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SYSTEMS OF DIVISION PROBLEMS FOR DISTRIBUTIONS

BY
B. ROTH

Abstract. Suppose (fi))1si,5sp iS @ px p matrix of real-valued infinitely (respec-
tively m-times continuously) differentiable functions on an open subset Q of R*. Then
(fiN1s1.9s» Maps the space of p-tuples of distributions on Q (respectively distributions
of order <m on Q) into itself. In the present paper, the p x p matrices (fi))1x1,55» fOr
which this mapping is onto are characterized in terms of the zeros of the determinant
of (fiD1=s1,1s» When the f,, are infinitely differentiable on QQ < R* and when the f;; are
m-times continuously differentiable on Q< R*. Finally, partial results are obtained
when the fi; are infinitely differentiable on < R" and extensions are made to p xq
systems of division problems for distributions.

1. Introduction. Let &™(QQ) denote the algebra of real-valued m-times con-
tinuously differentiable functions on an open set Q in R™ equipped with the topology
of uniform convergence of all derivatives of order <m on all compact subsets of Q.
Here 0= m = o0 and €*(Q2) will often be denoted by £(2). £™(Q) is a Fréchet space,
that is, a complete metrisable locally convex topological vector space. Let 27(Q)
denote the subspace of §™(Q) consisting of all functions with support in the com-
pact set K<Q equipped with the relative topology and let 2™(Q2) denote the
inductive limit of the 23(2), K a compact subset of Q. Here 0<m <00 and 2°(Q)
will often be denoted by 2(Q). For m < oo, 2'™(Q) (respectively &'™(Q)), the dual
space of 2™(Q2) (respectively £™(L2)), is the space of distributions of order <m on Q
(respectively the space of distributions with compact support of order <m on Q).
And 2'(Q) (respectively 67(L2)), the dual space of 2(Q) (respectively &(Q)), is the
space of distributions on  (respectively the space of distributions with compact
support on Q).

For F=(fij)1515p,157s¢ Where f;; € £™(Q), define F: [2"™(Q)]? — [2"™(Q)]? by

q q

FSuevn8) = (3 1S 3 108))
j=1 i=1

Let F,:[6'™(Q)]*— [6'™(Q)]? be the restriction of F to [£™(Q)]%. Let

F': [2™(Q)PP — [2™(2)]? (respectively F.: [™(Q)]P — [€™(€2)]?) be the transpose

of F (respectively F.). Then F'=F,=(f)1sizq1<ssp» Where fi;=f;, 1=i=Zgq,

1=j=p.
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When does im (F)=[2'™(Q)]?, that is, when does there exist a solution
(S1, ..., Sy € [2'™(Q)]* to the p x q system of division problems

JuSi+ - +f1,8, =T,

Jo1S1+ -+ +fpeSe = T

for every (T, . . ., Tp) € [2"™(Q)JP?

In §2 we show that for p=¢, m<oo, and Q< R", im (F)=[2™(Q)]? if and only
if det (F) never vanishes. In §3 it is shown that for p=q and Q< R?, the following
are equivalent:

(@) im (F)=[2'(QP.

(b) det (F) has zeros of finite order.

(c) det (F) is not identically zero in any component of Q and satisfies the
Lojasiewicz inequality.

In §4 we prove that for p=q and Q<= R", n> 1, (a) implies (b), (a) implies (c), and
(b) does not imply (a). The referee has pointed out that (c) does not imply (a) for
n> 1. And in §5 we dispense with our restriction that p =q and obtain for the general
system of division problems results analogous to those of §2, §3, and §4.

2. Systems of division problems in 2'™(Q), m<o, Q<R*. For F=(fi)i1zi52p
where f;; € §™(Q2), m <00, Q< R", we here show that im (F)=[2™(Q)}? if and only
if det (F) never vanishes. The proof reduces the p x p system of division problems
to a 1 xp system. We begin with a lemma involving 1 x p systems in which Mal-
grange’s extension [4] to submodules of a theorem of Whitney [8] describing the
closed ideals in &™(€2) is used.

LeMMA 2.1. Suppose fi, .. ., f, € §™(Q), m< oo, Q< R", and define
Fo: [6™(Q)P — &™)

by FASy,...,Sp)=fiS1+ - +/8,. If fil(@)=0, 1=i<p, where acQ, then
T8, ¢ im (F,).

Proof. Suppose fi(a)=0, 1 =i<p, where a=(a,,..., a,) € Q. We assume that
F(Sy, ..., S;)=078, where Si, ..., S, € £'™(Q) and obtain a contradiction.

Define f by f(xy, ..., X,)=(x1—a,)'+ - - - +(x,—a,)* where [ is an even integer
greater than m. Then

F, fSI’ .- -,fsp) =f(3'1"8a) = 0.
Thus (fSy, . . ., fS,) eker (F)=M* where M=im (F;)={(f1g, .. .,/,&) : g€ E™(Q)}
is a submodule of the £™(Q)-module [€™(Q)]*. Hence (S}, . . ., Sp) € (fM)* where

fM is the submodule {(fg1, ..., /8) : (g1,--.,8p) E M}.

For x € Q, let J? denote the ideal in £™(Q2) consisting of all function which vanish
at x together with all derivatives of order <m and let T denote the natural map-
ping of [€™(Q)}? onto [™(Q)]*/[J2]P.
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Define g by g(xy, ..., x,)=(x1—a,)™. Then T*(fM) and T(gM) are both the
zero submodule of [6™(Q)]?/[Jr]P. And for x € Q, x#a, we have TR(gM)<T*(fM)
since f(x)#0. By Whitney’s theorem for submodules [4, Corollary 1.6, p. 25], we
conclude that cl (gM)<cl (fM), and hence that (fM)'<(gM)*.

Therefore (Sy, . . ., S,) € (gM)* and thus (g$,, ..., gS,) € M+=ker (F.). Hence

0= Fc(gsls ceey gsp = g(aTsa)~

But g(878,)#0 since g(xy, ..., x,)=(x;—a;)™ This contradiction completes the
proof.

THEOREM 2.1. Suppose F=(fi;)1<1,;sp Where fi; € E™(Q), m< oo, Q< R". Then the
following are equivalent:

(@) im (F)=[2™(Q)P

(b) im (F))=[£"™(Q)P.

(c) det (F(x))#0 for all x € Q.

(d) det (F)2'™(Q)=2'"(Q).

Proof. (a)implies(b). IfF(S,, ...,S,)=(T1,...,T,) where(S,, . . .,S,) € [2"™(Q)]
and (Ty,...,T,) € [6'™())P, then for an appropriate ¢ € £™(Q) with compact
support we have F(§Ss, . . ., $S,)=(Ty, ..., T,) where

Sy, .. ., §S;) € [E(Q)P.

(b) implies (c). Suppose im (F,)=[6'"()]*. We suppose that det (F(a))=0 for
some a € Q and obtain a contradiction. Let r be the rank of the matrix F(a). If
r=0, then f;;(a)=0, 1 =i, j<p. By hypothesis, there exist Sy, ..., S, € £™(Q) with
F Sy, ..., Sp)=(976,,0, ..., 0), contradicting Lernma 2.1.

Suppose 1=r<p. For simplicity assume that det (f,);<: <, iS nonzero at a.
Choose T e &'™(Q) such that (—1)" det (f;;))1<i,s<,T=078,. By hypothesis, there
exist Sy, ..., S, € £™(Q) with

JuSi+--- +f1pSp =0
JaSi+--- +f;pSp =0

ﬁr+1)1S1+ e +ﬂr+1)pSp =T

For 1 Si<r+1, multiply the ith row of this system of equations by (—1)!*? times
the determinant of the matrix (fi)); < <r+1,155<- With the ith row deleted. Adding the
r+1 equations thus obtained, we find that the coefficient g; of S; is

Sfu  Sfu o S
g5 = det : : : .
ﬂr+1)j ﬂr+1)1 tet ﬂr+l)r
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For 1<j=<r, g, is identically zero since two columns are the same. For
r<j<p, g{a)=0 since the rank of F(a) is r. Thus

8181+ - +8,8, = (= 1) det (fi)is1,55.T = 978,

where g,(a)=0, 1 =j<p, which contradicts Lemma 2.1.

(c) implies (d). Division by a nonzero function is always possible.

(d) implies (a). Since it is always the case that [det (F)2'™(Q)]P<im (F),
det (F)2'™(Q)=2'™(Q) implies im (F)=[2'™(Q)]*.

3. Systems of division problems in 2'(Q), Q<R!. For F=(f;;)i<i,;sp» Where
[ € €(Q), Q= R, we here show the equivalence of im (F)=[2'(Q)]?, the zeros of
det (F) are of finite order, and det (F) satisfies the Lojasiewicz inequality but is not
identically zero in any component of Q. The proof uses the closed range theorem
for Fréchet spaces due to Dieudonné and Schwartz [1], the open mapping theorem
for Fréchet spaces, and some results of the author [6] concerning the relationship
between zeros of finite order and the Lojasiewicz inequality.

Consider £(Q), Q< R™ For each compact set K<Q and integer /20, let

|flga = sup {|ofr-- - Of(x)| : x€ K, ay+ -+ +oy S [}
for fe £(Q). The seminorms |- ,; define the topology of £(Q). For
f=U-. "f;?) € [€(QP,

let
|flx,; = max {lfllK,l, cees lf;:'K.l}‘

The seminorms |- | ; define the topology of [£(Q)]”.

Malgrange [4, p. 88] first recognized the usefulness of the open mapping theorem
in establishing the Lojasiewicz inequality. To establish the Lojasiewicz inequality
in this way, the following fact is needed. For any compact set K< Q, integer /=0,
and nonempty closed subset Z of Q, there exists a constant C>0 such that if
x € K—Z, then there exists h, € &(Q) with h,(x)=1, h,=0 in a neighborhood of Z,
and

|hx|K,l < C/ld(x, Z)]-

Here d(x, Z)=inf{d(x, z) : z€ Z} where d is the Euclidean metric. Merely let ¢ be an
infinitely differentiable function with support in the unit ball and ¥(0)=1. Then
h(y)=¢((y—x)/8) has the desired properties when §=d(x, Z)/2.

Suppose f € £(Q), Q= R!. A zero of f'is of finite order if some derivative of fdoes
not vanish at the zero.

Finally, we need a lemma which will te used again in §4 and §5.

LeMMA 3.1. Suppose F=(f,)1<1,;<p Where f;€ E™(Q), 0Sm=o0, Q=R™ Then
F;: [6™(Q)]F — [6™(Q)]? is one-to-one if and only if det (F) is not identically zero in
any open subset of Q.
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Proof. Suppose that det (F)=det (F.)=0 in some open subset U of Q where
Fo=(f{)151.j <0 Jiy=S3- Let r be the maximum rank of F¢(x) for x € U. If r=0, then
fi;=01in U for 1 =i, j<p and clearly F; is not one-to-one.

Suppose 1 =r<p. For simplicity assume that det (f;j); <7< is nonzero at ae U.
Therefore det (f;})); <1.;<- is Nonzero in an open neighborhood N of a with N= U.
Then

fi181+ +f1:8& = fle+v

fagi+ 18 = froen

can be solved in N by Cramer’s rule for functions g, . . ., g € §™(N).
Choose ¢ € £™(Q) with $#0 and supp (J))<N. Let hy=¢g,, ..., by=3g,, N1
= —1, and h;=0, r+1<j=<p. Then (h, . .., h,) € ker (F;). For

P P
Fé(hl, DIIERY hp) = (jz ﬂjhj’ c ey j}:lf‘;jhj).
=1 =

And for 1=5i=Zp,

P
D fihy = fidgi+ -+ o —fitr

ji=1

Since supp ($)< N, we have >7_, fi;1,=0in Q— N for | £i<p. And in N, we have

fio o fies
P '’ '’
> faby = (= pdet| fir o Siesn | [ det (fiisessr
i=1 H M

fioo fewn

For 1 Zi<r, the determinant of the matrix in the numerator equals zero since two
rows are the same, and for r <i<p, it equals zero since the maximum rank of F; in
N is r. Since (h,, . . ., hy) € ker (F;) and h,,,= —¢#0, we conclude that F; is not
one-to-one.

Conversely, suppose that det (F)=det (F;) is not identically zero in any open
subset of Q. Suppose (g, - - -, &) € ker (F¢). Then

f1'1g1+ e +f1’pgp =0
for81+ - +/2,8, = 0.

Consider j, 1 <j<p. For 1<i<p, multiply the ith row of this system of equations
by the cofactor of f;; in F;. Adding the equations thus obtained, we find that
det (F7)g;=0. Hence g,=0 since det (F) is not identically zero in any open subset
of Q. Therefore F, is one-to-one.
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THEOREM 3.1. Suppose F=(fi;)1 <i,;<p» Where fi; € £(Q), Q< RY. Then the following
are equivalent:

(@) im (F)=[2'(Q)]".

(b) im (Fo)=[&"(D)P.

(c) F. is one-to-one and im (F,) is closed in [6(Q)]".

(¢) det (F) is not identically zero in any component of Q and det (F) satisfies the
Lojasiewicz inequality, that is, for each compact set K<Q there exists a constant
C>0 and an integer 120 such that

|det (F(x))| = Cld(x, Z)]' forall xe K

where Z={x € Q : det (F(x))=0}. (Here d(x,Z)=1 for all x if Z=3.)
(e) The zeros of det (F) are of finite order.
(f) det (F)2'(Q)=2'(Q).

Proof. (a)implies (b). If F(Sy, ..., Sp,)=(T1, ..., T,) where (Sy,...,S,) € [2'(Q)]?
and (T3, . . ., Tp) € [6'(Q)]?, then for an appropriate ¢ € £(Q) with compact support,
we have F(§S,, ..., $S,)=(Ty, ..., T,) where (4S;, . . ., $S,) € [€'(Q)]J*.

(b) implies (c). By the closed range theorem for Fréchet spaces [1, Theorem 7,
p. 92], if im (F,)=[&'(Q)]?, then F,: [6(Q)] — [6(Q)]° is one-to-one and has
closed range.

(c) implies (d). If F; is one-to-one, then Lemma 3.1 implies that det (F) is not
identically zero in any component of Q. We now assume that im (F;) is closed in
[€(Q)]P and prove that det (F)=det (F;), where F,=(f)1x1,jp Jiy=Ffi1, satisfies
the Lojasiewicz inequality. The case Z= @ being trivial, we assume Z is nonempty.

Let K<Q be a compact set. F; is a continuous linear mapping of the Fréchet
space [€(Q)]? onto the Fréchet space im (F;) and therefore F, is an open mapping.
Hence there exist a constant C>0, an integer /=0, and a compact set K'<Q with
K<K'’ such that if heim (F;), then there exists g € [£(Q)]? with F;(g)=h and
Iglk,o§ C|h|K',x-

For the compact set K'< Q, the integer /=0, and the nonempty closed subset Z
of Q there exists a constant C' >0 such that if x € K’ —Z, then there exists A, € £(Q)
with h,(x)=1, h,=0 in a neighborhood of Z, and |h,|., < C’/[d(x, Z)]"

By induction, we now prove the property P(k), 1 £k <p, where P(k) states that
there is a constant C,, >0 such that the maximum of the absolute values of the
determinants of the k x k submatrices of Fy(x)is greater than or equalto C,[d(x,Z)]*
for all x € K. Observe P(p) states that there is a constant C, >0 such that

|det (F(x))| = |det (Fi(x))| = C,ld(x, Z)]"* for all x € K.
First, we prove P(1). Consider x€ K—Z and let h=(h,,0,...,0). Then

h € im (F;) since h,=0 in a neighborhood of Z. Therefore there exists

g =(81---,8) EE(Q)
with F¢(g)=h and
lglk,0 = Clhlx',z < CC'/ld(x, 2)).
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Since F{(g)=h, we have f{;(x)g:(x)+ - +f1,(X)g(x)=h(x)=1 so for some
J> 1£j<p, we have |fi,(x)g{(x)| 2 1/p. Thus

VIA)| = plgx)| = plglk.o = pCC[ld(x, Z)].
Therefore for each x € K—Z, there exists j, | £j<p, such that
|| 2 [d(x, Z)}/pCC".

This proves P(1).
Now assume that P(k) holds where 1<k<p and prove P(k+1). Consider
x € K—Z. For simplicity assume that

|det (fii (150,55l 2 Cild(x, Z)]*.

Let h=(h,, ..., h,) where h;.,=h, and h;=0, i#k+1. Then heim (F;) since
h,=0in a neighborhood of Z. Therefore there exists g=(g, . . ., g») € [£(Q)]? with
Fig)=hand |g|k,0 = Clh|, = CC'[[d(x, Z)]. Since F(g)=h, we have

S1()gu(x) + - - - +f1p(x)g(x) = 0

S+ -+ gs(x) = 0
Fior 11D+ -+ 1) = hal) = 1.

For 1 2i<k+ 1, multiply the ith row of this system of equations by (—1)*** times
the determinant of the matrix (f;(x)); =i <x+1,1 55 <% With the ith row deleted. Adding
the equations thus obtained, we find that the coefficient of g(x) for 1 Zj<p is

fi1(x) S11(x) s (%)
d; = det (/ : : : )
e+ /(%) Saer1(X) o0 fere(X)

Since d;=0 for 1 <j<k, we have

i d;g(x) = (—1)¥ det (fii(3)1 51,15k

PETYS
Therefore for some j, k+1=j<p, we have
|d;g/(x)| 2 |det (fii(x)1s1,55kl/p 2 Celd(x, Z)]/p.
Since |g/(x)| =|g|x,0. We have
1/ld)| = plglk.o/Cild(x, Z)]* = pCC’|Cyld(x, Z)]*+11

And since |d;| for k+1=<j<p is the absolute value of the determinant of a
(k+1)x (k+1) submatrix of F;(x), we have proved P(k+1).
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Since P(p) states that det (F;)=det (F) satisfies the Lojasiewicz inequality in X,
we conclude that if im (F;) is closed in [€(Q)]?, then det (F) satisfies the Lojasiewicz
inequality.

The equivalence of (d), (e), and (f) is a result of the author [6, Corollary 6.2] for
connected Q2 and the extension to arbitrary open subsets of R" is immediate.

(f) implies (a). Since it is always the case that [det (F)2'(Q)JP<im (F),
det (F)2'(Q)=2'(Q) implies im (F)=[2'(Q)]*.

4. Systems of division problems in 2'(Q2), Q<= R". Itis known that for f'e £(Q),
Q<R f2'(Q)=2'(Q) if fis a polynomial (Hérmander [2, Theorem 4, p. 568]) and,
more generally, if fis real analytic in Q and not identically zero in any component
of Q (Lojasiewicz [3, p. 130]). Furthermore, the results of Malgrange [5, Theorem 1,
p. 23-01] together with Lemma 3.1 imply that for F=(f;;) <i,;<, Where the f, are
real analytic in Q, if det (F) is not identically zero in any component of Q, then
im (F)=[2'(Q)]’. However, a necessary and sufficient condition that im (F)
=[2'(Q)]P, where F=(f;)121,sp fij € E(Q), Q= R", n>1, seems to be unknown,
even for p=1. ~

Several necessary conditions that im (F)=[2'(Q)]* can be given. The first of
these is that det (F) satisfy the Lojasiewicz inequality and that it not be identically
zero in any component of Q. In fact, we have already proved this since the proof
that (a) implies (d) in Theorem 3.1 makes no use of the hypothesis that Q< R,
Thus we have

PROPOSITION 4.1. Suppose F=(fi))1zi,5sp Where fi;€(Q), Q=R If im (F)
=[D'(Q))P, then det (F) is not identically zero in any component of Q and for each
compact set K< Q there exists a constant C >0 and an integer 1= 0 such that

|det (F(x))| = Cld(x,Z))} forall xe K
where Z={x € Q : det (F(x))=0}. (Here d(x, Z)=1 for all x if Z= &.)

Suppose fe€ £(Q), Q= R". A zero of fis of finite order if some partial derivative
of fdoes not vanish at the zero. A second necessary condition for im (F)=[2'(Q)]?
is that det (F) have zeros of finite order.

PROPOSITION 4.2. Suppose F=(f,)1<1,;sp where f;€E(Q), Q=R If im (F)
=[D'(Q))P, then the zeros of det (F) are of finite order.

Proof. Suppose im (F)=[2'(Q)]°. Then im (F,))=[&'(Q2)]*. We suppose that
det (F) has a zero of infinite order, say at a=(ay,..., a,) €2, and obtain
g1s- - -» &p € 6(Q) having zeros of infinite order at a and S, ..., S,, T€&'(Q)
where supp (7)) ={a} such that g, S, + - - - +g,S,=T. This together with Malgrange’s
extension of Whitney’s theorem leads to a contradiction.

If f;; has a zero of infinite order at a for 1 =i, j<p, then the fact that im (F,)
=[6"(Q)]r implies that there exist Sy, ..., S, € 6'(Q2) with

JuSi+ - +f1,8, = 8.
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Otherwise, let r be the largest integer such that there is an r x r submatrix of F
whose determinant is either nonzero at a or has a zero of finite order at a. Then
1 =r<p. For simplicity assume that 0 det (f;;)154,55, = 09~ - - 95 det (fi)1x1,j<r 18
nonzero at a. Then, proceeding as in the proof that (b) implies (c) in Theorem 2.1,
we find g4, . . ., g, € £(Q) having zeros of infinite order ata and S, ..., S, € £'(Q)
with

g1S1+ - +gpSp = (1) det (fi)1 1,55y 080

Therefore there exist g, ..., g, € £(Q) having zeros of infinite order at a and
Sty ..., Sp, T € &'(Q) where supp (T)={a} such that g, S, +--- +g,S,=T.

Define G,.: [€'(Q)) —&'(Q) by GTy,...,Ty)=g:Ti+---+g,T,, and let
G:: 6(Q) — [6(Q)]? be the transpose of G,. Define f by

Sy, X)) = (x1—a) + - - - +(xp—a,)

where / is an even integer sufficiently large so that fT=0. Then G.(fS, ..., fS,)
=fT=0. Thus (fSs, . .., fS,) € ker (G.)=M* where

M = im (Go) = {(2:8, - - -, £,8) : g € E(Q}

is a submodule of the £(Q2)-module [£(Q)]?. Hence (S, . . ., S,) € (fM)*.

For x € Q, let J,. denote the ideal in £(Q) consisting of all functions which vanish
at x together with all derivatives and let T, denote the natural mapping of [6(Q)]?
onto [£(Q)]?/[J.JP. Then T.(fM)=T,(M) for all x € Q. By Whitney’s theorem for
submodules [4, Corollary 1.7, p. 25] we conclude that cl (fM)=cl (M) and hence
that (fM)t=M".

Therefore (S;, . .., S;) € M+=ker (G.). But

GC(SI,' ey Sp) = g1S1+" '+g,,Sp = T?é 0.

This contradiction completes the proof of Proposition 4.2.

An example due to Malgrange [4, p. 89] shows that the converse of Proposition
4.2 is false for Q< R™, n>1.

ExaMmpPLE 4.1. Let

S, y) =e ¥ 4y2  x £0,
= 2, x = 0.

Then the zero of f is of finite order. However, by Proposition 4.1, we see that
JP'(R?) # D'(R?) because ffails to satisfy the Lojasiewicz inequality in any compact
neighborhood of the origin.

The referee has pointed out an example which shows that the converse of
Proposition 4.1 is false for Q<= R", n> 1.

EXAMPLE 4.2. Let g(x, y)=yf(x, y) where fis defined as in Example 4.1. Then
g satisfies the Lojasiewicz inequality, but

87'(R®) = fyZ'(R°) = f9'(R?) # 2'(R?).
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5. General systems of division problems. For F=(f)1<isp1s;5s¢4 Where
fi1€E™(Q), 0=m= o0, Q< R*, when does im (F)=[2™(Q)]?? We first show that,
for p>gq, it is never the case that im (F)=[2'™(Q)]*. However, for p<gq, results
analogous to Theorem 2.1, Theorem 3.1, and Proposition 4.2 hold.

0=sm=o0, Q= R" Then im (F)#[2'™(Q)]P.
Proof. We prove that im (F)#[2'™(Q)]® by showing that
F': [9™(QP — [2™(Q)]

is not one-to-one. Let G be F augmented by p —q columns of zero functions, that is,
let G=(gip1x1,75» Where g,=f; for 1<i<p, 15j<q, and g,;=0 for 1<i<p,
g <j<p. Then det (G)=0 and therefore, by Lemma 3.1,

G.: [E"(QP — [P
is not one-to-one. Since ker (G;)=Kker (F;), we conclude that
Fe: [6M(QP — [e™(Q))*

is not one-to-one. Hence F’ is not one-to-one.
For p =g, the analogue of Theorem 2.1 can be established by an argument similar
to that employed in the proof of Theorem 2.1.

_____

Q< R™ Then the following are equivalent:
(@) im (F)=[2™(Q)]".
(b) im (Fp)=[6"™(Q)]7.
(c) For every x € Q the rank of the matrix F(x) is p.

Proof. (a) implies (b) as in Theorem 2.1. .

Suppose im (F,)=[6"™(Q)]*. By supposing that at some point a € Q the rank r
of the p x g matrix F(a) is less than p and arguing as in the proof that (b) implies
(c) in Theorem 2.1, Lemma 2.1 is contradicted. Hence (b) implies (c).

Suppose that for every x € Q the rank of F(x) is p. Then there is a locally finite
open covering {Q,} of Q with the property that in each Q, the determinant of some
p xp submatrix of F is never zero. Therefore, for (Ty,..., T,) € [2'™(Q)]? with
supp (T}) <= Q, for 1 i< p, there exists (Sy, . . ., S,) € [2"™(Q)]? with supp (S)<=Q,
for 1=j<gq such that F(S,,..., S)=(Ty,..., T,). Then, by using a partition of
unity subordinate to the covering {Q,}, im (F)=[2'™(Q)]® is easily verified (see
[7, p. 126]). Thus (c) implies (a).

The analogue of Theorem 3.1 is also valid for p<q but a method of proof
different from that utilized in Theorem 3.1 seems to be required.
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Let & be the set of pxp submatrices of F and Z={x € Q : rank of F(x)<p}
={x € Q : det (M(x))=0 for all M € F}. Then the following are equivalent:

(@) im (F)=[2'(Q)P.

(b) im (Fo)=[€"(Q)P.

(c) For every x € Z there exists M € & such that x is a zero of finite order of
det (M).

(d) max {|det (M)| : M € F} is not identically zero in any component of Q and
satisfies the Lojasiewicz inequality, that is, for each compact set K< Q there exists a
constant C>0 and an integer 1Z0 such that

max {|det (M(x))| : M e F} = Cld(x, Z)] for all xe K.
(Here d(x,Z)=1forall x if Z=>.)

Proof. (a) implies (b) as in Theorem 3.1.

Suppose im (F,)=[6"(Q)]*. Suppose that there exists a point a € Z such that
det (M) has a zero of infinite order at a for every M € #. Proceeding as in the
proof of Proposition 4.2, we obtain g5, . . ., g, € £(Q) having zeros of infinite order
ataand S;, ..., S, T € &'(Q) where supp (T)={a} such that g, S, + - - - +g,5,=T.
This together with Malgrange’s extension of Whitney’s theorem leads to a contra-
diction, as shown in the proof of Proposition 4.2. Hence (b) implies (c).

The equivalence of (c) and (d) follows from results of the author [6, Corollary 6.2].

To complete the proof, we show that (c) implies (a). Suppose that for every x € Z
there exists M € # such that det (M) has a zero of finite order at x. Then there is a
locally finite open covering {€,} of Q with the property that for each Q, there exists
M € F such that det (M) either has no zeros in Q, or has one zero of finite order
in Q,. Therefore, for (T, . .., T,) € [2'(Q)]° with supp (T})=Q, for 1 Si<p, there
exists (Sy, . . ., Sy) € [2'(Q))? with supp (S,)<Q, for 1 £j<gsuch that F(Sy,..., S;)
=(T1, ..., T,). Here we are using the fact that division by a function with zeros of
finite order is always possible in R! (see [7, p. 125] or [6, Corollary 6.2]). Then,
using a partition of unity subordinate to the covering {Q,}, im (F)=[2'(Q)JF is
easily verified (see [7, p. 126]). Thus (c) implies (a).

For the general system of division problems in 2'(Q), Q< R", the results of
Malgrange [5, Theorem 1, p. 23-01] together with an extension of Lemma 3.1
for each component of Q there is a p x p submatrix of F which is not identically
zero in the component, then im (F)=[2'(Q)]*.

Observing that the proof that (a) implies (c) in Theorem 5.2 makes no use of the
hypothesis that Q< R*, we obtain the analogue of Proposition 4.2 for p<gq.

_____

If im (F)=[2'(Q))?, then for every x € Q there exists a p x p submatrix of F whose
determinant is either nonzero at x or has a zero of finite order at x.
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However, our proof of Theorem 5.2 does not establish the analogue of Proposi-
tion 4.1 for the general system of division problems.
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