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CONJUGACY SEPARABILITY OF CERTAIN FREE

PRODUCTS WITH AMALGAMATION

BY

PETER F. STEBE

Abstract. Let G be a group. An element g of G is called conjugacy distinguished

or cd. in G if and only if given any element h of G either h is conjugate to g or there

is a homomorphism f from G onto a finite group such that {(h) and {(g) are not

conjugate in {(G). Following A. Mostowski, a group G is conjugacy separable or c.s.

if and only if every element of G is cd. in G. In this paper we prove that every element

conjugate to a cyclically reduced element of length greater than 1 in the free product

of two free groups with a cyclic amalgamated subgroup is cd. We also prove that a

group formed by adding a root of an element to a free group is c.s.

In [4], A. Mostowski defined conjugacy separable groups and showed that the

conjugacy problem is soluble for conjugacy separable groups. S. Lipschutz [1] has

solved the conjugacy problem for the free products of free groups with cyclic

amalgamated subgroups.

In this paper the problem of conjugacy separability of free products of free

groups with a cyclic amalgamated subgroup is considered. It is shown that every

element conjugate to a cyclically reduced element of length greater than 1 in the

free product of two free groups with a cyclic amalgamated subgroup is cd. Also,

it is shown that a group formed from a free group F by adding a new generator x

and a single relation xn=g for some g e F is a conjugacy separable group.

A general reference for theorems in infinite group theory is the book by W.

Magnus, A. Karrass and D. Solitar [3]. References to this book are given as M.K.S.

followed by the page number or the number of the theorem or corollary cited.

The proof that a cyclically reduced element of length greater than one in the

free product of two free groups with a cyclic amalgamated subgroup is conjugacy

distinguished depends on certain properties of free groups. The set of lemmas to

follow explains these properties.

Lemma 1. Let F be a free group. Let g be an element of F and let u be an integer.

If gj=\, there is a homomorphism xfrom G onto a finite group such that y(g) has

order u. Ifu is a power of aprime q, y may be chosen so that x(G) is a q-group.

Proof. According to a theorem of W. Magnus, the intersection of the groups

Fk of the lower central series of F is the identity. Since g¥=i, there is an index n
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such that g is an element of F" ~1 but g is not an element of Fn. Let N be the sub-

group of F generated by gu and Fn. N is normal in F since Fn is normal in F and

the image of g in F/Fn is central. If g" is an element of N, gv=gulcf, where/is an

element of F\ Since F/Fn is torsion free, gv is an element of N only if u divides v.

Thus g has order u modulo N. Since N^>Fn, F/N is nilpotent. Let r¡ be the natural

homomorphism from F onto F/N. Then r¡(g) has order u and 77(F) is nilpotent.

By a theorem of K. Hirsch, 17(F) is residually finite. Let M be a normal subgroup

of finite index in 77(F) not containing g, g2,..., gu_1. Let £ be the natural homo-

morphism from 77(F) onto r¡(F)/M. Then ^(F) is finite and ^(g) has order u.

Now suppose H=<7e for q a prime. The group ir¡(F) is nilpotent since it is an

image group of the group F/N. Since ^(F) is finite, it is the direct product of its

Sylow /?-subgroups. Since $r¡(g) has order qe, there is a direct factor Q of i??(F)

such that £r¡(g) e Q and g is a finite q group. There is a homomorphism 8 from

£?i(F) onto Q, such that 8 restricted to ß is the identity. Thus 8Çr)(F) is a finite

<7-group and 8£r)(g) has order <7e.

The proof of Lemma 1 was suggested by D. S. Passman.

Lemma 2. Let ax,..., ak and b be nonidentity elements of a free group F. Let p be

a given prime number. Ifai ^ bz for each i and all integers z, there is a normal subgroup

N of finite index in F such that a^bz mod N for each i and all integers z and the

order ofb modulo N is a power of p.

Proof. Suppose there is an a¡ such that (a¡, b)^l. For each i such that (au b)^=l

let Mt be a normal subgroup of index a power of/? in F such that (at, b) $ M%. Let

M be the intersection of all the M¡. The group F/M is a /?-group. If all at commute

with b, let M be a normal subgroup of index a power of /? in F such that b $ M.

Let the order of b modulo M be pe.

The element b and all the a¡ that commute with b generate a cyclic subgroup C

of F. Let / generate C. Thus b =fs, at =f> for each at commuting with b, and s

divides no r¡. Let R be a normal subgroup of finite index in F such that/has order

spe modulo R.

Let N= M n R. The element b has order pe modulo each of M and R so b has

order pe modulo N. If a¡ commutes with b, ax = bz mod N implies ax=bz mod R

and this congruence implies that s divides ru contrary to hypothesis. If (ah b)^l

then (at, b)^ 1 mod N so a^b* mod N. Thus, a^bz mod JV for all 1 and each z.

Lemma 3. Let F be a finitely generated free group. Let a, b and c be elements of

F. If the equation a = bncm has no solution for integral n and m, there is a normal

subgroup N of finite index in F such that the congruence a=bncm mod N has no

integral solutions.

Proof. The proof is divided into several cases.

Case 1. The elements b and c commute. In this case b and c generate a free

cyclic subgroup of F. Let/generate the cyclic subgroup generated by a and b. The
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equation a=bncm is equivalent to the equation a =/". By Lemma 2, there is a normal

subgroup N of finite index in F such that a^fn mod N for all integers n. Thus

a^bncm mod A^ for all integers n, m.

Case 2. Assume that the elements b and c do not commute. In this case the

subgroup generated by b and c is free of rank 2, and hence is freely generated by b

and c. Let H be the subgroup generated by b and c. According to a theorem of

A. Karrass and D. Solitar [2], ZZis a free factor of a subgroup M of finite index in

F. Since M is of finite index in a finitely generated free group, Mis finitely generated.

Since b and c freely generate a free factor of M, we may take xx=b, x2—c,x3,..., xn

to be the free generators of M.

Suppose a is an element of M. Let w be the reduced word in the generators x,

of M representing a. Let v be an integer greater than any exponent in the expression

w=x£}- • -x£* with «,/»,+!. Let <f be the homomorphism from M onto

G = iax,..., an; a" = l) defined by assigning f(xi)=ai. Now f (a) / |(è)s|(c)' for all

integers s and r, since the image of a in G is represented by al\ ■ ■ -alkk = w, and w is a

reduced word in G. G is the free product of the cyclic groups of order v generated

by the at. Now G is residually finite since it is the free product of a set of finite

groups. G contains only finitely many elements f(è)s<f(c)'. There is a homomorphism

t? from ¿;iM) onto a finite group so that ^(a^ijlíe^ffc)'. Let U be the kernel

of ■>?<£.

If a is not an element of M, let U=M. In either case, U is of finite index in M

and hence F. Let N be the intersection of all the conjugates of U. N is a normal

subgroup of finite index in Z\ Since a'1bncm is not an element of U for all n, m and

£/=>N, a^bncm mod JV for all n and all m.

Lemma 4. Lei F be a free group. Let g, h be elements of F. If ig,h)^\, then

ih-1gh,g)*l.

Proof. Let S be the subgroup of F generated by g and h. S is free of rank 1 or 2.

If S has rank 1, it is abelian and ig, h)=ï, contrary to hypothesis. If S is free of

rank 2, it is freely generated by g and h, so that ih~1gh,g)i^\.    Q.E.D.

Lemma 5. Let Fx and F2 be free groups. For each i, let Nx be a normal subgroup

of finite index in F¡. For each i, let g¡ be a nonidentity element ofF%. Ifg{ has order nt

modulo N¡, there is a normal subgroup Mt affinité index in F{ such that Nt contains

Mi and g¡ has order nxn2 modulo M(.

Proof. Let Ut be a normal subgroup of finite index in Ft such that g( has order

nxn2 modulo Ui. Let Af¡ = Nt n Í/,. Since gfinz is an element of Nt, gt has order nxn2

modulo Mj.

Lemma 6. Let G be a group. Let g and h be elements of G. Let p be a prime. Let

g have order pe in G. If ig, h~ 1gh)^ 1 and h~ 1gTh=g5, then p divides r and s.

Proof. If r were relatively prime to the order of g, we would have h~xgh

= ih~1grh)v=gm for some integer v, so that h_1gh would commute with g. Thus/?
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divides r. If 5 were relatively prime to the order of g, we would have g=gsv

= (h'1grh)" = (h~1gh)rv for some integer v, so that h~xgh would commute with g.

Thus /? divides 5.

Lemma 7. Let G be a group. Let Nt be a normal subgroup of G for i= 1,..., k.

Let b be an element of G. Let p be a prime number. If the order ofb modulo N{ is a

power of p for each i, b has order a power of p modulo the intersection of the N¡.

Proof. Since k is finite, we need only the case of two A- Let b have order /?ci

modulo Nx and order p6^ modulo N2. Assume without loss of generality that ex is

greater than or equal to e2. Now b""1 is an element of both Nx and N2 and hence of

Nx n N2. Thus the order of b modulo Nx n N2 divides /?ei and so is a power of/?.

The next lemma is about the free product of any two groups with a cyclic amal-

gamated subgroup.

Lemma 8. Let G be the free product of two groups A and B with a cyclic amal-

gamated subgroup C generated by an element c. Let g and h be elements of G. Let

g = tx ■ ■ ■ tn andh = sx ■ ■ -sm, where each tf is in A or B, each s¡ is in A or B, consecutive

f( are in different factors of G and consecutive s¡ are in different factors of G. The

equation c~zhcz=g is valid for an integer z if and only if there exist integers

u0,...,um such that ti~1cut-isi = clt>for i=l,.. .,tn andu0 = um.

Proof. If the equations have a solution, clearly g=cuohc~uo. Suppose

g=cuohc~uo. Then tx- ■ ■tn = cuosx- ■ -smc~vo. The left-hand side of the equation has

syllable length n while the right-hand side of the equation has syllable length m

since c is in the amalgamated subgroup. Thus n=m. Also

<V • -tn = tr1Cu0S1S2- ■ -5nC_u0.

The left-hand side of the equation has syllable length n — 1 so that if 1ctto51 must be

in the same factor of G as s2. This is possible only if t1~icu°Sx is in the amalgamated

subgroup. Thus if 1c"oj1 = cui for ux an integer. The process can clearly be continued,

so that an induction based on this process will prove the lemma.

In the statements and proofs of Lemmas 9 through 16 we make the following

conventions. Let Fx and F2 be finitely generated free groups. Let c¡ be an element of

F,, /'= 1, 2. Let G be the free product of the F¡ with the cyclic subgroups generated

by the c¡ amalgamated. Let c be the generator of the amalgamated subgroup of G.

Lemma 9. Let A and N2 be normal subgroups ofFx andF2 respectively. If the order

of Cx modulo Nx equals the order of c2 modulo N2, there is a homomorphism | from

G onto the free product ofFx/Nx andF2/N2 with the images ofcx andc2 amalgamated.

The homomorphism £ acts as the natural homomorphism from F¡ onto F¡/Nt.

Proof. Lemma 9 is trivial.

Lemma 10. Let F^N^Mi where Nt and Mi are normal in Fifor i=\,2. Let the

order of cx mod Nx equal the order of c2 mod N2 and let the order of Cx mod Mx



1971]        CONJUGACY SEPARABILITY OF CERTAIN FREE PRODUCTS 123

equal the order of c2 mod M2. If a is the homomorphism constructed as in Lemma 9

with the Nt and ß is the homomorphism constructed as in Lemma 9 with the Mi then

the kernel of a. contains the kernel of ß.

Proof. Clearly a(G) is a factor group of j8(G). Thus the kernel of a contains the

kernel of ß.

Lemma 11. Let g and h be elements of G. Let g=tx- ■ • r„, h=sx- ■ -sm be expres-

sions for g and h in terms of syllables r¡, sh where consecutive í¡ and consecutive st are

in different factors ofG. Let n> l.Ifm^nor one of the equations ti1cusi = cv has no

integral solution u, v, there is a homomorphism «f corresponding to normal subgroups

of the F¡ as in Lemma 9 such that each f(F¡) is finite and èic)~zèig)îic)!i^èih)for all

integers z.

Proof. First we consider the case n=m. Suppose rr1cuii = c" has no solutions

and that í¡ and st are elements of the same factor of G. Without loss of generality,

let the factor of G be Fx. Let Nx be a normal subgroup of finite index in Fx such that

(1) ti~1cusic~v $ Nx for all integers u, v.

(2) If tj e Fx, tj 1ca £ Nx for all integers z.

(3) If Sj e Fx, SjCz $ Nx for all integers z.

The subgroup A^ is the intersection of subgroups provided by Lemmas 2 and 3.

Let N2 be a normal subgroup of finite index in F2 such that

(1) If tj e F2, tjC" i N2 for all integers z.

(2) If s¡ e F2, SjCz $ N2 for all integers z.

The subgroup N2 is the intersection of normal subgroups provided by Lemma 2.

If if 1cusi = cv has no solution for i¡ and st in different factors of G, we omit the

property (1) from the properties of Nx.

Let NX^MX, N2^M2, where Mx and M2 are normal subgroups of finite index

in Fx and F2 respectively such that the order of cx mod Mx equals the order of

c2 mod M2. Let | be the homomorphism of G corresponding to Mx and M2

according to the construction of Lemma 9.

Suppose there is an integer z such that f(c)"3«f(g)f(c)2 = £ih). Then by Lemma 8

there are integers u0,..., un such that

m-Wi-wd = m\   «o - un,

for f(f¡) and £(s() are the syllables of |(g) and £(/«•). Thus

¿(if Vi-iiicr"«) = 1.

But this is impossible, so the result follows in the case n=m.

If n^m, choose N to be a normal subgroup of finite index in Ft such that

(1) If m = 1 and sx e Fu then sx $ Nt.

(2) If m^ 1 and s¡ e Fu then SjC* £ Nt for all z.

(3) If tj e F„ then tjC~z i Nt for all z.
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Let the subgroups M¡ and the homomorphism £ be constructed as above. The

syllable length of £(g) is n. The syllable length of {(h) is m. Since m^n, Lemma 8

implies that &<c)-'Ç(fi)é(cYïi(g).

Lemma 12. Let g=tx- • -tn, h=sx- ■ -sn where n> 1 and the 5¡ and t¡ are syllables

of g and h as in Lemma 11. Let (t¡, c) ̂  1 for all i and let each equation if 1cu' - i5j = c"1

have an integral solution. If c'zhcz^gfor all integers z there is a homomorphism f

as described in Lemma 9 such that each ¿¡(Ft) is finite and è,(c~zhcz)j= é,(g) for all z.

Proof. According to Lemma 4, (tf^cti, c)^ 1 for all i. Let/? be a prime number

dividing no nonzero difference Ux — vn, u2 — Vx,...,un — vn_x- Let A be a normal

subgroup of index a power of/? in F¡ such that

(1) If t, e Fi, then (tflct„ c) £ Nt.

(2) If s¡ e Fu then (sf 1csj, c) $ Nt.

The subgroup A is the intersection of subgroups of index a power of /? in F(.

Lemma 1 is used repeatedly. Since the equation tf1cu'si = cv> is valid for integers

Ui, vu we have (sJt c)^ 1.

Let Mt be a normal subgroup of finite index in F¡ such that M¡ is contained in

A, the order of ct modulo M¡ is a power of /?, and the order of cx modulo Mx

equals the order of c2 modulo M2. Let £ be the homomorphism defined as in Lemma

8 from G onto the free product of Fx/Mx and F2/M2 with the image of C amal-

gamated.

Suppose Ç(ti)-1Ç(c)v{(si) = Ç(c)w. Since f(fi)-1É(<01,,A*)=í(cA we have i(c)w~v>

= ê(ttyiê(c)v~Ut€(t,). Now ^((tf1cti,c))^l so that w-v, and v-ut are divisible

by/? according to Lemma 6. If Ç(c)~zÇ(h)£(c)z = £(g), there exist integers w0,..., wn

such that |(ii)_1|(c)u'i-ii(5i) = |(c)u'« with w0 = wn. Thus 0 = wn—wo = ux — vn mod /?,

0 = w„-1-n'n.1 = iin-Du_i mod/) etc. Since by choice of/? at least one of the

differences on the right is incongruent to zero mod p, we have £(c)~z£(h)£(c)z

ïî(g).   Q.E.D.

Lemma 13. Let g = tx- ■ -tm, h = sx- ■ sm where h and g are elements of G and the

ij and the st are syllables of g and h respectively. Let m be greater than 1. Let at least

one (ij, c) =£ 1. If each of the equations tf 1cu>si = cv> has an integral solution but

c'zhcz^g for all integers z, there is a homomorphism f as given by Lemma 9 such

that each £(F¡) is finite and %(c~zhcz)=£ %(g) for all integers z.

Proof. For each i such that (t¡, c) = \ we have tr1si = cv'~ui. We may set

h=Sx- ■ -sm where 5j = ij if í¡ commutes with c, no two adjacent s¡ are in the same

factor of G, and no 5¡ is in the amalgamated subgroup. The equations tf 1cu>si — c"<

have solutions h¡, v¡ with ut = Vi if i( commutes with c. Let tni,..., tnkbe the í¡ not

commuting with c and let nk>nk-x> ■ ■ ■ >nx. If each of the differences

unx~Vnk,     Un2 — Vni,      . . .,     Unic — V„kl

are zero, there is an integer z such that c~zhcz=g. Let/? be a prime relatively prime

to at least one of the nonzero differences. By Lemma 4, (i¡, c) ̂  1 implies (tf 1cti, c)
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j= 1 since i, is in a factor of G. By Lemmas 1 and 2 a normal subgroup Nt of Ft can

be found with the properties :

(1) Nt is of finite index in F¡.

(2) Ci has order a power of p modulo Ari.

(3) If tj e Fh tjîÉcf mod Nt for all z.

(4) If Sj e Fu Sj^Ci mod Nt for all z.

(5) If f, g Fi, itj, C{)¥>1, itj-'Citj, d) <ß Nt.

(6) If Sj e Ft, isj, ct) ¿I, isY1cisj, c,) £ Nt.

The subgroups Nt are found by intersecting the normal subgroups of index a

power of p given by Lemma 1 for properties (5) and (6) with normal subgroups of

finite index given by Lemma 2 for properties (3) and (4) and the prime p. By Lemma

7, C( has order a power of p modulo Nt. Let M¡ be a normal subgroup of finite

index in F, such that Nt contains Mt and the order of cx modulo Mx equals the order

of c2 modulo M2. By Lemma 5, the M¡ can be chosen so that the order of c¡ modulo

M( is a power of p. Let <f be the homomorphism from G onto the free product of

the groups F|/Af¡ with the images of the c¡ amalgamated, as given by Lemma 9.

Let g denote the image ¿¡ig) oí g eG.

Suppose (ij, c) ̂  1. By the properties of the M¡ we have (if 1cti, c) j= 1. If <f 1ca¡ti

= c"', then cbi~vt=ti~ 1ca'"utti. By Lemma 6, aj-w¡ and bt — «vt are divisible by />.

If (ii; c) = l, then ti=st so that a¡=6j.

Now f, and st are the syllables of g and h respectively, so that c~zhcz=g if and

only if the equations tt~ 1c"<si = cb* have integral solutions at, e¡ with c^^6»,

ca2 = cbi,..., e°n=c*»-i. Suppose there are such solutions to these equations. The

elements of the list ax — bn,a2 — bx,...,an — bn-x are each congruent to zero

modulo the order of c and hence congruent to zero modulo p. It follows from the

last paragraph that ax = ani, bn=bnkand ax — bn is congruent modulo p to uni — vnk.

In general each of the differences urtt-vn._1 is congruent to an element of

ax — bn,...,an-bn-x and at least one of the differences unt—v1ti_1, uni-vnk is not

congruent to zero modulo p. Thus c~zhcz^g for all z.

Lemma 14. Let g = tx- ■ -tn, h=sx- ■ -sn, where g and h are elements of G and the

ij and ij are syllables of g and h respectively. Let m be greater than one. Let every í¡

commute with c. If each of the equations tf 1cutsi = c"' has an integral solution u¡, v¡

but c~zgcz^h for all integers z, there is a homomorphism ij as given by Lemma 9

such that each f(F¡) is finite and ¿Jic~zgcz)¥: iih) for all integers z.

Proof. Let f=gh~1. Since c~zgcz^h for all z,f+\.

Suppose/is in a factor of G. Without loss of generality assume/is an element of

Fx. Let Nx be a normal subgroup of finite index in Fx not containing/ Let N2 be

a normal subgroup of finite index in F2 such that the order of c2 modulo A^ equals

the order of cx modulo AV Let ¿j be the homomorphism constructed according to

Lemma 9 using the AV Clearly «f(/)^ 1.
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If/ is not in a factor of G, let/= ux- ■ -uk where each u¡ is in a factor of G, adjacent

w¡ are in different factors of G, and no ut is in the amalgamated subgroup of G. Let

ZV, be a normal subgroup of finite index in F, such that if u¡ $ F,, then »¿cf * £ ZVj

for all integers z. Let M( be a normal subgroup of finite index in F¡ such that N^Mi

and the orders of c¡ modulo Mf are equal. Let <f be the homomorphism constructed

according to Lemma 9 using the Af¡. Clearly ¿Jif) 7¿ 1.

Since each í¡ commutes with c, g commutes with c and hence ¿Jig) commutes

with ((c). Thus iic)-z¿jig)iic)z = ¿jih) if and only if tig) = £(yj) or f(/) = 1. Thus the

lemma is proven.

Lemma 15. Let g be a cyclically reduced element of length greater than one in G.

Let g=tx- ■ -tm where m>\, tt is an element of a factor of G, consecutive tt are in

different factors of G, no tt is in the amalgamated subgroup and tx and tm are in

different factors of G. Let h be a cyclically reduced element of G. Let h=sx- ■ -sn

where n¿l, consecutive st are from different factors of G, and ifn>l,nostis in the

amalgamated subgroup and sx and sn are from different factors of G. If for each

cyclic permutation <p of 1,..., m and all integers z we have c~%,(1)' ■ -t9(m)cz^h,

there is a homomorphism ¿j from G onto the free product of two finite groups with a

cyclic amalgamated subgroup such that ¿Jit,) are the syllables of ¿Jig), ¿Jist) are the

syllables of ¿Jih), Hg) is cyclically reduced, ¿Jih) is cyclically reduced, ¿J(c) generates

the amalgamated subgroup of ¿(G) and f(c~%(1)- ■ • tHmcz)^ ¿sih) for all integers z

and each cyclic permutation <pof\,...,m.

Proof. By Lemmas 11 through 14 there is for each <p a homomorphism ¿jv from

G onto the free product of ¿JviFx) and f «,(F2) with the images of the c¡ amalgamated

such that ¿J<pic~ztHXy ■ ■t<p<,m)Cz)^¿J¡Pih) for all integers z. Let K„ be the kernel of ¿J^.

Let K9¡í = Kí r\ F,. Let Ki = (~) K0¡i so that each Kx is a normal subgroup of finite

index in F¡. Let M¡ be a normal subgroup of finite index in Ff such that Mt<^Ki,

tjC~" $ Mi, SjCz $ Mi for all j and all integers z and the orders of c{ modulo Mt

are equal. Let ¿J be the homomorphism obtained by Lemma 9 using the Mt. Let K

be the kernel of ¿J. By Lemma 10, K^K0 for each 99, so that ¿J is the required

homomorphism.

Lemma 16. Let G be the free product of two finite groups with an amalgamated

subgroup. If g is a cyclically reduced element of length greater than one in G, g is cd.

in G.

Proof. According to B. H. Neumann [5, p. 532], there is a homomorphism ¿J

from G onto a finite group such that the kernel of ¿J meets each factor of G only in

the identity. According to a theorem of H. Neumann, M.K.S., Corollary 4.9.2, the

kernel of ¿J is free. Thus G is a finite extension of a free group. Since g is cyclically

reduced and has syllable length greater than one, g is of infinite order in G. It

follows from a theorem of the author [7] that g is cd. in G.



1971]        CONJUGACY SEPARABILITY OF CERTAIN FREE PRODUCTS 127

Theorem 1. If G is the free product of two free groups with a cyclic amalgamated

subgroup, every element of G conjugate to a cyclically reduced element of length

greater than one is c.d. in G.

Proof. Clearly we need only consider g cyclically reduced in G. Let A be a cyclic-

ally reduced element of G. Let g=tx- ■ -tm, h=sx- ■ -sn where m> 1, n^ 1, consecu-

tive i( are elements of different factors of G, consecutive s, are in different factors

of G, no í¡ is in the amalgamated subgroup of G, tx and im are from different

factors of G, Sx and sn are from different factors of G if n > 1, and no st is in the

amalgamated subgroup if n> 1. According to a theorem of D. Solitar, M.K.S.,

Theorem 4.6, g is conjugate to h if and only if there is a cyclic permutation <p

of 1,..., m and an integer z such that c~%(1)- • ■tHm)cz=h. Since this equation is

untrue for all <p and z, there is, by Lemma 15, a homomorphism ¿j from G onto the

free product of two finite groups such that ¿¡(g) is cyclically reduced, f(í¡) are the

syllables of £(g), ¿j(g) has syllable length greater than 1, ¿j(si) are the syllables of

¿j(h) and for each cyclic permutation <p of 1,..., m, f(c~%(1)- • • i«,(m)c2) + ¿j(h) for

all z. Since the quoted theorem of D. Solitar applies to ¿j(G), ¿j(g) and ¿j(h) are not

conjugate in f(G). By Lemma 16, £(g) is c.d. in ¿j(G) so there is a homomorphism

X from ¿J(G) onto a finite group such that xd(g) * x£(h).

If h is not cyclically reduced, let h' = hx where h' is cyclically reduced. Since

h+g, h'^g so that by the last paragraph there is a homomorphism xf from G

onto a finite group so that x£(g) * xè(h'). But then xètâ^xèQ1)- Thus g

is c.d. in G.

In the next lemma we consider the group G formed by adding a single relation

xn=g to the free product of a free group Fand the free cyclic group generated by a

generator x. We always let g be an element of F and call G the group formed by

adding a root of an element to a free group. The notation for G as constructed

above is G=(F, x; xn=g).

Note that if F is a free group G = (F, x; xn=g) is a free product of two free

groups with a cyclic amalgamated subgroup. By Theorem 1, every element of G

conjugate to a cyclically reduced element of length greater than one is c.d. in G.

Thus to prove that G is c.s. we need only consider elements of length one in G.

Lemma 17. Let F be a free group and let G=(F, x; xn=g) with ge F. If gx and

g2 are nonconjugate elements of F or distinct powers of x, there is a homomorphism

Ç from G onto a finite group such that tj(gx) is not conjugate to tj(g2) in tj(G).

Proof. The proof is divided into two cases.

Case 1. Let gx and g2 be two nonconjugate elements of F. Since F is c.s., there

is a normal subgroup N of finite index in F such that gx&h~ 1g2h mod N for he F.

Let g have order m modulo N and ¿j be the natural homomorphism from F onto

F/N. Let <fi be the homomorphism from G onto H=(F/N, y; yn = ¿J(g)) defined as

follows: >fi(u) = ¿j(u) for ue F,<fr(xr)=yr,</j(ab) = >/j(a)-<Ji(b). Now </< is a homo-

morphism since <fi(xn)=yn = t;(g) and </'(g) = £(g). Let M be the set of matrices
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with entries in the integral group ring R of F/N. We set <piu) = diag («,...,«) for

u e F/N and <p( y) = diag (1,..., 1, ¿Jig)) ■ P where P is the nxn permutation matrix

corresponding to the cycle (1,2,...,«). Now <?(«) ~ * = diag («-1,..., w_1) for

ue F/N, <piyn)=<piiig)),i'iy)-1=Pn-1 diagil,..., I, ag)-1), so that the mat-

rices </«(ZZ) generate a group U in M, and </< is a homomorphism from ZZ onto the

group U. If Z) is a diagonal matrix, DP=PD* where Z>* is a diagonal matrix whose

entries are, up to order along the diagonal, the same as those of D. Thus if T is an

element of U, T=Pr diag (dit..., dn) where the dt are elements of F/N. Thus U is

finite.

Suppose <p«Kgi) is conjugate to <p¡/>ig2) in U. Then

«Hag (toi)..-..«ii))
= diag id: \...,d~ *)P -* diag (toa), • • • ■ toa))¿" diag (dlt..., dn).

Now P( commutes with diag i¿Jig2),..., $Jig2)) so that one has tj(g1)=df1ij(ga)di

for each du í/¡ g S/N. But if A g |_1(^i) we have gi=h~1g2h mod ZV, contrary to

hypothesis. Thus <p</«(gi) is not conjugate to <p^ig2) in the finite group U.

Case 2. Let gx=x' and g2=x', and let gj not be conjugate to g2. One has iV/

If g"=gf is not conjugate to g2=g; in F, according to Case 1, there is a homomor-

phism y from G onto a finite group such that yigl) is not conjugate to yig2) in

yiG). Now y(gi)=A_1y(^2)A implies yigx)n = h-1yig2)nh so y(gi) and y(g2) are not

conjugate. Let there be an h in F such that h~1gih=gi for i#j*. The subgroup S

generated by g and h must be free of rank ^2. If S has rank 2, g and h are free

generators of S and i=j=0, contrary to hypothesis. If S has rank 1, S is abelian

and gi=g1. Since F is torsion free and i=£j, g is the identity. But ii g is the identity,

G is a free product of F and the cyclic group of order n generated by x. Thus G is

c.s. by Theorem 2 of [7] and the result follows.

Remark. The matrix construction used here is based on a construction in the

book by A. Speiser [6]. D. S. Passman has remarked that a representation of G as a

wreath product would be sufficient.

Theorem 2. Let F be a free group. Let g be an element of F. If G=iF, x;xn=g),

then G is c.s.

Proof. Let/be an element of G and let h be an element of G not conjugate to/

If either /or h is conjugate to a cyclically reduced element of length greater than

one then it is cd. in G by Theorem 1 so that there is a homomorphism ¿J from G

onto a finite group with the property ¿Jif) <*> ¿Jih). Thus we may assume that/and

h are conjugate to elements of length one in G, and we need only consider/and h

cyclically reduced.

If/ and h are in the same factor of G, Lemma 17 implies that there is a homo-

morphism <f from G onto a finite group such that £(/)'*' f(/i).

If/ and h are in different factors of G, neither is in the amalgamated subgroup.

Thus one of/ and A is a power of x but not a power of g. Let <f be the homo-
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morphism from G onto the group (y;y" = l) determined by the assignments

x -*■ y, F -> 1. Clearly ¿J is a homomorphism from G onto a finite group and

Thus every element of G is c.d. in G so G is c.s.
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