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SUMMABILITY IN AMENABLE SEMIGROUPS

BY

PETER F. MAH(')

Abstract. A theory of summability is developed in amenable semigroups. We give

necessary and (or) sufficient conditions for matrices to be almost regular, almost

Schur, strongly regular, and almost strongly regular. In particular, when the amen-

able semigroup is the additive positive integers, our theorems yield those results of

J. P. King, P. Schaefer and G. G. Lorentz for some of the matrices mentioned above.

1. Introduction. Let S be an infinite left amenable semigroup without any finite

left ideals. Let Cœ be the space of convergent functions, and F be the space of left

almost convergent functions (see §2 for definitions). By an infinite matrix on S we

shall mean a real-valued function on S x S. If A is an infinite matrix on S, consider

the following cases:

(1) Af (see §2 for the definition of Afi) is convergent for every bounded real-

valued function fon S (Schur matrices).

(2) Af is left almost convergent for every bounded real-valued function f on S

(almost Schur matrices).

(3) Afi is convergent to k whenever/is convergent to k (regular matrices).

(4) Af is left almost convergent to k whenever/is convergent to k (almost regular

matrices).

(5) Af is convergent to k whenever / is left almost convergent to k (strongly

regular matrices).

(6) Af is left almost convergent to k whenever / is left almost convergent to k

(almost strongly regular matrices).

In the case when S is the semigroup of positive integers under addition, necessary

and sufficient conditions for matrices satisfying (1), (3), (4) and (5) have been

obtained by J. Schur in [13], O. Toeplitz in [14], J. P. King in [8] and G. G. Lorentz

in [9], respectively. More recently, P. Schaefer in [12] gave sufficient conditions for

matrices satisfying (6). It is the purpose of this paper to give necessary and (or)
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sufficient conditions for matrices satisfying (1) to (6) when S is any left amenable

semigroup without any finite left ideals. The reason for this restriction is that only

in such semigroups is almost convergence a generalization of convergence in the

sense defined in §2. (See Theorem 3.1.)

It should be pointed out here that in the cases where we are not concerned with

the space F, (as in (1) and (3)) the results do not depend on the fact that S is a left

amenable semigroup. Consequently, the results of J. Schur and O. Toeplitz for

Schur matrices and regular matrices can be carried over to any set S without too

much difficulty.

One of the main results in this paper is the following theorem, which is a general-

ization of a result of G. G. Lorentz :

Theorem. Let S be a left cancellative left amenable semigroup without any finite

left ideals. Let S be generated by 2?<=5. Then the following conditions are both neces-

sary and sufficient for an infinite matrix A on S to be strongly regular:

(i) sups 2t \A(s, t)\ <M for some AT>0.

(ii) Ums2tA(s,t) = l.

(iii) lims 2t \(MS, t) — A(s, at)\ =0/or every ae B.

If S is extremely left amenable, not necessarily left cancellative, then condition (iii)

above can be replaced by

(iv) lims 2feS~as \A(s, t)\ =0for every ae S such that a e Sa.

If S is the semigroup of additive positive integers, the above theorem yields the

following theorem of G. G. Lorentz [9, p. 181, Theorem 8].

Theorem. Let N be the semigroup of additive positive integers. Then an infinite ma-

trix A on N is strongly regular iff A is regular and l\mn 2m \A(n, m) — A(n, m+l)|=0.

Our theorems seem to be new even when applied to the multiplicative semigroup

of positive integers with B={prime positive integers}.

2. Definitions and notations. Let S be a set. A function/on S with values in a

linear topological space L is called unconditionally summable to g in L if

lim«„=2 2,seafis)=g, where 2 is the family of all finite subsets of S directed by

inclusion. We shall denote this by g = 2ses/(s) and say the sum ~ZseSf(s) converges

to g [2], In particular, we may take L to be the reals. Then %sesf(s)=g if for every

e>0 there is a finite subset a1 such that if a2^ then \J,seaf(s)—g\ <e. It is well

known that the above definition implies only countably many/(s) are different

from 0 [7, p. 19, Theorem 1].

Let S be a set and S u {oo} be the one-point compactification of 5 when S has the

discrete topology. Let m(S) he the linear space of all bounded real-valued functions

on S with the sup norm, and let Cx he the closed linear subspace of all those/in

m(S) such that lims_ xf(s) exists. From now on, we shall write lims/(j) for

lims_o f(s), so that limsf(s) = k means that for every e>0 there is a finite o<=S

such that \f(s)—k\<e if seS~a. If, in addition, S is a semigroup, then, for
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fiem(S), aeS, paif)=fia), and la [ra] is the left [right] translation operator on

m(S) defined by laf(s)=fi(as) [raf(s)=f(sa)]. The conjugate mapping of la will be

denoted by La. If Co A denotes the convex hull of A then elements in Co {pa : ae S}

are called finite means. A linear functional <p on m(S) is a left invariant mean

(LIM) if <p(f)^0 for/^0, 9>(1)=1 and <K/a/)=<p(/) for all fem(S) and all ae S,
where 1 is the constant one function on S, and/^0 means/fa)2:0 for all se S. We

denote the set of all left invariant means by MliS). If MliS) ^ 0, where 0 denotes

the empty set, then the semigroup Sis said to be left amenable (LA). If, in addition,

tp is multiplicative, i.e. <p(Jg)=tpif)tp(g) for all fige m(S) then S is said to be

extremely left amenable (ELA). Examples of left amenable semigroups are com-

mutative semigroups, solvable groups and locally finite groups. For details and an

excellent reference see [1]. Extremely left amenable semigroups are precisely those

semigroups in which every two elements have a common right zero. For details

and other interesting results see [3], [4], [5], and [11].

If S is LA, then a function fie m(S) is said to be left almost convergent to k if

<Áf)=='l>if)=k for every tp, <p e MliS). We shall denote the set of all almost con-

vergent functions by F, and write/is lac to k to mean/is left almost convergent to k.

If A = iAis, t)) is an infinite matrix on S and fie m{S), let Af be the function

defined on S by Afis) = 2t A(s, t)fi(t), whenever the sum on the right-hand side

converges for each se S. We say fis F^-summable to k iff lims 2t A(s, t)f(tb)=k

uniformly in b, where beS. This generalizes the definition by G. G. Lorentz

[9, p. 171].

3. Convergence and left almost convergence. We show, with our definition of

convergence, that C^^Fina left amenable semigroup without any finite left ideals.

3.1. Theorem. Let S be a LA semigroup. Then fis lac to k whenever fis convergent

to k iff S does not contain any finite left ideals.

Proof. Suppose S does not contain any finite left ideals. We first show <p(la)=0

for any LIM tp and any ae S, where lA, here and elsewhere, denotes the character-

istic function of A. We shall write cp(A) for <p(l¿). If <p(a)>0 then since tp is left

invariant, tp(sa) £: 95(a) > 0 for all se S. Since tp(S) = 1, Sa has to be a finite left ideal,

which cannot be.

Suppose now/e C«, and lims/(j) = 0. For e>0, let 77 be the finite subset of 5"

for which \fi(s)\<e whenever seS~H. Let M=maxsefi |/(s)|. Then |/(j)|

^2aeH Mla+els„H. Hence if 93 is any LIM then \<p(f)\ <e. And since e is arbitrary,

we see that <p(f)=0. If now limsf(s) = k, then, by considering/— k, we see that/is

lac to k.

Conversely, suppose S has a finite left ideal A. Then using an argument employed

in the proof of Theorem H-2 in [6] one can show that A contains a minimal left

ideal G of S which is also a group. Define tp on m(S) by tp(f) = (l/N(G)) 2aeG/(a),

where N(G) is the cardinality of G,fe m(S). It can easily be checked that tp is indeed
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a LIM. Clearly the function 1G is convergent to 0, while 1G is not lac to 0 since

<p(la) = L

In view of the above theorem, whenever we consider LA semigroups we shall

always assume the semigroup to be infinite and without any finite left ideals, even

though we might not explicitly mention so.

4. Almost regular matrices. We say an infinite matrix A is almost regular if

Af lac to k whenever limsf(s)=k.

We first prove the following useful lemma which will be used throughout this

paper.

4.1. Lemma. Let A be an infinite matrix on S. A necessary and sufficient condition

for Afe m(S) whenever fe C& is that there exists an M >0 such that

sup 2 \A(s, 01 < M.
s     t

Proof. If sups 2¡ \A(s, t)\ <oo then clearly for each s e S the sum 2t A(s, t)f(t)

exists and \\Af\\ <M||/|| for each/e CM.

Assume that Afe m(S) whenever fe C„. Then for each s, 2t A(s, t) exists and

therefore 2t \A(s, i)|<°° [Kelley, General topology, Van Nostrand, 1955, p. 78].

Let C0={fe C«, : lims/(s)=0}. If we write gs(t)=A(s, t) then gs e l1(S) = C*. By

the assumption, for each/e C0,

sup \gs(f)\ = sup \Af(s)\ < 00.
s s

Hence by the Banach-Steinhaus theorem

sup lis.lu = sup 2 \A(s> 01 < °°>
s s       t

where ||    ||j, denotes the /i-norm.

4.2. Theorem. Let S be an LA semigroup. Then a matrix A is almost regular iff the

following conditions are satisfied:

(4.2.1) sups 2t \A(s, 0| <Mfor some M>0.

(4.2.2) A(s, t), as a function of s, is lac to Ofor each t e S.

(4.2.3) 2t A(s> 0» as a function of s, is lac to X.

Proof. Suppose A is almost regular. Then (4.2.1) follows from Lemma 4.1.

Conditions (4.2.2) and (4.2.3) follow if we note that AXt(s)=A(s, t) and AX(s)

= ltA(s,t).
Conversely, suppose (4.2.1), (4.2.2) and (4.2.3) hold. Then (4.2.1) together with

4.1 implies Afem(S) for every feCx. Using (4.2.2) and (4.2.3), Af is lac to

lims f(s) whenever/is in the set B = {X, Xt : t e S}. The proof is then completed by

noting that B is fundamental in C«,, i.e. the uniform closure of the linear span of B

is C«.
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4.3. Remark, (a) J. P. King was the first to consider almost regular matrices,

and for the semigroup of additive positive integers, 4.2 yields King's Theorem 3.2

in [8].

(b) Let (N, +) and (TV, •) denote the semigroup of additive positive integers and

the semigroup of multiplicative positive integers respectively. Define the matrix A by

Aim, «) = 8(n, 1)     if «i is odd,

= 8(m, «)    if m is even,

where 8(m, «) = 1 iff m=n and 0 otherwise. Then with (A/, +), A is not almost

regular because the sequence (1,0, 1, 0,...) which appears in the first column of

the matrix is lac to \. However, with (N, ■), the sequence (1, 0, 1, 0,...) restricted

to the ideal 27V is the identically 0 sequence and hence, by Proposition 4.4 below, is

lac to 0. We leave to the reader to check that the conditions in 4.2 are satisfied, so

that A is almost regular when the semigroup is (A/, •). We feel that this example

together with those that will follow justify the study of summability in LA semi-

groups.

4.4. Proposition. Suppose S is an LA semigroup. Let fie m(S) and A be any right

ideal of S. Ifirfe miA) is the restriction offto A then nfiis lac to k iff fis lac to k.

Proof. The map it: miS) -> miA) is defined by Trf(t)=f(t) for te A, fie miS).

Suppose tpa is a net of finite means on m(S) such that limœ \\Lstpa—tpa\\ =0 for each

s e S. We may assume each tpa has its support in A, otherwise we replace tpa by

Latpa for a fixed a e A. Let ?,(/) = 2f-i VÁtdfih) and (Ttpaf)(s) = 2?= i <pa(ti)f(tts).

Iff is lac to k then, for all se A,

\(Ttpanf)(s)-k\ = 2 <P«ittWitiS)-k
i = i

n

^9aiti)fitiS)-k

g \\TtpJ-kl || -* 0       [5, p. 71, Theorem 7(1)].

Hence 7r/lac to k [5, p. 71, Theorem 7(2)].

Similarly by taking <pa to be a net of finite means on m(A) such that

lim \\Lscpa—tpa\\ = 0   for all s e S
a

we can show/lac to k whenever 7r/lac to k.

5. Strongly regular matrices.   Let S be a semigroup. Let

H = fêfi(gi-laigi) : at e S,fi, gi e m(S), « = 1, 2,.. A,

K = Í2 ifi-^fi) • «■ e s'fi e miS)> » = 1,2,...}.
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We denote the uniform closure of T7 and K by Cl (T7) and Cl (7v) respectively. It is

known that F= C © Cl (Tv) for LA semigroups, where C is the set of constant

functions; and F=C © Cl (TT) for ELA semigroups. See [5] for details.

We will quite often have occasions to use the following: If S is left cancellative,

be S, and sups 2t Mfa t)\<M, then

(o     2^0 = 2^*0,
tebS teS

oí)   2 m(*,oi = 2Wj.oi-2 Wj'0i
teS~bS teS tebS

= 2(\A(s,t)\-\A(s,bt)\)
Î53

é T \A(.s,t)-A(s,bt)\.

(5.0.1)

We say an infinite matrix A is strongly regular if lims 4/TO=& whenever/lac to k.

The following Theorem 5.1 contains one of the main results of this paper. When

S is the semigroup of additive positive integers, Theorem 5.1 yields G. G. Lorentz's

theorem in [9, p. 181].

5 1. Theorem. Let S be a left cancellative LA semigroup generated by B<^S. The

following conditions are necessary and sufficient for an infinite matrix A to be strongly

regular:

(5.1.1) sups 2t M(s» t)\<M for some M>0.

(5.1.2) lim, 2, A(s,t) = X.

(5.1.3) lims 2¡ \A(s, t)-A(s, at)\ =0for each aeB.

Proof. Assume (5.1.1), (5.1.2) and (5.1.3). Then (5.1.1) implies that

A : m(S) -* m(S) is a bounded linear operator, and (5.1.2) says that lims Al(s)= X.

If K is as previously defined, then we note that K is the linear subspace of m(S)

spanned by {/-/«/: aeB,fem(S)}, and hem(S) lac to k iff h-kl eCX(K).

Hence in order to prove that A is strongly regular, it is sufficient to prove that

^(Cl (K))<= C0, where C0={fe C«, : lims/(j)=0}, or A(f-lJ) e C0 for each aeB

and fem(S), because A is continuous and C0 is closed in m(S). By using (5.0.1),

we have

\Af-iaf)(s)\ = 2^>')/(0-2^>')/(û0t t

2 a(s, 0/(0+2 (^.at) - A(s' 'M«o
=S~oS feS

á2|/||2M(í,0-^uOI-
t

Hence by (5.1.3), A(f—laf) e C0 whenever fe m(S) and aeB.

Conversely, suppose A is strongly regular. Then (5.1.1) follows from Lemma 4.1

and (5.1.2) is clear. If (5.1.3) does not hold for some aeB then there is an e>0
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such that 2t \A(s, t)-A(s, at)\ > 5e for an infinite number of se S. Using this and

the fact that

lim [A(s, t)-A(s, at)] = 0
s

for each t e S, we now choose an increasing sequence o(k) of finite subsets of S and

an infinite subset {sk} of S as follows: For convenience, denote A(s, t) — A(s, at) by

B(s, t). In general, for k= 1, 2,..., let a(2k- l)<^o(2k-2) (where <j(0)= 0) and let

sk e S be such that

(5.1.4) £ |77(ifc, 01 > 5*
teS

and

(5.1.5) 2     l«fe,0|<*.
(e<x(2k-l)

And since 2ieS |-S(ifc, 01 exists there is a finite subset o(2k)='o(2k-1) such that

(5.1.6) 2     l*fe,0|<«.
ieS~tr(2fc)

Then from (5.1.4), (5.1.5) and (5.1.6) we have

(5.1.7) 2 \B(sk,t)\ = (Z-    2-2    )\*(s*>t)\
teo(2k)~o(2k-l) VieS     teai2k-l)     teS~o(2k)/

> 5e — e — e = 3e.

Now define fie m(S) by

fit) = sgn 77(ifc, 0   if * e a(<K2Jfc)~<<2/fc-1)),

= 0 otherwise.

Since 5 is left cancellative,/is well defined. Moreover, ||/|| ^ 1 and laf-f is lac to 0.

But for k= 1, 2,..., it follows from (5.1.5), (5.1.6) and (5.1.7) that

\A(laf-fi)(Sk)\ = 2A(sk,t)f(at)-2A(sk,t)f(t)
t t

2[Aisk,t)-Aisk,at)]fiat)\
t

M    2    - 2 - 2 )i**.oi
\teo(2k)~o(2k-l)     tea(2k-l)     ttsS~o(2k)/

> 3e — e — e = e.

But this cannot be since A(laf—fi) e C0. Thus (5.1.3) holds.

5.2. Remark. If A is a strongly regular matrix we cannot hope that (5.1.3) hold

in general as the following example shows : Let S be the set of positive integers with

multiplication * defined by i *j=k, where k is the smallest odd integer greater than

or equal to iwj=max (i,j). It is clear that * is commutative. We now show that * is

associative. Let i,j, ke S.

(a) If / új and j is odd, then, for all k, (i *j)*k=(j *k) = i* (j * k).

(b) If i^j and j is even, then, for all k, (i*j) * k = ij+l * k) = (j * k) = i* (j* k).
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Moreover for every /, j e S then either i vj or (/ vj) + X is a right zero for i and j.

Hence S is an ELA semigroup. Let now A he a matrix defined on S by

(i) A(m, n)=0 whenever n is even, or n<2m— X.

(ii) Aim, 2« -1) ^ Aim, 2« +1) > 0 whenever 2« -1 ^ 2m -1.

(iii) 2n A(m, n) = X for each m.

Then A does not satisfy (5.1.3) since, for example, limm 2n \A(m, n) — A(m, 3 * n)\

= 1. However, A is strongly regular as Theorem 5.4 below shows. We leave the

details for the reader to check.

5.3. Remark. If S is a cancellative LA semigroup without any finite left ideals,

then C„o is a proper subset of F, since otherwise the identity matrix would have to

satisfy (5.1.3). Then there exist finite subsets au o-2, a,b e S,a^b, such that at = t for

t e S~ ax and bt=t for t e S~ a2. Hence if t e S~ (c^ u <r2) then at=bt = t. Since S is

right cancellative, a=b, which cannot be.

5.4. Theorem. If S is an ELA semigroup then the following conditions are both

necessary and sufficient for an infinite matrix A on S to be strongly regular:

(5.4.1) sups 2t \A(s, 0| <M for some M>0.

(5.4.2) lims 2,^,0 = 1-
(5.4.3) lim5 2(€s~as M(í> 01 =Qfor every ae S such that a e Sa.

Proof. Since the proof is similar to that of Theorem 5.1 we shall only give the

following essential steps: We estimate Af(s) when f=g—lbg,gem(S),g^O, and

b e S. Let ae She such that ba=a. For e>0, let T70 be a finite subset such that if

s$H0 then 2tes~as \¿(s, 0l<e/2llsll- Tnen for s$H0, we have

\Af(s)\ = 2^(M)s(0-2^0s(£0
teS teS

2 A(s,t)g(t)-2 A(s,t)g(bt)
teas teas

+2\\g\\    2    M(M)|
teS~aS

<   E.

Now it can easily be shown that A is strongly regular whenever (5.4.1), (5.4.2) and

(5.4.3) hold.

Conversely, if A is strongly regular then (5.4.1) and (5.4.2) hold. If (5.4.3) does

not hold there is an e > 0 and an a e S such that 2íes~os MC?, r)[ > 5e for an infinite

number of s e S. Using this together with the fact that lim5 A(s, 0=0 for each teS,

we can choose, as in the proof of 5.1, an increasing sequence c(k) of finite subsets of

S~aS and an infinite subset {sk} of S so that the following conditions hold:

(5.4.4) Lwe*-i>M(**,0|<«-
(5-4.5)   2f<=S~aS~0-<2k) \A(sk, t)\<E.

(5.4.6) 2teo-<2fc)~0-(2k-i) \A(sk,t)>3>B.
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We can choose the sets oik) to be subsets of S~aS since S~aS is infinite (other-

wise 2tes~os \Ais, 01 would be a finite sum of convergent functions) and the sum

2tes~as \Ais, 01 is finite. Define

fit) = sgn Aisk, t)   if te o(2k) ~ oQk-1),

= 0 otherwise.

Now, observe that ||/|| ^ 1, laf=0, the support of /is contained in S~aS, and that

/— /„/is lac to 0. Using (5.4.4), (5.4.5) and (5.4.6) we can show (see the proof of 5.1)

for all k, \A(fi—laf)isk)\ >e, which cannot be.

5.5. Remark, (a) In the proof of the necessity in 5.4, we did not use the fact

that a is a right zero of some element in S, so that, in any LA semigroup, (5.4.1),

(5.4.2) and (5.4.3) are necessary conditions whenever A is strongly regular.

(b) We note that we actually proved more in the proofs of 5.1 and 5.4, namely

that if g lac to k then Airbg) converges to k uniformly in b. In his proof, for the

semigroup of additive positive integers, G. G. Lorentz made the same observation

(it should be pointed out that our proof differs in many ways from his). We now

use this observation in the following theorem.

5.6. Theorem. Let S be a left cancellative LA [ELA, not necessarily left cancella-

tive] semigroup and A be an infinite matrix on S satisfying the conditions of Theorem

5.1 [Theorem 5.4]. Then fis FA-summable to k iff fis lac to k.

Proof. If/is lac to k then, as known r(/is lac to k for every te S. This can easily

be seen from the fact that the left translation operator commutes with the right

translation operator. By Remark 5.5(b),

lim Airtf)is) = lim 2 Ais, t')fit't) = k
s s       jT

uniformly in t, i.e./is FA-summable.

The converse follows easily from Corollary 5.8 to the following theorem, proved

first for the semigroup of additive positive integers by P. Schaefer [13, p. 51].

5.7. Theorem. Let S be an LA semigroup. If A is almost regular and f is FA-

summable to k then f is lac to k.

Proof. We basically adapt Schaefer's proof to the general semigroup case.

Suppose/is 7^-summable to k. Then lims 2t A(s, t)f(tb)=k uniformly in b. Let g

be a function of s and b be defined by g(s,b) = ̂ tA(s,t)f(tb). Then g(s,b)

=k+h(s, b), where « is a function of s and b such that «, as a function of s, is

convergent to 0 uniformly in b e S. Now for e<ich finite subset o of S, define g„ as a

function of s and b by g„(s, b) = ~£te<r Ali, t)r(tb). Then ga converges uniformly to

g for each fixed seS since ||g,-g||=su' , \g,(b)-g(b)\ ^2«* \A(s,t)\ ||/| and

this can be made as small as we please.
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If now 93 is any LIM then for each fixed s e S,

<p(g) = <p(tim go] = lim 2 A(s, Ovtt/)

- 2 A(<s> 'M/) = <rik+h) = k + <p(h).
teS

Thus cp(/) 2t A(s, t)=k+<p(h). Since h, as a function of s, converges to 0 uniformly

in b e S, for every e > 0 there is a finite subset 27 such that if s $ H then \q>(h)\ < s,

i.e. qih), as a function of s, is convergent to 0. If now ¡fi is any LIM then

(5.7.1)     4>[<p(f) 2 A& 0] = ?</¥[2 A(*> 0] = m+mb)).

Since ^ is almost regular, iA[2t^(í> 01 = 1 and </<(cp(/0)=0. Therefore we see from

(5.7.1) that <pif) = tik)=k, i.e. fis lac to Â:.

The following corollary, which is due to G. G. Lorentz for the additive positive

integers [9, p. 171], is an immediate consequence of 5.7 since every regular matrix

is almost regular.

5.8. Corollary. Let S be an LA semigroup. If A is regular and fis FA-summable

to k then fis lac to k.

6. Almost Schur matrices. We say an infinite matrix A is almost Schur if ^4/is

lac for each/e m(S).

6.1. Theorem. Let S be an LA semigroup. Let A be an infinite matrix on S satisfy-

ing the following conditions:

(6.1.1) sups 2f \d(s, 0| <Mfor some M>0.

(6.1.2) The sum 2t M(5> 01 converges uniformly in s.

(6.1.3) A(s, t), as a function ofs, is lac to atfor each t e S.

Then Af is lac to 2t ^tf(0for cachfe m(S).

Proof. Let 2 be the family of all finite subsets of S directed by inclusion. Let

fe m(S). For each a el. define g„ by g„(s) = 2teo- A(s, t)f(t). Then clearly g„ is lac

to 2te<7 «i/(0 by (6.1.3). Now (6.1.1) implies Afe miS). And using (6.1.2), one can

readily show that Af is the uniform limit of ga. Hence Af is lac and if tp is any LIM

then

<KAf) = 9>(lim ga) = lim <piga) = lim 2 «¡/(O = 2 atfif).
\  "        I " "tea t

6.2. Corollary. If A is an almost regular matrix then A cannot be an almost

Schur matrix.

Proof. If A is an almost regular matrix then Ais, t) is lac to 0 and 2¡ A(s, t) is lac

to 1. If A is also an almost Schur matrix then Af is lac to 0 by the theorem. In

particular, 2¡ ¿is, t) is lac to 0, which cannot be.
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6.3. Remark. It is easy to see that if A is an almost Schur matrix then (6.1.1)

and (6.1.3) are necessary. However, (6.1.2) is not necessary as the following ex-

ample shows : Let S be the semigroup of ordinals less than the first uncountable

ordinal Q, with the usual addition of order types. Then S is a noncommutative, left

cancellative, ELA semigroup ([5], p. 73). Define A on S by

A(s, t) = 8(s, t)   if 1 S s < w, t e S,

= 0 otherwise,

where to is the first countable infinite ordinal. Then for any/e m(S), it is easy to see

that Af(s)=0 for s e a + S for any a > to. By 4.4 Af is lac to 0. But clearly (6.1.2) is

not satisfied.

6.4. Example. Let S={(m, n) : m = 1, 2,..., « = 1, 2,...}. Define the operation

* on S by

(a) im„n,)* (m2, n2) = (m,+m2, n,+n2) if m,=±l and m2^l.

(b) (m„ n,) * (1, n2) = (l, n2) * (m„ n,) = (l, n2) if m,¿ 1.

(c) (l,«i) * (l,«2)=(l,«iV«2), where n, v«2 = max(«1, «2).

That S is an ELA semigroup actually follows from the following general con-

struction: Let S=S, u S2, where Si is any semigroup and S2 is any ELA semi-

group. For a,beS, define the product a * b to be the product of a and b in S¡,

i=l, 2, if both a, be S¡. If ae S,, b e S2 then a * b=b * a=b.

Now for each k and each / fixed, define

fi(m,n) = (W+l   ifm = l,

= 0 otherwise.

Then g(m, n) = l(U1)f(m, «)=/[( 1, 1) * im, n)] = Q)k+l for all m and «. Then

gim, n)—f(m, n) is lac to 0. Define the matrix A on S by A(m, n; k, l)=g(m, n)

—f(m, n). Then A(m, n; k, I), as a function of («j, «), is lac to 0 for each k and /; and

Z\A(m,n;k,l)\=2iük+l
k,l k.l

converges uniformly in (m, ri) to 1. By 6.1 A is an almost Schur matrix.

7. Almost strongly regular matrices. We say an infinite matrix A is almost

strongly regular if Af lac to k whenever/lac to k.

7.1. Theorem. Let S be a left cancellative LA semigroup generated by 77<=S. Let

A be an infinite matrix on S such that the following conditions hold:

(7.1.1) sups 2t \A(s, t)\<Mfor some M>0.

(7.1.2) 2t Ais, t), as a function of s, lac to 1.

(7.1.3) 2f \A(s, t) — A(s, at)\, as a function of s, lac to Ofior every ae B.

Then A is almost strongly regular.

Proof. Assume (7.1.1), (7.1.2) and (7.1.3). Then (7.1.1) implies A: m(S) ->■ m(S)

is a bounded linear operator, and (7.1.2) says Al lac to 1. By the same reasoning as

in the proof of 5.1, in order to prove A is almost strongly regular, it suffices to show

A(fi-laf) 6 Cl (K) for each a e 77 and/e m(S). Let, then, <pa be a net of finite means
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converging in norm to left invariance, i.e. lima || Ls<pa — <pa\\ =0 for all i e S [X, p. 524,

Theorem 1], Let çpa(/) = 2?= i ?><«(**)/(*()• By usmg (5.0.1), we have

2 <Pa(U)W-A(laf)](tlS)
(=i

2 9a(td\2 A({is> 0/(0-2 A('*> Mat)] I
i=i Lí i JI

2 <pM [2 (40iS, at) - A(tts, t))f(at) +   2   A(tts, t)f(t)] I
i = l Li€S teS~aS J I

á 2II/II 2 9»«fo)2 M('A t)-A(tlS,at)\.
i = l i

Hence by (7.1.3) and [5, p. 71, Theorem 7], A(f-lJ) e Cl (K) whenever a e B and

f€m(S).
7.2. Remark, (a) If S is the additive positive integers, Theorem 7.1 yields

P. Schaefer's Theorem 2 [12, p. 52]. Our proof is entirely different from his. His

proof does not seem to carry over to the general case.

(b) It is clear that if A is an almost strongly regular matrix then (7.1.1) and (7.1.2)

are both necessary conditions. However, (7.1.3) does not always hold, since the

identity matrix A is almost strongly regular but, for the additive positive integers,

limm 22 \A(m, n) — A(m, «4-l)|=2. When Sis ELA (not necessarily left cancellative)

we have the following stronger result.

7.3. Theorem. Let S be ELA, and A be an infinite matrix on S satisfying the

following conditions:

(7.3.1) sup, 2* \M.s, 0| < M for some M>0.

(7.3.2) 2¡ A(s, 0, as a function of s, is lac to X.

(7.3.3) ~Ztes~as \A(s, 01» as a function of s, is lac to 0 for every ae S such that

aeSa.

Then Af is lac to k whenever f is lac to k.

Proof. Let/lac to k. By [5, p. 72, Theorem 8] for e>0 there is a b e S such that

if tebS then |/(0-*|<e. Let aeS be such that ba=a. Then if teaS^bS,

\f(t)-k\<e. By (7.3.2) and (7.3.3) let c, de S he such that if secS then

\'£tA(s,t)—l\<£, and if sedS then 2t&s~as \A(s, 01 <£- Now Afem(S) by

(7.3.1) and if s e cS n dS¿ 0 (since S is ELA), then

\Af(s)-k\ á 2 ^(*. oi/xo-*) + 2^»o*-*t t
< 2 \A(s,t)\\f(t)-k\+2\A^,t)\\f(t)-k\+\k\2A^t)-i

teS-as teas t

< e(\\f\\ + \k\) + EM+\k\E

<(2\k\ + \\f\\+M)e.

By [5, p. 72 Theorem 8], Af is lac to k.

7.4. Remark. If A is nonnegative, i.e. A(s, 0^0 for all s,teS, then (7.3.1),
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(7.3.2)  and  (7.3.3)  are  necessary  also.   For  2¡&s~as \Ais, t)\ =2t=s~as Ais, t)

=Ails~as)is)- Since ls~as is lac to 0 it follows that (7.3.3) holds.

7.5. Example. Let S be the semigroup described in 5.2. Let A be defined for

each m, n, by

(i) ^(2ffi-l,2«-l)^^(2w-l,2M + l)>0 whenever 2«-1^2m-l and 0

otherwise.

(ii) A{2m, n) = 1 only if « = 1 and 0 otherwise.

(iii) Aim, n)=0 whenever « is even.

(iv) 2n Aim, «) = 1 for each m.

By 7.3 A is almost strongly regular. However, if we replace the operation * by

the ordinary addition, then A is not almost strongly regular since the sequence

/=(1, 0, 1, 0,...) is lac to \ while Af is the sequence (1,1,1,...), which is lac to 1.

7.6. Remark. The referee has raised the following interesting question: Does

each left cancellative LA semigroup admit a matrix of the types that we have con-

sidered in this paper? We do not have complete answers to this question, but only

give some examples of these matrices for some particular semigroups.

The author wishes to thank the referee for his comments and suggestions.

Bibliography

1. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067.

2. -, Normed linear spaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenz-

gebiete, Heft 21, Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.

3. E. E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177-197. MR

33 #5760.

4. -, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93-113. MR 35 #3422.

5. -, Functional analytic properties of extremely amenable semigroups, Trans. Amer.

Math. Soc. 137 (1969), 53-75. MR 39 #765.

6. -, On the invariant mean on topological semigroups and on topological groups, Pacific

J. Math. 15 (1965), 107-140. MR 35 #286.

7. P. R. Halmos, Introduction to Hubert space and the theory of spectral multiplicity, Chelsea,

New York, 1951. MR 13, 563.

8. J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219-1225.

MR 34 #1752.

9. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948),

167-190. MR 10, 367.

10. T. Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer.

Math. Soc. 119 (1965), 224-261. MR 33 #1743.

11. -, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc.

122 (1966), 195-202. MR 32 #7662.

12. P. Schaefer, Almost convergent and almost summable sequences, Proc. Amer. Math. Soc.

20 (1969), 51-54. MR 38 #3649.

13. J. Schur, Über lineare Transformation in der Theorie der unendlichen Reihen, i. Reine

Angew. Math. 151 (1921), 79-111.

14. O. Toeplitz, Über allgemeine lineare Mittelbildungen, Prace Mat.-Fiz. 22 (1911), 113-119.

University of British Columbia,

Vancouver, B.C., Canada


