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A MAXIMAL FUNCTION CHARACTERIZATION

OF THE CLASS H'i1)
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D. L. BURKHOLDER, R. F. GUNDY AND M. L. SILVERSTEIN

Abstract. Let u be harmonic in the upper half-plane and 0 < p < co. Then « = ReF

for some analytic function F of the Hardy class Hp if and only if the nontangential

maximal function of « is in L". A general integral inequality between the non-

tangential maximal function of u and that of its conjugate function is established.

Hardy and Littlewood have shown [6] ([12,1, p. 278]) that if F(z) is an analytic

function in the unit disc \z\ < 1, and 0,(0) is the Stolz domain given by the interior

of the smallest convex set containing the disc \z\ < a and the point ew, then

sup   \ReF(z)\"d9 ^ Qp   sup \F(reie)\p d9
Jo     zeCla(B) '    0<r<l Jo

for all/? > 0,0 < a < 1. In this paper we prove the converse inequality which, together

with the above theorem of Hardy and Littlewood, gives a maximal function

characterization of the Hardy class Hp. We also prove the analogous inequality

for the upper half-plane. Since the latter is the more difficult case, we treat it first.

In order to state our principal result we require some definitions. Recall that an

analytic function F(z) belongs to the class Hp, p>0, in the upper half-plane

Im z>0 if it is defined there and

/»oo

sup \F(x + iy)\pdx
!/>0 J -oo

< oo.

If f(z) is any function defined in the upper half-plane, its nontangential maximal

function is given by

Na(f)(x)=   sup   |/(z)|
zera(x)

where Ta(x) is the cone {z = s + iy : \s — x\ <ay}.

The function Na(f) belongs to L", p>0, if

/:
\Na(f)\* dx < co.
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Theorem 1. Let u be harmonie in the upper half-plane and 0<p<co. Then

u = Re F for some analytic function F of the class H" if and only ifNa(u) belongs to

V for some a>0. More specifically,

(a) ifu=ReF, then

(0.1) ca,pC   \Ntt(u)\' dx Ú sup I*"   \F(x + iy)\"dx
J-oo !/>0 J- oo

for all c£>0;

(b) if for some a > 0, Na{u) belongs to L?, then there exists a conjugate harmonic

function ü such that F=u + iü is analytic in the upper half-plane and

(0.2) sup r   \F{x + iy)\> dx £ Ca,p P   \Na(u)\p dx.
ï>oj-oo J-oo

Part (a) is known and is the half-plane analogue of the theorem of Hardy and

Littlewood. For the case p>\, part (b) follows from standard facts about the

Hubert transform. Therefore, the novelty of our result is the case 0<p^ 1, which

seems to require different methods. Our approach uses some ideas from probability

theory. We obtain (a) and (b) in a unified way, as well as the following result.

Theorem 2. Let 3> be a nondecreasing function such that

(0.3) <P(Ä) = f <p(A) dX,       0 á b ^ oo,

0<3>(l)<co, for some nonnegative, measurable function tp satisfying the growth

condition <p(2X) ¿ ccp(X) for all X > 0. If u is harmonic in the upper half-plane, then

there exists a conjugate function ü such that F= u + iü is analytic in the upper half-

plane and, for every a > 0,

/•OO /*   CO

(0.4) ®(Na(ü)) dx ^ C <!>(Na(u)) dx.
J — OO J    — 00

The constant C depends only on a and the growth constant for <p.

Note that the class of functions O described in Theorem 2 includes the powers

O(è) = bv, p> 0, as special cases.

A preliminary result that is of interest in its own right is given in §1. Stated as

Theorem 3, it asserts that the distribution function of the nontangential maximal

function is equivalent to the distribution function of another maximal function

involving Brownian motion.

§2 contains the proof of Theorem 1 ; an alternative approach to the probabilistic

part of the argument is presented in §3. §4 contains the essentials of a proof of

Theorem 2. Since the argument follows the pattern of the proof of Theorem 1, we

give only an outline. §5 contains statements for the unit disc corresponding to

Theorems 1, 2, and 3. Some remarks are made; for example, we show that while

Theorem 2 holds in the unit disc for the nontangential maximal function, it does
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not hold for the radial maximal function. It would be interesting to establish the

corresponding result for Theorem 1.

1. Preliminaries. For any point z = x + iy with y>0, let {zt, i^O} be complex-

valued Brownian motion started at z and stopped the first time it hits the real axis

y = 0. The transition density for this process in the open upper half-plane is easily

computed using the reflection principle and is given by the formula [5]

(1.1) q(t,$,v) = (27ri)-1[exp(-|^-f|2/20-exp(-|ij-^|2/20]

where r¡ is the complex conjugate of r¡. We let Px+iy denote the Wiener measure

induced by the family q(t, (, rj), t>0, and 8x + iy, the unit mass at z = x + iy. That is,

Px+iy is a measure on the space of paths of the process {zt, i^O}.

If u is harmonic in the upper half-plane, define the Brownian maximal function

and gradient function for u as follows:

u* = u*+iv =   sup   |w(z()|,
OSi<i0

S(u) = Sx + iy(u) = \u2(x + iy) + J ° |grad u\2(zt) dt\
1/2

where t0 is the stopping time T0 = inf{i : lmz( = 0}. For any function v of the

process {zt, t ^ 0}, we write

HIp = (J"l»lp^*+.»)1/P'     o<p<
l/p

oo.

Finally, m( ) always denotes Lebesgue measure on the real axis or on lines parallel

to it.

The following result is used in the proofs of Theorems 1 and 2, but is of in-

dependent interest.

Theorem 3. Let u be harmonic in the upper half-plane. Then, for a>0,

/»oo

cam{Na(u) > A) á sup Px + iy(u* > X) dx ^ Cam(Na(u) > A).
ï>0 J - oo

The expression supy>0 j""«, Px + iy(u*> A) dx can be interpreted as the distribu-

tion function for the Brownian maximal function corresponding to Brownian

motion "starting at infinity" in the sense of Hunt [8, p. 334]. The proof of Theorem

3 rests on two lemmas.

Lemma 1. Let zx denote the terminal position of the process {zt, t^O} on the line

y = 0. The random variable zm has a distribution with density given by the Poisson

kernel

Px + iy(s)  =
7r(|x-¿|2+j2)'
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and for any Lebesgue integrable function f we have the formula

/»OO /»CO /»

f(s)ds= \f{zx)dPx+iydx.
J — 00 J — 00    J

This lemma is well known and follows from a general theorem due to Kakutani

that identifies harmonic measure with the hitting distribution of Brownian motion.

See [3] for details.

Lemma 2. Let u be harmonic in the upper half-plane.

(a)//

a(X) = m(Na(u) > X)

is finite for some a>0 and A>0, then \u(x + iy)\ ^ Xfor y>(2a)~1a(X).

(b) If

b(X)
/»OO

= sup        Px + Iy(u* > X) dx
V>0 J-oo

is finite for some A>0, then \u(x + iy)\ ^ Xfor y> Cb(X).

Proof. Let A={x : Na(u)(x)>X}, A' its complement, and B—\jxeA. Ta(x). The

boundary of B is saw-toothed, and consists of A' and the upper sides of a

countable number of isosceles triangles. An elementary calculation shows that the

heights of these triangles are all bounded by y = (2a)~ 1a(X), and that |w| ;= A above

this line.

To prove (b), we make the following preliminary observations: Let Q be the

square with vertices (± 1, 0), (± 1, 2), and y a Jordan arc with one endpoint at the

origin, the other off the real axis on the boundary of Q, and all other points of y

in the interior of Q. The square is thereby divided into two regions, QR and QL

with the segment R = {x : O^xál} forming part of the boundary of QR and

L = {x : — 1 Sx^O} part of the boundary of QL. Therefore, we have

Pz(zt hits y) ïï min (Pz{zt leaves Q along R), Pz(zt leaves Q along L))

for z belonging to Q and the line Im z=l. Since the right-hand side of this in-

equality is greater than some positive constant d for all z on the line segment

J={z : -i^Rez^i, Imz=l}, it follows that

(1.2) inf Pz(zt hits y) ^ d
zeJ

and

(1.3) inf PJyZt leaves Q along the bottom edge) ¿ d.
zeJ

We now show that (b) holds with C=5d~1. We first assume that the open set

D = {z : \u(z)\ >A} is connected and that ¿>(A)>0. Let h, be the length of the pro-

jection of D on the imaginary axis, and hR the length of the projection of D on the
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real axis. There are two possibilities : Either h,>4d~ 1è(A) or h,^4d~ 1b(X). Suppose

that the first possibility holds. Then there exists a Jordan arc y with one endpoint

z0 on a line y = l and the other endpoint on the line y = l+4d~1b(X) such that all

interior points of y lie in D and strictly above the line y = l. Dilate the square Q

by a factor of 2d~1b(X) and translate it, bringing the origin to the point z0. The

arc y then divides the new square and the homogeneity properties of Brownian

motion, together with (1.2), imply

PJC+id + 2£i-16(A))(w* > A) ^ Px+m + 2d-1bi\),(zt'hitsy) ^ d

for x in the segment symmetric about z0 of length 2d~1b(X). Therefore,

b(X) ^ Px+w + 2a-iba))(zthitsy)dx
Jx0-d-ib(M

^ 2d~1b(X)d= 2b(X).

This contradiction implies h,^4d'1b(X). Therefore, we may assume that h,

^4d~1b(X) and suppose that (b) does not hold with C=5<5?-1. It follows by the

maximum principle that AB = oo, since otherwise the set D would be bounded and

its closure strictly contained in the interior of the upper half-plane. Therefore,

there exists a Jordan arc y in D that extends to infinity either to the right or left,

and whose oscillation in the vertical direction is no greater than 4d'1b(X). Dilate

the square Q by 8d~1b(X). Because hB = co and h,-¿4d~1b{X), it is possible to

translate the dilated square to have base along y = I so that the arc y divides it along

the vertical edges into two connected regions, U and L, such that the upper region

U contains the horizontal midline of the square. The homogeneity properties of

Brownian motion, together with (1.3), imply

/•Xo + id-^Hh)

b(X) ^ Px+Hl + sd -^wAu* > A) dx
Jxo-id-iba)

rx0 + id-iU\)

^ Px+Ki + Bd-hwfa hits y)dx
Jx0-id-1H»

ä 8d~1b(X)d= 86(A)

where z = x0 + i(l+%d~1b(X)) is the midpoint of the dilated square. This contra-

diction implies that (b) holds if D is connected, and the general case follows by

applying the above argument to each component.

Proof of Theorem 3. We fix A > 0 throughout the proof. To prove the right-hand

inequality, assume that m(Na(u)> X) = a(X)<co. The set D = {z : |w(z)|>A} is

contained in the complement of P, defined in the proof of part (a) of Lemma 2.

Ify>(2a)-1a(X), then

Px+iy(u* > A) = Px+iy(zt enters D for some t > 0)
(1.4)

is Px + iy(zt e dP for some t > 0)
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where dB indicates the saw-toothed part of the boundary of B. Also note that

(1.5) inf Pz(z„ e A) ä ca > 0,
zedB

a fact that follows from the homogeneity properties of the Poisson kernel and

Lemma 1.

Consider the stopping time r = inf{t : ztedB}. We use Lemma 1, the strong

Markov property of Brownian motion [7], (1.4), and (1.5) in the following com-

putation. If y > (2a) " ̂ (A), then

/»OO

m(Na{u) > A) = Px + iy(za eA) dx
J — CO

/»OO

=        Px+iy(zm e A, t < oo) dx
J — 00

= Px + ty(zledz)Pz(zx,eA)dx
J-oo  JdB

/»OO

^ Ca Px + iy(u*  >  *)dx.
J — 00

Finally, note that the last expression is nondecreasing in y: If 0<r<j>, then, by

another use of the strong Markov property, we have that

/»CO

PX + iy(u*   >   A)  ^ Ps + ir(u*   >   X)px + i(y_r}(s)ds.
J — 00

Integrating both sides with respect to x, we obtain

(1.6) P   Px + iy(u* > X)dx ̂   f   Ps + iT(u* > X)ds,       0 < r < y.
J   — 00 J  — 00

This completes the proof of the right-hand side of Theorem 3.

For the left-hand side, we introduce a conditional Brownian motion process

with transition density

qs(t, Ç, v) = q(t, i, r,)Pr,(s)lpt(.s)

where q(t, (¡,r¡) is the density (1.1) and p„(s) is the Poisson kernel. Conditional

processes of this type have been discussed by Doob [4], [5]. The function qs is the

transition density for Brownian motion conditioned to hit the real axis at j, — oo < s

<co. The conditioned process has the strong Markov property [4, p. 436] and the

obvious homogeneity properties under real translations and dilations. We let

Px+iy denote the Wiener measure associated with the density 47s.

The following observation may be verified using the strong Markov property of

Brownian motion. Let k be the segment formed by the intersection of the line

Im z= 1 with the cone Ta(0). Then

(1.7) Px + iy(zt does not hit k) ^ Ca > 0
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for yt2. This inequality, together with the homogeneity properties of the density

q\ implies that if K is the segment formed by the intersection of the line Im z = r

with the cone Ya(s), then, for y^2r,

(1.8) Psx+iy(zt does not hit K) ^ Ca > 0

where the constant Ca is the same as in (1.7).

In order to prove the left-hand inequality, we may assume that

/»OO

sup        Px+ly(u* > A) dx < co.
y>0 J-oo

Let j £ A, that is, assume Na(u)(s) > X. Denote by /s a horizontal segment across

Ta(j) such that |m(z)| > A for some z on /s. By Lemma 2 and (1.8),

(1.9) Px+iy{zt does not hit /s) ^ Ca > 0

for y > 2Cb(X), where Ca=C(1.8) and C is the constant specified in Lemma 2(b).

We complete the proof of the left-hand inequality by using the maximum

principle and the fact that enough Brownian paths to s and their reflections avoid

the segment ls. If zt = xt + iyt, t S: 0, define the reflected process zt = 2s — xt + iyt. It is

easily verified that

Px + iy\z e F) = P2s-x+iy(zt e h);

in fact, the conditional distribution of {zt, ¿2:0} is the same as that of {zt, i^O}

with initial point reflected about s. If the process {zt, /SO} is started on the line

Im z = 2C¿>(A) and terminates at s without hitting /s, then the same is true for z(

since 4 is symmetric about s. In this case, the union of the paths of zt, zt, and the

line Im z = 2CA(A), contains a closed curve around the segment /s. Since |h(z)| í¡ A

on Im z = 2Cb(X) and |«(z)| > A at an endpoint of/s, the maximum principle implies

that, for these paths,

*« V u* = ( sup   \u(z)\) V ( sup   \u(zt)\) > A.
\0<¡<io / \0<f<to /

Therefore, if j> > 2C¿>(A),

PS2s-X + iy(u* > X)+Px + iy(u* > A) = Px + ly{*u > X) + Px + iy(u* > A)

^ Psx + ty(*u V u* > A)

^ Px+.y(zt does not hit /s) ^ Ca > 0

by (1.9). Let Ex+iy denote expectation relative to Px+iy, let Px+iy(- |z»o) denote the

conditional probability relative to the random variable zœ, and let IA(s) be the

indicator function of the set A = {x : Na{u)>X). Then by Lemma 1,
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/»CO /»CO

2        Px + iyÍM* > X)dx = 2 Ex + iy[Px + iy(u* > A|zœ)]i/x
J — OO J — 00

^ 2 T   Ex+iy[IJ¿„)Px+iy<jfi > A|zœ)] ¿x
*/ — 00

■ ï £ £ '^«♦•w >A) J2+¿-¿)2 * *

=ILiás)\Lpl-^ >(u*> x)f+^sfdx

+jyx+uu*>x)7^_y2dx\ds

^LIÁS^íJf+é^?dxds

= Cam(Na(ü) > A),

which implies the left-hand inequality of Theorem 3.

Lemma 3. Suppose that u is harmonic in the upper half-plane, and

(1.10) P   \NM\"dx < oo
J — 00

for some a > 0 andp> 0. Then there exists a conjugate harmonic function ü such that

F= u + iü is analytic in the upper half-plane, and

(1.11) limo(x+/» = 0
y-* 00

uniformly in x.

The proof of Lemma 3 uses standard facts about harmonic functions in the

upper half-plane. The hypothesis (1.10) and Lemma 2 imply that u is bounded

along every line Im z = e>0.

First, consider the case p^\; then u is also in L2 along every line Imz = e.

Therefore u has a conjugate function w£ in the half-plane Im zäe formed by taking

the Poisson integral of the Hilbert transform of u along the line Im z = e. Since the

Hilbert transform of u along Im z = e is also in L2, its Poisson integral üs tends to

zero uniformly in x as y tends to infinity ; this fact may be verified directly from the

Poisson integral formula. Therefore,

F„(x + iy) = u(x + iy) + iue(x + iy)

is analytic in Imz>e. Finally, if 0<e'<e, then Fe. = Fe on the common domain

since each has the same real part and both tend to zero as y tends to infinity.

Therefore, the functions Fe may be continued to a function F that is analytic in the

half-plane and satisfies (1.11).

If p> 1, the same argument works with e = 0 and with L2 replaced by W.
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Lemma 4. Let u be harmonic in the upper half-plane. For any initial point z0, we

have

C, Il s» ||p ̂  IKL ^ cp\\sZ0(u)\\P

for 0<p<oo.

Lemma 4 is a consequence of some martingale maximal inequalities from [2],

and some facts about stochastic integrals. However, the use of stochastic integrals

may be avoided by another approach, given in §3, that uses the methods of [2] to

prove directly the following consequence of Lemma 4: Let u and ü be conjugate

harmonic functions in the upper half-plane. Then

(1.12) | sup   |ù(zt)-a(z0)If   ^ Cp\\ sup   |w(z()-w(z0)||
\\o<t<z0 Up ||o<t<To Up

for 0</?<oo.

Proof of Lemma 4. It follows from Itô's formula for stochastic differentials

that the process {u(zt), t ̂  0} is a stochastic integral of the form

u(zt) = u(z0)+\  grad u(zt)-(dxt,dyt)

where zt=xt + iyt. (For a discussion of stochastic integrals and Itô's formula, see

McKean [9].) To obtain Lemma 4 in the range p> 1, we may use results of Millar

[10, Theorem 7.1] and Doob's maximal inequalities for martingales. The double

inequality may be extended to the range 0<p¿l by using the extrapolation

method of [2]. We give no more details here since an alternative approach is

presented in §3.

Inequality (1.12) follows directly from Lemma 4: Since |grad w|2= |grad w|2

implies SZa{u — u(z0)) = SZo(ü— ö(z0)), we have

I sup   |w(z£) —ñ(z0)|¡   ^ Cp\\SZo(ü-£í(z0))\\p
llo<t<i0 Up

= Cp\\SZo(u-u(z0))\\p g Cp\ sup   \u(zt)-u(zo)\\\ .
I|o<é<to Up

2. Proof of Theorem 1.    We prove part (b) first. Suppose that the right-hand

side of (0.2) is finite. Theorem 3 implies

/»OO /»OO /»OO

sup ||«*+ll,||?</x = sup pV-Vx+iviu* > X)dXdx
!/>oJ_oo v>o J - oo Jo

/»CO /»OO

g p       A""1 sup Px + iy(u* > X)dxdX
Jo v>0 J- oo

(2.1)

úCapi   X'^miNJu) > A) dX

f* oo

= CA      \Na(u)\"dx
J — 00

< co.
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We show that this, together with the information collected above, implies

sup P   \ü{x+iy)\*dx Ú Ca P   \NM\"dx.
y>0j-oo J - co

Fixj>>0 and suppose that 0<y<r; define

\ur(x + iy)\p =      inf     \ü(x + iy)-ü(s+ir)\p.
— 00 <S< 00

By Lemma 3,

lim \a¿x + iy)\* = \ü(x+iy)\p,
r-* oo

and by Fatou's lemma

(2.2) P   \ü{x + iy)\pdx-¿Mm inf [     \u,(x + iy)\p dx.
J - oo r->ooJ_<x>

Let {z\, iäO} be Brownian motion started at the point s + ir and stopped the first

time it reaches the line Im z=y. Lemma 1, inequality (1.6), and the translation

properties of Brownian motion imply

P   \ttT{x + iy)\p dx Ú  [     Es+i¿\ü{zV)-ü(s+ir)\p)ds
J — CO J — CO

/»CO

P,. + i^sup \a(z?)-u(s + ir)\p\ ds

/»GO

Cp Ps + lr/sup \u(zyt)-u(s+ir)\p\ds
J-oo W>0 I

Ú 2PCP P   \\uî+ir\\p ds,
J — 00

and therefore, by (2.2),

sup f     \B(x + iy)\pdx S 2"Cpsup P   |«*+|J,||J dx.
y>0  J - oo !/>0j_oo

Finally, by (2.1),

sup P   \ii(x+iy)\pdx ^ C«., P   \Na{u)\pdx,
V>0   J -CO J-00

<

<

so that

/»oo /»oo

sup \F(x + iy)\p dx = sup |m(x + í^) + ím(x + /»|p í/x
y>0 J-oo 1>0 J-œ

â" Ca.P P   |JVa(«)|» rfx,
J — 00

which completes the proof of part (b) of Theorem 1.
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Part (a) of Theorem 1, due to Hardy and Littlewood, may also be proved using

martingales. Suppose that F(z) belongs to Hv for some p > 0 ; then | F(z) |pl2 is sub-

harmonic in the upper half-plane and is bounded along the line Im z=j>0. The

process {\F(zf)\pl2, i^O} is an L2-bounded submartingale so that by Doob's

maximal inequalities for submartingales and Lemma 1, for r>y,

I""    Ísup \u(zï)\"dPs + ndsè  f    ¡sup \F(zn\pdPs+irds
J_ oo J   !>0 J -oo J   t>0

-   C'f^J^-W^^ + irds

= Cp f   \F(x + iy)\»dx.
J — 00

Therefore

r   |«.*+fr||?«* ^ Cpsup P   \F{x+iy)\> dx,
J - oo y>o J - oo

and Theorem 3, together with (1.6), implies

/•OO /»00

\Na(u)\" dx Ú Ca sup ||«Í+,Jp dx
J-oo !/>0j_oo

g Ca,psup P   \F(x+iy)\* dx,
B>0 J - oo

which completes the proof of Theorem 1.

3. An alternative approach. Here we give an alternative proof of (1.12), one

of the key inequalities leading to Theorem 1. The proof is self-contained and is a

particularly simple application of the methods developed in [2].

Theorem 4. Let u be harmonic in some connected open set D of the complex plane

and ù a conjugate function in the sense that F=u + iü is analytic in D. Let

{Zt, 0^r<co} be Brownian motion in the plane starting from the point x + iy in D

and r a stopping time of this process such that ift < r, then Zt e D. Then, for 0 <p < oo,

(3.1) 1 sup  |i7(Zt) — fl(x + ij>)||   ^ Cp I sup  |m(Z„) — m(x+/»||| .
Host < i Up ¡to it < i Up

777e choice of cp depends only on p.

This implies (1.12).

Proof. In the proof we may assume that F(x + iy) = 0 and, by the monotone

convergence theorem and the topology of the plane, that there is an open set D0

containing x + iy whose closure is a compact subset of D such that Z( e D0 for

t<r. Otherwise, we could replace r by rn where t„ has the desired property and

t„ increases to t as n increases.

Let zt=Z%At, M* = sup0S!<oo |w(zt)|» and F* = supost<œ \F(zt)\. We show that

|| F* || p ̂ cp || u* || p, which implies Theorem 4.
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First, we note that if y. and v are stopping times of the process {z¡, 0 ^ t < 00} and

p. á v, then

(3.2) ||w(zv)-w(zu)||2 = \\u{zv)-u{z„)\\2.

To prove this, note that, since P2 is analytic in D, the process {F2(zt), 0 5| t < 00} is a

martingale (Doob [3, Theorem 4.3]). Since this martingale is uniformly bounded,

0 = F2(x + iy) = lim ÎF2(zu/it)dP =  ¡F2(zu)dP
t->co  J J

so that

||w(z„)||2 = ||w(z«)||2»

with a similar formula holding for v. Also, {w(zB), w(zv)} is a martingale and from

the orthogonality of its increments it follows that

fw(z>(zv) dP =  iu2(zß) dP.

A similar formula holds for ü and (3.2) now follows by a simple computation.

We now come to the crucial step in the proof,

(i) Let «^ 1 andß> 1. Then

(3.3) P(P* > A) á cP(cu* > A)

for all X > 0 satisfying

(3.4) P(F* > A) á «P(P* > ßX).

The choice of c depends only on a and ß.

The stopping times

tx = inf{t : |F(zt)| > A},

v = inf{t : |F(z()| > j3A}

satisfy p.^v; |F(z„)| =A on the set {p<co} = {F*> A}, and |F(zv)|=/3A on {F*>ßX}.

Accordingly, by (3.2) and (3.4),

J   f      [u(zv)-u{zu)f dP = ||«(zv)-w(zw)|||

= i||F(zv)-F(z„)||| ä i(j3A-A)2P(F* > ßX)

^ cX2P(F* > A).

Also,

f [t/(zv) -u(zj]* dP Ú ||F(zv) -P(zw)||I
J{F'>M

^ cA4P(F* > A).

Therefore, by a lemma of Paley and Zygmund [12, Chapter V, 8.26],

P(F* > A) ^ cP(c\u(zv)-u(zu)\ > A).

Since \u{zy) — u(zß)\ ik2u*, we obtain (3.3).
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(ii) We can now complete the proof of the theorem. Let a = 2p + 1, ß = 2, and

B = {X > 0 : P(F* > A) ̂  aP(F* > ßX)}.

The following fact is elementary :

\F*\l = ¡*pX*-lP(F* > X)dX ̂  a [ pk'-iPiF* > X)dX.
Jo Jb

(See Lemma 2.6 and the proof of Theorem 3.2 in [2].) Therefore, by (i),

\\F*\\PP ̂ a J pX"-1cP(cu* > X)dX ̂  c\\u*\\pp.

This completes the proof.

Remarks. The inequality (3.3) between the distribution functions of F* and u*

holds for enough X. It need not hold for all A: consider F(z) = /log (1 —z) on D

= {z : |z| < 1} and Brownian motion starting from 0. Since w = Re F is bounded,

i>(cw*>A) = 0 for all large A. But for any A, t and D0 may be chosen so that

i>(F*>A)>0.

Note that M. Riesz's inequalities for the conjugate function follow from Theorem

4. Let u be harmonic in D = {z : \z\ < 1} and ü its conjugate satisfying t?(0) = 0. Let

0<r< 1 and r = inf {/ : |Zt| =r} where {Zt, 0S/<co} is Brownian motion starting

from 0. Then, by Theorem 4,

- r \ü{re°)\pdd = ||ff(Z,)||? Ú cl sup   \u{Zt)f.
77 Jo |!os(<t Up

1      l"2n

2

If 1 <p<co, then, by Doob's maximal inequality for martingales,

II sup  \u(Zt)f Ú cp\\u{ZJ\\l

implying

/»2Jr /"2rc

\ü(reie)\* dB ^ cp        \u(reie)\" d8.
Jo Jo

4. Proof of Theorem 2. We make the following remark about the function <J>.

(i) 77?ere exists p > 0 and C > 0 such that X" ̂ C<D(A) for 0 g X g 1.

The  growth  condition   on  <p in (0.3) implies  <J>(2A)ácO(A);  therefore c~ná

O(2-n)/(I)(l)^C<I)(2-<'l + 1)),n = 0, 1,.... If/? = log2c, thenfor2-(" + 1,<Aá2-n, we

have

A" ^ c-n á C<D(2-(n + 1)) ^ CO(A).

In order to prove Theorem 2, we may assume that the right-hand side of (0.4) is

finite.

(ii) There exists a conjugate harmonic function ü such that lim^«, ü(x + iy) — Q

uniformly in x.
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The fact that the right-hand side of (0.4) is finite implies that u is bounded on every

line lmz=e>0. Therefore, if \u(x + ie)\ úBe, by (i) we have

/»OO /»OO

B~p \u{x + i¿)\p dx-¿ C \      <t>(u/Be)(x + ie)dx
J — 00 J — 00

Ú Cs P   ®(NM) dx,
J — 00

so that u is in Lp along every line lmz = e>0. Now we may apply the argument

given in the proof of Lemma 3 to obtain (ii).

(iii) For any initial point z0,

f(D (sup   \u(zt)-u(z0)\)dPZ0 ^ C i<D( sup   \u(zt)-u(z0)\)dPZo.
J \0<t<to } J \0<(<T0 /

This inequality is analogous to inequality (1.12) and is proved in the same way.

The proof of Theorem 2 may now be completed along the lines of Theorem 1,

using inequality (iii) instead of (1.12) and (ii) instead of Lemma 3. We omit further

details.

Remark. Theorem 2 immediately implies the inequality

/•OO /»OO

(4.1) sup        ®{\F{x + iy)\) dx ^ C        <¡>(Na(u))dx.
V>0 J- oo J- co

For other related remarks, see §5.

5. The unit disc. In this section, we state versions of Theorems 1, 2, and 3, for

the disc. The proofs are, in general, easier than for the half-plane.

For 0<<7< 1, 0^9£,2n, let ü.„(9) be the domain bounded by the two tangents

from the point ew to the circle \z\ =a and by the larger of the two arcs of that

circle between the points of contact. If/(z) is defined for \z\ < 1, its nontangential

maximal function relative to Q.a is defined as

Na{f){9)=   sup  |/(z)|.
2e£io(0)

Theorem 1'. Let u be harmonic in the unit disc \z\ < 1, w its harmonic conjugate

subject to the condition ¿?(0) = 0, and F=u + iü. Then, for allO<p<co,

/»2ji /»2ji /"2Jt

\Na(u)\pd9^    sup \F(rew)\pd9 ^ Qp        \Na(u)\p d9.
Jo 0<r<l Jo Jo

/»2 n

Theorem 2'. Let O be a function as in (0.3). Let u be harmonic in the unit disc and

ü a conjugate harmonic function with w(0) = 0. Then, for 0<ct< 1,

/»2ji /»2JI

O(AUö)) dB á C       ®{Na{u)) d9.
Jo Jo

The constant C depends only on a and the growth constant of<p.



1971]       MAXIMAL FUNCTION CHARACTERIZATION OF THE CLASS H" 151

In the unit disc, the Brownian maximal function off is defined as

/*=   sup   |/(z0|
0Si<ii

where zt is complex-valued Brownian motion started at the origin and tx is the

stopping time Ti = inf{i : |zt| = l}.

Theorem 3'. Let u be harmonic in the unit disc |z|<l. Then for 0<ct<1 and

A>0,

cam{Na{u) > A) S P(u* > A) ^ Cam(Na(u) > A).

The proofs of Theorems 1', 2', and 3' are, in principle, the same as for the half-

plane. A slight exception is the left-hand inequality of Theorem 3': the proof of the

corresponding inequality for the half-plane involves an argument that makes use

of the homogeneity properties of the Poisson kernel for the half-plane (see in-

equality (1.8)). In the disc, the same argument does not apply. However, we may

deduce the left-hand inequality for the disc by conformai mapping from the half-

plane. The key to this is an observation, due to Levy, that two-dimensional Brown-

ian paths are conformally invariant. The argument is as follows:

Let Pe be the Wiener measure for the process {zt, i^O} with z0 = 0, conditioned

to hit |z| = 1 for the first time at z = eie. If we follow the pattern of proof for the

half-plane, the first step is to show an inequality corresponding to (1.8):

Pe(zt does not hit aT) ^ Ca > 0,

where ar is the arc formed by the intersection of 0.^(8) with a circle of radius

(1 +r)/2, a<r<\, inside the unit circle and tangent to it at the point z= — ete. It is

sufficient to consider the point z= 1, and to show that

inf  P°(zt does not hit ar) ^ Ca > 0,
(7<r<l

where {ar, o- < r < 1} is the family of arcs corresponding to z = 1.

Consider the mapping F(w) = (l +iw)(l —iw)'1 of the upper half-plane onto the

disc; the point w = i is sent to the origin and w = 0 is sent to z= 1. A line Im z = r',

0</*'<</, is sent onto a circle of radius (l+r)/2, a<r<\, tangent to the circle

|z| = 1 at the point z= — 1. Since Fis conformai, we may choose a large enough so

that F[ra(0)] contains the union of the family of arcs {ar, a<r< 1}. Let {wt, /SO}

be Brownian motion in the upper half-plane. It follows by the argument leading to

inequality (1.8) that

(5.1) inf   F,°(wt does not hit lr) ^ C„ > 0
0<r'<o-'

where lr is the segment formed by the line Im z = r' across the cone r„(0). Since, by

choice of a, T{lr), 0<r'<a', contains the arc ar, <x<r<\, inequality (5.1) implies

inf P?(T(wt) does not hit ar) ä     inf   P?(wt does not hit lr)
/c *y\ CT<r<l 0<r'<a'

= ca > 0.
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Now we use Levy's observation that the process {T(wt), t^O} has the same dis-

tribution as {z(, iS:0} run with a new clock. That is, {T(wt), t^O} has the same

distribution as {zt((J, iäO} where {r(t), t^O} is some nonnegative increasing

process. (See McKean [9, §4.6].) Therefore,

inf P°(T(wt) does not hit ar) =   inf P°(zm does not hit ar)
a <r< 1 cj<r<l

=   inf P°(zt does not hit ar)
a <r< 1

since the event in question is clearly invariant under such time changes. From this

and (5.2) we obtain

inf P°(zt does not hit ar) ^ Ca > 0
a<r<l

as desired.

Now we may complete the proof of the left-hand inequality of Theorem 3' along

the lines indicated for the half-plane. More specifically, we show that enough

Brownian paths, from the origin, together with their reflections, contain closed

curves around points where |m|>A. This fact used with the maximum principle

allows us to complete the proof by a computation similar to the one given for the

half-plane. We omit the details.

Remarks, (a) Theorem 2' does not hold for the unit disc if the radial maximal

function

N0(u)(9) =   sup   \u{rew)\
0<r<l

is used in place of the nontangential maximal function. By Corollary 3 of Bagemihl

and Seidel [1], there is a function F—u + iü, analytic in the unit disc, such that

w(0) = 0 and, for almost all 9, lim^! u(reie) = 0, but lim,-,». ü(reie) = co. In this case,

N0(u) is finite almost everywhere and by an elementary construction we may obtain

a function $ satisfying the growth condition of Theorem 2, with <J>(oo) = oo, so that

I
2ji

<¡>(Nom d9 = co,

but

[»2jir ®(No(u)) d9 ^ C < co.

(b) In contrast to inequality (4.1) and part (a) of Theorem 1, it is not possible

to prove an inequality of the form

/»2ji /»2ji

4)(JVa(«))i/^C   sup ®(\F(reid)\) d9
Jo 0<r<l Jo

for function O satisfying the growth conditions of Theorem 2. This follows from a

theorem of Paley and Zygmund [11, Theorem 2]. They show that, given any

function x(t) that is nonnegative, measurable, bounded on every finite interval of
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0 Ss / < co, and satisfies the condition x(r) = o(t) as t increases, there exists a function

F(z), analytic in \z\ < 1, such that

/•2JI

sup x(log + \F(reie)\) dd ^ C < oo,
0<r<l Jo

but the radical limit of F exists only on a set of measure zero.
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