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Abstract. Certain packing and covering problems associated with the common

partial transversals of two families 31 and 33 of subsets of a set E are investigated.

Under suitable finitary restrictions, necessary and sufficient conditions are obtained

for there to exist pairwise disjoint sets Flt..., Ft where each F¡ is a partial transversal

of 31 with defect at most p and a partial transversal of 33 with defect at most q. We

also prove that (i) £"= (_JS= i Tt where each 7i is a common partial transversal of 31

and 33 if and only if (ii) E={J\=1 Tí where each T[ is a partial transversal of 31 and

(iii) E= Uí = i T" where each T" is a partial transversal of S3. We then derive necessary

and sufficient conditions for the validity of (i).

The proofs are accomplished by establishing a connection with these common

partial transversal problems and representations of integral matrices (not necessarily

finite or countably infinite) as sums of subpermutation matrices and then using known

results about the existence of a single common partial transversal of two families.

Accordingly various representation theorems for integral matrices are derived.

1. Introduction. Let us begin by describing two general combinatorial problems.

We take E to be an arbitrary set, possibly infinite, and !F to be a distinguished

collection of subsets of E. Let t be a natural number. The packing problem of order

t associated with ÍF is the following: When does there exist a family (F¡ : 1 fkifkt)

of pairwise disjoint sets with F^eiF (1 fkifkt)1 The covering problem of order t

associated with .F is: When does there exist a family (F/ : 1 fkifkt) of sets with

F[e!F (1 fkifkt) such that E=F[ u- ■ -u Ft'? In a typical packing problem the

sets in IF are given a descriptive definition, and it is not assumed that IF is non-

vacuous. The packing problem of order 1 is that of the existence of an object in IF;

the covering problem of order 1 seeks to determine when F is an object in IF.

Suppose 91 = (Ai : i e I) is a family of subsets of the set F. Let IF be the collection

of transversals of 9t. If lis a finite set (i.e. 91 is a finite family), the solution of the

packing problem of order t is a special case of a theorem of Higgins [11]; if / is

an infinite set but At is a finite set (i e I), the solution is a special case of Mirsky's

generalization [14] of Higgins' theorem. The covering problem of order t in this
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case, with suitable finiteness restrictions, has also been solved. This will turn out

to be a special case of a more general covering problem we shall solve here.

A general class of packing and covering problems has been solved by Edmonds

[4]. Let P be a finite set and S an independence structure or matroid on P. Thus S

is a nonvacuous collection of subsets of P satisfying

(i) Aeê, A'çA imply A eê.

(ii) A, B e «?, \A\ + 1 = |P| imply there is a b e B\A such that A u {b} e S.

The axioms for an independence structure are taken from properties of linear

independence of vectors in a vector space. Let F be the collection of bases of S,

that is members of ê which are maximal with respect to set-theoretic inclusion.

Both the packing and covering problems of order / for F have been solved by

Edmonds [4], the results being further extended by Edmonds and Fulkerson [5].

The finite packing and covering problems of the preceding paragraph are special

cases of this one.

It is true that most packing and covering problems for which a solution is at

hand fall into the category of the preceding paragraph. Recently, Fulkerson [8]

has solved a packing problem which does not fall into this category. Let 91 =

(Ai : i el) and 58 = (P, : jeJ) be two finite families of subsets of a finite set P.

Let F be the collection of common transversals of 21 and 58. Now it is well known

that F is not in general the collection of bases of a matroid on P. Nevertheless

Fulkerson, using the theory of flows in networks, solved the packing problem of

order / associated with F(2) and, more generally, that associated with !FP, the

collection of common partial transversals of size p of 91 and 58.

Generalizing Fulkerson's theorem and the broad structure of his proof (our

work, however, was done independently), we shall solve here the packing problem

of order / associated with the common transversals of two arbitrary families 9t

and 58, of subsets of a set P (with suitable finitary restrictions on the subsets) and,

more generally, that associated with the common partial transversals with defect

at most d. We shall also solve the covering problem of order / associated with the

common partial transversals of 91 and 58. Surprisingly, it turns out that this covering

problem is equivalent to the covering problem of order / associated with the partial

transversals of 91 and that associated with the partial transversals of 58. Our

solutions depend on known criteria for the existence of transversals and common

transversals (this is the essential difference with Fulkerson's approach and it has

a simplifying influence) and some representation theorems for integral matrices.

Accordingly, after a brief review of some results in transversal theory, we shall be

concerned with generalizing some known representation theorems for finite integral

matrices to arbitrary integral matrices. The proofs of these results, of interest on

their own, will be based on an existence theorem for partial transversals with

additional properties.

(2) In a paper to be published, J. de Sousa also gives a solution to this problem.
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For sets A^and Y, we shall use \X\ to denote the cardinal number of X, which is

either a nonnegative integer or oo, and X\ Y to denote the set-theoretic difference

of A^ and Y. We shall also use Rado's notation 7= <= A" to mean Fis a finite subset

of X. Also, if 91(7) = (A¡ : i e I) is a family of sets and Tic I, %(K) = (At : ieK) is

a subfamily of 91(7) and A(K) = Ule* A-

2. Some known results in transversal theory. Let 91(7) = (Ai : i e I) be a family,

indexed by a set I, of subsets of E. For short, we shall denote, sometimes, this

family by 91. A set T^E is a transversal of 91 provided there exists a bijection

0: T^-1 such that

(2.1) xeASM       (xeT).

If 0 is only an injection satisfying (2.1), then F is a partial transversal of 91, and

the defect of T in 91 is defined by

(2.2) d%(T) = min {|7\0(F)| : 0: F^ 7, an injection satisfying (2.1)}.

Thus a transversal of 9t is a partial transversal with defect equal to 0. The definition

of defect given by (2.2) can be simplified if 7 is a finite set; it is simply |7\0(F)|

where 0: T^ I is any injection satisfying (2.1). If 7 is an infinite set, |7\0(F)| may

vary with the injection 0. For instance, if 7=£ is the set of positive integers and

Ai = {i,i+l} (iel), then F=7\{1} is a partial transversal of 91. The injection

0i : T-* 7 defined by 9y(i) = i-l (ie I) satisfies (2.1) and |0i(F)\7| =0; the injection

02: F-> 7 defined by 62(i) = i (i e I) satisfies (2.1) and |02(F)\7| = 1.

If 9i(7) = (Ai : i e I) is a family of finite subsets of a set E, then necessary and

sufficient conditions for 91 to have a transversal are |^4(^)| è |7v | (7v<= <=7). If 7 is

a finite set, in which case it is not necessary to assume the A's are finite sets, this is

P. Hall's theorem [9]; if 7 is infinite, this is M. Hall, Jr.'s theorem [10]. In a previous

paper we proved a quite general theorem (Theorem 3 of [1]; for a related result

see [6]) which contains these as well as most other theorems on the existence of

partial transversals as special cases. We will not use this theorem, which is a

transfinite and symmetrical version of a result of Hoffman and Kuhn [12], in its

full generality, and therefore we will be content to extract a weakened version

sufficient to fulfill our requirements.

If 91(7) = 04¡ : iel) is a family of subsets of a set E, then the dual family

9t*(F) = (/l* : e e E) is defined by

A* = {/ e I : e e A¡}       (e e E).

Theorem 2.1. Let 91(7) = (A¡ : ie I) be a family of finite subsets of a set E such

that each element of E is a member of only finitely many A's (i.e. the sets in the dual

family are finite). Let the sets 71; 72 partition I and the sets F1; F2 partition E. Let

there be given integers ck,c'k with 0fkckfkc'k (k=l,2) and integers d,, d¡ with

0fkd¡fkd¡ (1=1, 2). If ck>0, assume Ik is a finite set (k=l,2); ifd¡>0, assume F,

is a finite set (1=1, 2).
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Then there exists fël, E^E such that E is a transversal o/9l(/) with ckS\Ik\I\

^c'k (k = 1, 2), di^\E¡\E\¿ d'i (/= 1, 2) if and only if the following conditions are

satisfied.

(2.3) (i) \A(U)\+2{k:ün¡^0}c'k^\U\(U^^I).

(ii) \A(U) n Ex\+Zlk.MnIk*z]c'k + \E2\-d2Z\U\ (i/cc/).

(iii) \A(U) n E2\+Zlk:UnIkt0}c'k+\Ex\-dx^\U\ (t/cc/).

(2.4) The dual inequalities.

It is permissible that c'k = co (k=l, 2) and d[ = oo (1=1, 2). If one takes d{ = oo

(1=1, 2) and ck = 0 (k=l,2), then we conclude that the conditions of (2.3) are

necessary and sufficient for there to exist 1^1, E^E such that P is a transversal

of 91(7) where \Ik\I\ ^c'k(k = 1, 2)ando',a |P,\P| (1=1, 2). An analogous conclusion

can be arrived at by taking c'k = co (k= I, 2) and d¡ = 0 (1= I, 2).

Now suppose 9t(/) = (A{ : ie I) and 58(/) = (B¡ : j eJ) are two families of sub-

sets of a set P. A set PC Pisa common partial transversal of 9t and 58 provided it

is a partial transversal of both. A common transversal is defined analogously.

In [2] the principal result of [1] was generalized to common partial transversals.

We shall not need this theorem in its full generality, so again we will be content to

record a version sufficient for our purposes.

Theorem 2.2. Let %(I) = (A¡ : i el) and 58(Jr) = (PJ :jeJ) be two families of

subsets of a set E. Assume that each element of E is a member of only finitely many

A's and B's. Let p and q be nonnegative integers or oo. Ifp < oo, assume At is a finite

set (i e I); ifq<co, assume P, is a finite set (jeJ). Let M^E. Then there exists a

set Pc p with M<=, T such that T is a common partial transversal of 9t and 58 with

d%(T)^p, d%(T)^q if and only if

\A(P)nB(J\Q)\ + \{A(P)uB(J\Q)}nN\+p^ |p|-|ß| + |jv|

(P C c /, Q a a J, /V c c M),

(26) \A(r\P)r>B(Q)\ + \{A(I\P)uB(Q)}nN\+q}t \Q\-\P\ + \N\

(Pcc/^cc^JVccM),

(2.7) \A(I\P)r\N\ + \P\ ^ \N\        (P <=c /, n ce m),

(2.8) \B(J\Q)nN\ + \Q\ ^ \N\       (Q c c j, N c c M).

Observe that if we take M= 0, (2.5) simplifies to

\A(P)nB(J\Q)\+P^ \P\-\Q\       (Pcc/^cc;).

A similar simplification occurs for (2.6) while (2.7) and (2.8) disappear. If

|/| = |/| =«<oo, then we obtain a result of Ford and Fulkerson [7]. Also note that

if p=q = oo, (2.5) and (2.6) 'disappear' so that (2.7) and (2.8) are necessary and

sufficient for M to be a common partial transversal of 91 and 58.
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From Theorem 2.2 a theorem about a single family of sets can be obtained.

Corollary 1. Let 91(7)=(At : iel) be a family of subsets of E such that each

element of E is a member of only finitely many A's. Let p be a nonnegative integer

or oo, and assume that At is a finite set (i e I) if p < oo. Then E is a transversal o/9l

with dn(E)fkp if and only if

\A(P)\+p^\P\ (Ferez/),

\A(I\P)nF\ + \P\\%\F\        (Pczcz/^czcz/i).

This corollary can be obtained from Theorem 2.2 by choosing M=0, 93 =

(Be : e e E) where Be = {e} (e e E) and «7 = 0.

3. Integral matrices. We shall take a rather broad view of the notion of a

matrix. It will be simply a family of elements indexed by the cartesian product of

two sets. Thus C=(cit : iel,jej) denotes a matrix indexed by the cartesian

product of 7 and J, sometimes referred to as an (7, J)-matrix. The sets 7 and J

need not be finite nor countably infinite. The notions of row and column still make

good sense, 7 indexes the rows while J indexes the columns. For instance, the

family (ctj :jeJ) is the ith row (ieI). One can add two (7,«7)-matrices by adding

corresponding entries. We shall only be considering nonnegative integral matrices,

matrices all of whose entries are nonnegative integers.

Let (ak : k e K) be a family of nonnegative integers indexed by K. If K* =

{ke K : ak>0}, then XkeK ak = co if K* is an infinite set while ^keK ak = ^keK. ak

if K* is a finite set. The /th row sum of the matrix C defined above is ^jeJ ctj (i e I),

while the/'th column sum is 2¡e/ ¿a (J^J).

A matrix P = (pu : iel,jej) is a subpermutation matrix if pu = 0 or 1 (iel,

j eJ) with at most one 1 in each row and column. Thus if F is a subpermutation

matrix, all of its row and column sums are either 0 or 1. If I' = {ie 1: 2/e//>«=!}

and J' = {jeJ : 2.e/F>/= 1}»then P nas trow defect \I\I'\ and column defect \J\J'\.

The defects are either nonnegative integers or oo. If 7' is a finite set, then so is J'

and |7'| = |/'| and we say that P has rank \1'\. If the row defect (resp. column

defect) of F is 0, then P is called a row permutation matrix (resp. column permutation

matrix). If both the row and column defect are 0, then F is a permutation matrix.

Thus a permutation matrix has exactly one 1 in each row and column.

If C=(Ci¡ : iel,jej) and D = (du : ieljej) are integral matrices, then we

write as usual CfkD to mean c^fída (ieI,jeJ). We are now prepared to prove

the first theorem about integral matrices from which most of our other results on

integral matrices will follow.

Theorem 3.1. Let C=(cu : ie I,jeJ) be a nonnegative integral matrix with

(3.1) (i)   Ta, S    t(iel),       (ii)    J^cufkt   (JeJ),
ieJ is/
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where t is a positive integer. Let

(3.2) t(j>-l)+l*2(t-2d)átP'>
ie/   \       leJ       I

(3.3) to-l)+lá2(í-Tct,)áA3r'
isJ \        ¡e/       /

where p, q are nonnegative integers, p', q' are nonnegative integers or oo with p fkp',

qfkq' where if p>0 (resp. <7>0), then p'<co (resp. q'<co). Then there exists a

subpermutation matrix P with the properties

(3.4) P<C,
(3.5) P has a 1 in each row and column of C which sums to t,

(3.6) pfk(row defect of P) fkp', qfk(column defect ofP)fkq'.

Proof. Before beginning the proof we remark that (3.2) and (3.3) are not con-

ditions restricting the matrices to which the theorem may be applied. Given C

satisfying (3.1) we determine p,p', q, q' so that (3.2) and (3.3) are satisfied.

We define a family 91(7) = (A¡ : iel) of subsets of/by

Al = {jeJ:cu¿0}       (iel).

Let Iy = {iel : 2>s/cw = ?} and 72 = 7\7i. Likewise, let Jy={jeJ : 2íe; c¡í = r} and

J2=J\Jy. The existence of a subpermutation matrix F satisfying (3.4), (3.5) and

(3.6) is equivalent to the existence of 7^7, 7sF such that J is a transversal of 91(7)

where

0   fk   \Iy\I\   fkO, Pfk   \I2\I\   fk p',

0 fk \Jy\J\ fk 0,        qfk\J2\J\fkq'.

Because of condition (3.1), both the family 9C(7) and its dual family are families

of finite sets. Moreover, if p>0 (resp. q>0), then since p'<co (resp. q'<co), I2

(resp. J2) is a finite set. Thus we are able to apply Theorem 2.1 and we need only

verify that conditions (2.3) and (2.4) hold where Ci = 0, c2=p, c[ = 0, c'2=p', dy=0,

d2=q, d[ = 0, d'2=q'. Because of the symmetry present we need only concern

ourselves with conditions (2.3). Each of the three parts of (2.3) divide conveniently

into two. Thus there are altogether six conditions to be verified. We state and prove

them in order. Whenever C/Ç7, let Uy=U rMy and U2=U n 72.

(3.7) \A(U)\^\U\       (U^^Iy).

Suppose for some i/cc/,, \A(U)\ <\U\. Then by (3.1)(ii),

2 2 «b < »iff I.
ist/  isj

which contradicts the fact that %jeJ ci}=t (i e 7t).

(3.8) \A(U)\+p' ^\U\       (£/<=c I, u2 * 0).
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Suppose for some U<= <=/, \A(U)\ +p' < \ U\. Then by (3.1)(ii),

2 2c»+2 2c»<t\ui\+t(\u2\-p">>
ieU1  jeJ feC72 jsj

or, since J.js] cu=t(ie Ux),

2 2C" < *\Va\-tp'
fet/2 ie^

and thus

,„> ^ ,\TJ \      V  V „//7 < /|P2|- 2, 2,cw
is£72 JËJ

This contradicts (3.2).

(3.9) \A(U)nJx\ + \J2\-q^\U\        (i/cc/J.

Suppose for some i/cc/j, |^(P) n 7,1 ̂  |P| +^-|/2| - 1. Then

2 2 cti è t(\U\+q-\J2\-l).
teU jeJx

Since P^P, this implies

'14.1-2 2c» = '(i-1)'

and this contradicts (3.3).

(3.10) |,4(P)n/1|+/>' + |P2|-i? $ |£/|        (£/ c c /, £/2 =4  0).

Suppose for some i/cc/, this inequality did not hold. Then

2 2 cw=í/a pi+?-/>'-i/2i-i),

t(p' + \J2\ + í-q)út\U\-2   2 c»
ieU jej1

= 22 ci;+'i£/2i-2 2cw
ieU je/2 ist/2 )6/

Since ¿l^l — 2/e/2 2ieu Cií==í(<7— 1)+ 1  by (3.3), this means that tp'+l ^t\U2\

— Ziet/2 2/6/ ci/> and this contradicts (3.2).

(3.11) \A(U)nJ2\ + \Jx\^U      (I/c^/j),

If for some £/<= c/j the inequality does not hold, then

2 2 ctJ < t(\u\-\jx\),
ieU jeJ2

t\Ji\ < t\u\-2 2 c»>
46 U jeJ2

t\Ji\ < 2 2 c»>
let/ ie/i
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and this contradicts (3.1)(ii).

(3.12) \A(U)nJ2\+p' + \Jy\ ^ \U\       (i/cc/,!/,^),

Suppose for some £/<= c/, the inequality did not hold. Then

2 2 e» < t(\u\-\Ji\-p'),
ieU iej2

tp' < r|£/|-2 2 cw_il^il-
ist; je/2

Because of (3.1)(ii), this implies tp'<t\U\— 2iet/ 2is/ % which contradicts (3.2).

This completes the proof of the theorem.

Since Theorem 3.1 is a somewhat comprehensive result, it is worthwhile to state

separately some special cases which are of interest.

Theorem 3.2. Let C=(ctj : iel,jej) be a nonnegative integral matrix with

2Je/ Ça fk t (i e I) and 2¡s/ otj fk t (j e J) where t is a positive integer. Let

t(P-i)+i ú 2Í'-2c") **p'
is/   \        leJ       I

where p is a nonnegative integer, p' is a nonnegative integer or oo with p fkp' where if

p>0, then p' < oo. Then there exists a subpermutation matrix P with the properties:

(i) PfkC, (ii) P has a 1 in each row and column of C which sums to t, (iii) pfk(row

defect of P) fkp'.

This follows from Theorem 3.1 by setting «7 = 0 and q' = co.

Theorem 3.3. Let C=(ctj : iel,jej) be a nonnegative integral matrix with

2js/ ¿a ist (ie I) and 2is/ ¿a á t (J € J) where t is a positive integer. Let

t(P-i)+i ú 2 (>-2c») = tp,   t(q-i)+i fk 2 (»-2c«) =ta
is/   \        leJ      I leJ  \        is/       /

where p and q are nonnegative integers. Then there exists a subpermutation matrix

P such that (i) PfkC, (ii) P has a 1 in each row and column of C which sums to t,

(iii) (row defect ofP)=p, (column defect of P)=q.

This is the special case of Theorem 3.1 obtained when p'=p, q'=q.

We mention one final special case before deriving some representation theorems

for integral matrices.

Theorem 3.4. Let C=(Cij : iel,jej) be a nonnegative integral matrix with

2JS/ Cy fk t (i e I) and 2¡6/ cu = t (j e J) where t is a positive integer. Then there exists

a permutation matrix P with PfkC such that P has a 1 in each row and column of C

which sums to t.

This is the special case of Theorem 3.1 obtained by setting p=q = 0, p'=q' = co.
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From Theorem 3.1 and its special cases follow a number of results on representing

integral matrices as sums of subpermutation matrices. All of these results, including

Theorems 3.1 to 3.4, reduce to known results when the matrix is taken to be finite.

We shall collect our results in one theorem.

Theorem 3.5. Let C=(c{j : iel,jej) be a nonnegative integral matrix with

2iej cu = t (ie I) and 2ie/ Cn = t (je J). Letp' andq' be nonnegative integers.

(I) If Sie/ (t-ljtí Cu) = tp', 2iej (í-2i«i cw) = tq', then C=Px+---+Pt where

Px,..., Pt are subpermutation matrices with row defect at most p' and column defect

at most q'.

(II) If liei (t~lm cii) = tp', Ijej (t-2iBi Cij) = tq', then C=PX+■ ■ ■ +Pt where

Px,...,Pt are subpermutation matrices with row defect equal to p' and column

defect equal to q'.

(HI) If liei (t - 2w Cu) á tp', then C=Px+-+Pt, where Px,...,Pt are sub-

permutation matrices with row defect at most p'.

(IV) If 2iei (t-Zjej cu) = tp', then C=PX+- ■ ■ +Pt, where Px,...,Pt are sub-

permutation matrices with row defect equal to p'.

(V) With no additional assumptions, C=PX+ ■ ■ ■ +Pt where Px,. .., Pt are sub-

permutation matrices.

Proof. We shall only indicate the derivations of (I) and (II) from Theorem 3.3.

Statements (III) and (IV) will follow in a similar way from Theorem 3.2, while (V)

follows immediately by induction on / from Theorem 3.4.

Choose nonnegative integers px-¿p' and t7i^c7/ so that

t(px-l)+l Ú 2 ('-2c») = fPi>
iel   \        ¡sJ       I

t-2cA = '9i-
ie/       /

By Theorem 3.3, there exists a subpermutation matrix P = (pu : iel,jej) with

row defect equal to px and column defect equal to qx such that the matrix C = C—P

= (c'ij : iel,jej) is a nonnegative integral matrix satisfying

We calculate that

2 c'iS út-l    (iel),       2 c'v ={~l    Ue J>>-

2 (t- 1 -2 A = 2 ('-2 (Pv+<&) 'Pi
ie/   \ jeJ       I ie/  \        jeJ I

ie/  \        jeJ       I

-Pi
/e/

tPi-Px = (t-l)p
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Likewise, 2?6/ (t— l — 2.s/ c¡j)fk(t— l)qy. Hence by induction, C" is the sum of

r—1 subpermutation matrices with row defect at most py and column defect at

most «7i. Since C=P+C and pyfkp', qifkq', (I) follows. To obtain (II) we simply

use Theorem 3.3, to conclude we may take F to have row defect equal to p' and

column defect equal to q'.

Corollary 1. Let C=(cu : iel,jej) be a nonnegative integral matrix whose

row and column sums are bounded. The minimum value of k for which there exist

subpermutation matrices Py,..., Pk such that C=Py+ ■■ ■ +Pk equals the maximum

of the row and column sums of C.

The corollary is an immediate consequence of part (V) of Theorem 3.5. For

finite matrices, part (V), and thus the above corollary, is well known and is generally

attributed to König [13] (for an exposition of this result see [15]). Likewise (IV)

for finite matrices is known and is due to Dulmage and Mendelsohn [3] ((II) is

not more general than (IV) for finite matrices). This can be formulated as follows.

Let C=(Cij : 1 fkifkm, 1 fkjfkn) be a finite nonnegative integral matrix. Suppose

2" = icufkt (I fkifkm) and 2í"= i <".,^t (1 fkjfkn) and

m      n

(3.13) 2 2co=F',
i=i1=1

where p is a nonnegative integer. Then C=Fi+---+F( where Py,...,Pt are

subpermutation matrices of rank p.

This follows from (IV) because (3.13) is equivalent to

m       l n \

2    ?_2 c<>   =(m-p)t.
i=i \    1=1     I

Hence C=Fi+ • ■ ■ +Pt where Py,..., Pt are subpermutation matrices with row

defect equal to (m—p) (that is, rank/?). Actually Dulmage and Mendelsohn prove

a somewhat more comprehensive result. Namely, if (3.13) is replaced by

m      n

2 2 «*-Pt+1       (0£q<P),
i=l1=1

then C=Fi+ • • • +Pt+ Q when Py,..., Pt are subpermutation matrices of rank p

and Q is a subpermutation matrix of rank q. (This is entirely equivalent to Theorem

1 of [3] which, because of the introduction of unnecessary parameters, is difficult

to take in.) We can generalize this as follows.

Theorem 3.6. Let C = (c0 : iel,jej) be a nonnegative integral matrix with

2/sj cw fkt (ie I) and 2¡s/ e« â t (j e J). Suppose that

(3.14) 2 ('-2 i) = »/»-?
is/    \        leJ        I
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where p is a nonnegative integer and q is a nonnegative integer such that q+p is |/|

(this is automatically satisfied if I is an infinite set). Then

C = PX+--+Pt+Q

where Px,.. ., Pt are subpermutation matrices with row defect p and Q is a sub-

permutation matrix of rank q.

Proof. Suppose we can show that there is a subpermutation matrix of rank q

such that Q = C The matrix C' = C— Q is then a nonnegative integral matrix with

row and column sums at most /, and it is easily verified that

2 ('-2c'*) = v-
tel  \       JeJ       I

By (IV) of Theorem 3.3, C is the sum of / subpermutation matrices with row

defect equal to p, and the theorem will have been proved.

If we consider again the family 91(7) = (At : iel) where A¡ = {jeJ : ctf^0},

then we need to show that 91 has a partial transversal T with |P|=c7. and (as a

consequence of more general results given in [1] and [16]), this is equivalent to

\A(K)\ + |/\P| ^q (K^I). Suppose for some K^I, \A(K)\ + \I\K\ <q. Then

2 2c» </(i-|/\^|),
ieK fa)

wi+2 2c«< '*.
ieK jeJ

2 2 c'i <ta-
ie/ ieJ

If I is an infinite set, this is impossible. If I is a finite set, then

22c«<id/i-/')>
ie/ ie/

tp < t\i\-22cv
ie/ jeJ

But this contradicts (3.14) (since tj^O), and the theorem is proved.

The theorem of Dulmage and Mendelsohn results when I and / are finite sets,

for then (3.14) becomes

22c« = t(\I\-p)+q
ie/ ie/

where 0;^^ |/|— p.

4. Common partial transversals. We shall be concerned in this section with

certain packing and covering problems associated with the common partial trans-

versals of two families 91 and 58 of subsets of a set P. In particular, we shall give a

solution to the packing problem of order / associated with the collection of common

partial transversals of 91 and 58 having defect at most p in 91 and defect at most q
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in 93. For finite families this will reduce to the theorem proved by Fulkerson [8].

We shall also solve the covering problem of order t associated with the collection

of all common partial transversals of 91 and 93. Our proofs will be based on

Theorem 2.2 and the representation properties of integral matrices given in

Theorem 3.5.

We shall make use of the following notation. If <ñ = (Aí : iel) is a family of

subsets of a set F and t is a positive integer, then 9((i) denotes the family obtained

from 91 by repeating each of the /Ts t times. Formally, if Zt = {l, 2,..., t}, then

9t(i> = (Afk : (i, k)elxZt) where A¡% = Át (i eI,keZt).

Before establishing our main packing result about common partial transversals,

we first establish a 'linking principle' which is of considerable interest by itself.

No finiteness conditions are necessary.

Theorem 4.1. Let W(I) = (Ai : iel) and 93(F) = (B, :jej) be two families of

subsets of a set E. Let t be a positive integer, and let p andq be nonnegative integers

or co. Let TsiE. Then the following three statements, (4.1), (4.2), and (4.3), are

equivalent.

(4.1) F is a common partial transversal of the families 9t<0 and 93<0 with d<nm(T) fk pt

and d<&«i(T)fkqt.

(4.2) (i) There is a family (T¡ : I fkifkt) of pairwise disjoint sets with T= U. = i T¡

such that T'i is a partial transversal qfñ with d%(T¡) fkp (1 fk ifkt).

(ii) There is a family (T¡" : 1 fkifkt) of pairwise disjoint sets with F=(JÍ = i T¡"

such that Tí' is a partial transversal o/93 with d^(T")fkq (I fkifkt).

(4.3) There is a family (F¡ : I fkifkt) of pairwise disjoint sets with T={Jti = 1Tl

such that Fj is a common partial transversal o/9I and 93 with <7a(F¡) fkp and d<s(Ti)fkq

(íá/áO-

Proof. It is clear that (4.3) implies both (4.1) and (4.2). The power of the theorem

lies in the other implications. It is also clear that (4.2) implies (4.1). Thus it is only

necessary to establish that (4.1) implies (4.3).

Suppose (4.1) is valid. Then there exist injections a: F-> IxZt and 0: T^JxZt

such that x e Afw (x eT),xe B$x) (x e T), \{I x Zt}\a(T)\ fkpt, and |{/xZ,}\0(F)|

fkqt. We construct a nonnegative integral matrix C = (c0- : iel,jej) by defining

cy = \{x : x e T, a(x) e {/} x Zt, 6(x) e {j} x Zt}\       (i el, je J).

The matrix C then has the following properties:

(•) 2,6/ cy fkt(ie I), 2ie/ cy fkt(je J).

(ii)   2is/(í-2,s/Cy)^r, 2,s/(-'-2.s/Cy)á«F-

By (I), (III), or (V) of Theorem 3.5 there exist subpermutation matrices Py,.. .,Pt

with row defects at most p and column defects at most q such that C=Py + ■ ■ ■ +Pt.

But this means that there exist pairwise disjoint sets Ty,..., Tt whose union is F

and injections ct¡: F¡-> 7, 0¡: F¡ ->/ such that x e A„t(x), y e B6i(x) (x e Tt, 1 fkifkt)

where \I\a¡(T)\fkp and |F\0f(F)|^«7 (I fkifkt). That is, T¡ is a common partial
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transversal of 9t and 58 with d%(T¡)-¿p, dfs(T¡)^q (ISiút). This completes the

proof of the theorem.

By choosing p and q to be 0 or oo, some special cases which are of interest result.

Continuing with the terminology of Theorem 4.1 we record two of these (but only

the part which says that (4.2) and (4.3) are equivalent).

Theorem 4.2. The following two statements are equivalent.

(4.4) There is a family (Tt : l£i£t) of pairwise disjoint sets with P=U' = i P

such that Tt is a common transversal ofñ and 58 (lúi St).

(4.5) (i) There is a family (T\ : 1 g /<¡ /) of pairwise disjoint sets with T= \Jli = x P'

such that T[ is a transversal ofR (1 ¡gf i£/).

(ii) There is a family (P/' : 1 á/¿/) of pairwise disjoint sets with P=U' = i Tí'

such that T'i is a transversal of 58 (1 á z'á /).

This is the special case p=q = 0 of Theorem 4.1.

Theorem 4.3. The following two statements are equivalent.

(4.6) There is a family (T¡ : 1 Si^t) with P=UÍ=i Tt sucn that Tt is a common

partial transversal ofVL and 58 (1 £i£t).

(4.7) (i) There is a family (P/ : l=i^t) with T= U. = i P' such that T,' is a partial

transversal of 91 (1 ̂  / ̂  /).

(ii) There is a family (T¡  : l^i^t) with P=(JÍ = i T" such that T" is a partial

transversal of So (1 á /' ̂  /).

This follows from Theorem 4.1 by choosing p=q = oo and from the fact that a

subset of a partial transversal (resp. common partial transversal) is also a partial

transversal (resp. common partial transversal).

We now solve the packing problem for common transversals.

Theorem 4.4. Let 'il(I) = (Ai : iel) and 58(P) = (P, :jeJ) be two families of

subsets of a set E, and suppose each element of E is a member of only finitely many

A's and B's. Let M<^E, let p and q be nonnegative integers or oo, and ¡et t be a

nonnegative integer. Ifp<oo, assume A¡ is a finite set (iel); ifq<ao, assume P,

is a finite set (jeJ). Then there exists a family (T¡ : 1 Siút) of pairwise disjoint

sets such that (i) M^(Jti = x T¡, (ii) P¡ is a common partial transversal of 9t and 58

(1 =i^t), (iii) d%(Tt)^p, dm(Ti)^q (láfá'f) if and only if

\A(K)nB(J\L)\ + \{A(K)KJB(J\L)}nN\+tp ^ t(\K\- \L\)+\N\

(K <= ti% L ¿¿ J, N <= <z M)

\A(I\K) n P(P)| + \{A(I\K) u P(P)} n N\ +tq ä /(|P| - \K\)+\N\
(4.8)

(K c <= /, L c c /, N c c M)

(4.9) \A(I\K)nN\ + t\K\ ^ \N\       (P <= c /, # c c M)

(4.10) |P(/\L) n#|+/|P| ^ |AT|       (P c c J, N fc <= M).
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Proof. According to Theorem 4.1 the existence of a family (T¡ : I fkifkt) of

pairwise disjoint sets with properties (i), (ii), (iii) is equivalent to the existence of a

set Fç F with Mç F such that F is a common partial transversal of 9I(1) and 93<()

with d%<.u(T)fkpt, dss^(T)fkqt. Conditions for the existence of such a F are given

in Theorem 2.2. We assert that the conditions corresponding to (2.5), (2.6), (2.7),

and (2.8) are, respectively, (4.7), (4.8), (4.9), (4.10). We show only the first of these,

the other verifications being quite similar. Corresponding to (2.5) we have the

cordition

\A«\P) n 2?«>({/xZt}\ß)| + \{A«\P) u B«\{JxZt}\Q)} nN\+tp

^ \P\-\Q\+N       (P<=<= fxZt, Q s=c JxZt, Nczc M).

Let Ncz<=M be fixed. Choose Kczczf minimal and L<= cj maximal with respect

to the properties PçzKxZt, {JxZt}\Qçz{j\L} xZt. Then the above inequality can

be written as

\A(K) n B(J\L)\ + \{A(K)V B(J\L)} n N\+tp g |p|-|ß| + |tf|.

Now for fixed K and L, the left side of this inequality is independent of K and L

while the right side is largest when P=KxZt, {JxZt}\Q = {J\L}xZt. If P and Q

are chosen thus, then |F|=/|A^| and |g|=f|7_|, so that the conditions of (4.11)

are equivalent to those of (4.7). This completes the proof.

Continuing with the assumptions of Theorem 4.4 we record some special cases

which are of interest.

Corollary 1. There exists a family (T¡ : 1 fkifkt) of pairwise disjoint sets such

that T¡ is a common partial transversal of'il and 93 with d%( F¡) fk p, d%( T¡) fk q ( 1 fk ifk t)

if and only if

\A(K)nB(J\L)\+tp S? t(\K\-\L\)       jtccillcc/),

\A(I\K) n B(L)\+tq ë t(\L\ - \K\)        (K ¿g J,L <= ¡= J).

This is the special case of Theorem 4.4 obtained by taking M= 0.

Corollary 2. There exists a family (F¡ : 1 fkifkt) of pairwise disjoint sets such

that Tt is a common transversal of "it and 93 (1^/^f) if and only if

\A(K) n B(J\L)\ ^ t(\K\ - \L\)       (K <= «= 7, L «= «= /),

\A(I\K) n B(L)\ ^ t(\L\ - \K\)       (K <=<=/, L cz <= J).

This is the special case of Corollary 1 obtained by choosing/?=«7 = 0.

Corollary 3. There exists a family (T¡ : 1 fkifkt) of pairwise disjoint sets such

that T¡ is a transversal ofii and a partial transversal of 93 (I fkifkt) if and only if

\A(K) n B(J\L)\ ^ t(\K\ - \L\)       (K <= c 7, L «= cz /).
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This is the special case of Theorem 4.4 arrived at by taking p = 0, q = co. While

the A's must be finite sets, the P's need not be.

There are other interesting special cases which we leave to the reader to formulate,

except that we show how to obtain Fulkerson's theorem [8] from Theorem 4.4.

Corollary 4. If the families 91 and 58 are finite families and k is a nonnegative

integer, then there exists a family (T¡ : 1 S i St) of pairwise disjoint sets with \T¡\=k

such that T¡ is a common partial transversal o/9i and 58 (1 =iSt) if and only if

\A(K) n P(P)| ^ t(k- \I\K\ - \J\L\)       (K S /, p ç J).

To obtain this from Theorem 4.4, take M= 0, p=\I\ —k, q = <x>.

We now turn to the covering problem of order / associated with the common

partial transversals of two families of sets.

Theorem 4.5. Let 91(7) = (A¡ : iel) and 58(P) = (P, :jeJ) be two families of

subsets of a set E. Assume that each element of E is a member of only finitely many

A's and B's. Let t be a positive integer, and let p, q be nonnegative integers or co.

If p< co assume that A¡ is a finite set (i e I); ifq<co, assume that B} is a finite set

(jeJ).

Then there exists a family (T¡ : Ifíiikt) of pairwise disjoint sets such that

P=UÍ = i P¡ where P¡ is a common partial transversal of)l and 58 with d%(Ti)Sp,

d%(Ti)Sq (1 S ¡St) if and only if the following conditions are satisfied.

(4.12) \A(K)\+tp^t\K\(K^^I),
(4.13) \A(I\K)nF\+t\K\^\F\ (Pcc/, fc<= E),
(4.14) |P(P)| + /^/|P|(Pc:c./),

(4.15) |P(/\P)|+z|P|è|P| (Lccj,fccí:).

Indeed (4.12) and (4.13) are equivalent to the existence of a family (T[ : 1 g ¡S t)

of pairwise disjoint sets such that P=U< = i T( where P/ is a partial transversal of

9Í with d%(Tl)Sp (ISièt). A similar statement applies to (4.14) and (4.15).

Proof. By Theorem 4.1, a family (P, : lííí=íO having the desired properties

exists if and only if P is a partial transversal of 9l(i) with defect at most pt and a

partial transversal of 58(t) with defect at most qt. It is sufficient to show that the

first of these is equivalent to the conditions (4.12) and (4.13). By Corollary 1 to

Theorem 2.2, E is a partial transversal of 9l(i) with defect at most pt if and only if

(4.16) \Am(P)\+pt^\P\ (P"/),

(4.17) \Am(I\P)nF\ + \P\^\F\ (ícc/jccí).

We assert that (4.12) is equivalent to (4.16) and (4.13) is equivalent to (4.17).

Since the proof of these involves calculations similar to the ones done in the proof

of Theorem 4.1, we omit them. The theorem is proved.

We now record some special cases of Theorem 4.5.

Theorem 4.6. Let (H(I) = (Ai : iel) and 58(P) = (P, :jeJ) be two families of

finite subsets of a set E such that each element of E is a member of only finitely many
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A's and B's. Then there is a family (Ti : I fkifkt) of pairwise disjoint sets where

E= US = i T¡ such that F¡ is a common transversal ofH and 93 (1 fk ifk t) if and only if

(4.18) \A(K)\^t\K\ (Kczczl),

(4.19) \A(K)nF\+t\K\^\F\ (7Ccc7, FcczE),

(4.20) \B(L)\^t\L\(LczczJ),

(4.21) \B(L)nF\+t\L\^\F\ (Fee:/, F<=<=E).

This is the special case of Theorem 4.5 obtained by choosing/?=«7 = 0. Observe

that this solves the 'simultaneous' packing and covering problem for the common

transversals of 91 and 93. The solution of the covering problem for common partial

transversals is the content of the next theorem.

Theorem 4.7. Let 91(7) =(At : ieI) and 93(F) = (B, :jeJ) be two families of

subsets of a set E. Assume that each element of E is a member of only finitely many

A's and B's. Then there exists a family (F¡ : 1 fkifkt) of sets such that F=lJÍ = j F¡

where T¡ is a common partial transversal o/9I and 93 if and only if

(4.22) \A(I\K)nF\+t\K\^\F\ (K^ c /, p<z c E),

(4.23) \B(J\L)nF\+t\L\^\F\ (LccJ,Fcc£).

This theorem follows from Theorem 4.5 by choosing/? = q = co. If desired, the

family (F¡ : Ifk ifk t) may be chosen to consist of pairwise disjoint sets. This is so,

because a subset of a common partial transversal is also a common partial trans-

versal.

Theorems 4.5, 4.6 and 4.7 also contain theorems about the partial transversals

of one family of sets. For instance, if 91 = (At : ie I) is a family of finite subsets of a

set E such that each element of F is a member of only finitely many A's, then (4.18)

and (4.19) are necessary and sufficient for there to exist a family (T¡ : 1 fkifkt) of

pairwise disjoint sets such that (J. = i Fj = Fwhere Tf is a transversal of 9t. Observe

that (4.22) is necessary and sufficient for E=(J\=1 T[ where F/ is a partial trans-

versal of 9Í; a similar statement holds for (4.23).

5. Concluding remarks. It is possible to solve also the packing problem of

order / associated with the collection of common partial transversals of cardinality

/? < oo of two arbitrary (not necessarily finite) families of two sets. This will be a

generalization in a different direction of Fulkerson's result (Corollary 4 of Theorem

4.4 in this paper). In order to do this we need an additional result on common partial

transversals.

Lemma 5.1. Let 91(7) = (AX : iel) and 93(7) = (B¡ :jeJ) be families of subsets

of a set E. Let k be a nonnegative integer. Then 91 and 93 have a common partial

transversal T with \T\ =k if and only if

M(7\F)nß(y\ß)| + |F| + |ß| a       (Fee/, ßcc/).

This lemma can be derived from more general known results (Theorem 3.8 of

[2], or [16]).
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Lemma 5.2. Let C=(cu : ieI,jeJ) be a nonnegative integral matrix. Letp and

t be positive integers and suppose

2cuSt   (iel),       2c» = t   0'e/)'       22^= PL
iel ie/ iel jeJ

Then C=PX+ • ■ ■ +P¡ where Px,..., Pt are subpermutation matrices of rank p.

This follows from the corresponding result when I and J are finite sets, since the

conditions imply that {/e / : ciy>0for some y ej}and{jej : cw>0 for some is 1}

are finite sets.

Theorem 5.2. Let 91(7) = (At : iel) and 58(/) = (B¡ : j eJ) be families of subsets

of a set E. Let p and t be positive integers. Then there exists a family (P¡ : 1 5= /¡áf)

of pairwise disjoint sets where P¡ is a common partial transversal of% and 58 with

I Tt\ =p (1 Siút) if and only if

(5.1) \A(I\K)nB(J\L)\ + t\K\+t\L\^pt       (K <= c /, L ¡= c J).

Proof. We only sketch the proof, since the procedure is the same as the one

used before. Using Lemma 5.2, one shows that the required family (P¡ : 1 =ièt)

exists if and only if 9I(i> and 58a) have a common partial transversal with cardinality

pt. Applying Lemma 5.1 to 9l(i) and 58(f> with k=pt, one obtains the conditions

(5.1).
It is possible to improve Theorem 5.2 by requiring that UUi P contain a

prescribed set M. In order to do this one has to improve Lemma 5.1 in the corre-

sponding way. This also can be done by using the more general results in [1] or

[16]. We leave this to the interested reader.
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