can be regarded as the

inductive limit of an inductive system composed of the Dn and compositions of

their inclusion maps into each other. Give Da the inductive limit topology.

Clearly Da is sequential (since we began with sequential spaces and essentially

performed only sums and quotients (see [F2, 1.2, 1.6, 1.7])). It is also clear that no

pair of distinct points of Da have disjoint neighborhoods. It remains only to show

that sequential limits are unique. This becomes clear once one realizes that a se-

quence can converge to a point x only if A is eventually in some finite number of
jjix.y)

Unfortunately Dm is not a Fréchet space, so that the problem of Cech remains

open. One might be tempted to redefine the topology of Da in a manner more

analogous to that of Fm in order to make Da Fréchet. This can surely be done, but

the uniqueness of sequential limits is lost in the process.
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