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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
HYPERBOLIC INEQUALITIESC)
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AMY C. MURRAY

Abstract. This paper discusses the asymptotic behavior of C2 solutions

u = u(t, Xi,..., xv) of the inequality (1) \Lu\ ¿ki(t, x)\u\ +k2(t, x)||V«|j, in domains

in (/, ;t)-space which grow unbounded in x as /—* co. The operator L is a second

order hyperbolic operator with variable coefficients. The main results establish the

maximum rate of decay of nonzero solutions of (1). This rate depends on the asymp-

totic behavior of ku k2, and the time derivatives of the coefficients of L.

1. Introduction.    Let L be defined on C2 functions u = u(t, xu ..., xv) by

Lu = Au—82u/8t2

where

A-    V      8 d

is a symmetric uniformly elliptic operator. Thus we assume that the aiy = a,/r, x)

are C1 functions on 3t={(t, x) e Rx Rv : /^0} with aw = ayi for 1 ̂ i,j-=v. We also

make the assumption

(A0) There are positive constants m, M such that

m2 Ú  2 «.,('. x)e& é M2

whenever r^O and 2iy=i f? = l-

For e ̂  Oand .R ä 0 let #(e,œ, A) denote the set{(i,x)eÄxÄv : e^t;\x\^Mt + R},

and let 5(7', R) denote {(7", x) : \x\ ^MT+R}. Suppose m is a solution of

(1.1) \Lu\ S kx(t, x)|w|+A:2(r, x)\Vu\

in some D(e, co, R). The decay rate of u is measured in terms of the energy integral

¿(u,T,R)=  f        {u2+\\Wu\\2}dx.
Jscr.B)
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As a special case of our main theorem we get the following results :

(I) Suppose that ¡(a^-Oit'1)', k1(t,x) = 0(t~2); and k2(t, x) = 0(t~1). Then

a nonzero solution of (1.1) in D(e, co, R) cannot decay so fast that, for every posi-

tive a, limr^«, T"S(u, T, R) = 0.

(II) Suppose that |(oü)í| = 0(1); kx(t, x) = 0(l); k2(t, x) = 0(l). Then a nonzero

solution of (1.1) in D(e,co,R) cannot decay so fast that, for all a>0,

\imT^a,eaT£(u,T,R) = 0.

(III) Suppose there is a y>\ such that |(oy)i| = 0(/(>'-1)); kx(t, x) = 0(t2(v~1));

and k2(t, x) = 0(t(y~1)). Then a nonzero solution of (1.1) in £>(e, oo, R) cannot

decay so fast that, for all a>0, lim^*, eaTyS(u, T, R) = 0.

The methods and immediate motivation for this work are derived from Protter's

treatment [5], [6] of the asymptotic behavior of solutions of hyperbolic inequalities

in interior domains. The crux of the method lies in finding appropriate families of

weighted P2 estimates for a C2 function v and its gradient in terms of Lv. The

estimates of this paper differ from those in [5], [6] by requiring either no boundary

conditions or weaker boundary conditions. The changes in the derivation of the

crucial estimates are suggested by techniques of Hörmander [1] for determining

the sign of certain quadratic forms.

My decay rate results are comparable to those of Protter [5], [6] and Ogawa [4]

for interior domains. Related problems about decay rates of solutions of hyper-

bolic equations have been studied by Morawetz [3], Strauss [7], and Littman [2]

using different methods usually involving transform techniques. In particular, the

partial differential inequality (1.1) arises from the uniqueness problem for the

nonlinear equation

Lu = F(t, x, u, V«)

provided F satisfies a Lipschitz condition of the form

\F(t, x, a, a)-F(t, x, b, b)\ ^ kx(t, x)\a-b\ +k2(t, x)||«-*||.

Let v be a positive integer. We use the coordinates (/, xlt..., xv) inÄxRv. The

first coordinate / is the time coordinate; the rest make up the space variable

x = (xu ..., xv). Let r = (x2-\-\-x2)112.

In general we use subscripts to denote derivatives; thus

ut = du/dt;       uXi = du/dxt    for / = 1,..., v.

The gradient Vu denotes the (v+l)-tuple (ut, uXl,..., uXv). However we take the

Laplacian with respect to space coordinates only; Aw = 2iv=i ux¡x¡.

By a domain we mean the closure of an open set which has piecewise smooth

boundary. Derivatives at boundary points of a domain are to be understood as the

appropriate one-sided derivatives.

These results are excerpted from my Ph.D. thesis, University of California,

Berkeley, 1970. I wish to thank my advisor, Professor M. H. Protter, for his

assistance and encouragement.
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2. Basic lemmas. We start with the formula for the integral of the expression

2LvXvt over a bounded domain 7J)çInt (J*í?) where A 6 C\D) and v e C2(D). Let

« = («o, «i,..., «y) be the outer unit normal along dD. Then integration by parts

yields the formula [1], [7]

J   2LvXvt = J   JAtiu2+ 2 oljvxvx\-2vt 2 -vVw

f     v

(2.1) +    A 2 (Oij)tVxvXl

-       A-jn0(i>2 + Y aijvxvx\-2vt  > Oy«^ I-
J«B      I      \ « = 1 / i; = l J

To exploit this formula we consider the region ^f asa Lorentz manifold with the

Lorentzian metric
V

(2.2) ((/>, c)) = Vo- 2 ««('• *)è-c'-

For vector fields b and c on ^f we define a quadratic form Pb¡c at each point of J*t?

by

(2.3) P„.c(f) = 2((b, f)X(c, 0)-((¿, c))((f, ö).

Throughout we use « to denote the unit vector « = (1, 0,..., 0) e Rv + 1. Computing

explicitly we find that

Ph.ÁO = c0ÏÇ2+ 2 aii^i\-2è0 2 Otfi^i.

Thus (2.1) can be rewritten more concisely as

(2.4) f 2LvXvt =  í (Pn.vÁ^v) + X 2 (flrfk»,»„]~ í   APft>n(Vt;).

We now describe conditions on 7J) and A under which the integrands on the

right-hand side of (2.4) have definite sign.

We first consider the boundary integrand, XPhn(Vv). Following Hörmander [1]

we classify tangent vectors in terms of the Lorentz metric (2.2). Thus we say

b = (b0, bi,..., bv) is timelike at (/, x) if ((b, b))>0; spacelike if ((b, b))<0; and

characteristic if ((b, b)) = 0. Furthermore, we call b positive if b0>0, and negative

ifb0 < 0. Hörmander has proved that if b and c are any two positive timelike vectors

with respect to a Lorentz metric (( , )), then the form PbyC defined by (2.3) is

positive definite. Since any positive characteristic vector is a limit of positive time-

like vectors, it follows that P„,n(f) = 0 for all | provided that « is positive non-

spacelike.

We call a domain D convenient if the outer unit normal « along dD is never

spacelike, i.e. if ((«, «))^0 along dD. The boundary of a convenient domain D can
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be decomposed into two parts: the part S + (D) on which n is positive, and the part

S~(D) on which n is negative. Since Pht% is linear in n, we have Ph¡n(Vv) nonnegative

along S + (D) and nonpositive along S~(D). For a positive function A we therefore

have determined the sign of the integrand ÁPhwtl(Vv).

Next we turn to the integrand

J = J/\.va(vïO + A 2 (<hi)tt>xVx\

in (2.4) and confine our attention to functions A of the form

A = A(«) = eam

where / is a smooth function of positive t and a is a positive parameter. Three

specific functions/to which our results apply are

(i)/(0=ln(0,

(iii) f(t) = tv, for a constant y> 1.

Let J5" denote the set containing these specific functions. Rather than compute

separately for each/e S', we do a single computation appealing to several technical

properties (P,) which are easily verified for each felF. The first of these properties

is

(Pi) /eCW;       ft>0;       limf(t) = œ.
(-.03

If/satisfies (Px) then each A(a) = ea/<i> is a C1 function such that

A(«) > 0;       At(a) = ccfieaf;       VA = \h.

Then

/*».vx(Vo) = VV(Vi>) = oftX(a)PKh(\v)

and

^ = \(a)\aftPhth(Wv)+ J   («%)#*,»
k ¡y=i

In order to be sure that J isa positive definite form in Vv we make the following

assumption about the growth of the time derivatives (%)f :

(Aj) For each e>0 there is a B(e)>0 such that |(fly)j| ^B(e)ft at all points (r, x)

where i^e.

Lemma 2.1. Suppose L satisfies (At) with respect to an f satisfying (Px). If

\am2 ^ vB(e) and v e C2(Jlf), then at all (t, x) with t}te we have

(2.5) |«/yA.k(Vt»)+ f (a^fi^vA ^ WtPnAVv) ä 0.

Proof. From (2.3) and (A0) it follows that

V V

-Pft,h(Vi>) s vf + > ci^^y^ ^ w2 2 «£,•
» = i i = i
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Because of (Pj) we get for all positive a

«stfWv») ^ WtPu,¿yv)+Wtm2 2v*

On the other hand, whenever / 2: e we have

V V

2   (Oif)tVxVx¡    è    2   K%)*l  \V*i\  \V*

V2
VXf

1 = 1

ii = l

So

¿Wi   Kl)    =S vP(e)/2 <•
\i = i / i = i

<xftPn.ÁVv)+ 2 <A¿feftl ^ WtPH.K(Vv) + iam2ft 2 V2x-vB(e)ft j.   »2,.
0=1 J i=l (=1

Thus if ^affî2 ̂  cP(e), the inequality (2.5) follows.

Using this result we derive two important integral inequalities.

Lemma 2.2. Suppose (Ax) holds for some f satisfying (P^. Let D be a bounded

convenient domain in which /^e>0. 7/ue C2(D) and\am2^vB(e), then

(2.6) f 2Lveamvt fc —f       eamPh,n(Vv)
JD Js + (.D)

and

(2.7) \a f /^»opft>ft(Vi;) ^ 2 f e<"<»|LH+ f       er™PKn(Vv).
JD JD Js + {D)

Proof. For each function X(a) = eant\ a>0, we can apply (2.4) to obtain

(2.8) jD 2LvX(a)vt = jD e'^aftPUVv) +(2 faM»j>*\' £ e"^Ph,h(^).

Since D is convenient, we have Ph¡n(Vv)^0 on 5"(D), and thus

- f   e°<Ph,¿yv) = - f       ea'/\nO).
JdD JS + Í.D)

If ^a«?2 ä vB(e), then by the preceding lemma

^e"'LftPKh(Vv)+%(aii)tvxvx\ ^ ia jDfte°fPKh(Vv) a: 0.

Thus, for large enough a we have

f 2L»A(«)»t è i« f /tA(a)Ph,h(Vt;)- f       A(«)Pft,n(Vi;).

The inequalities (2.6) and (2.7) now follow directly since ftX(a)Phih(Vv) is non-

negative.
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Corollary 2.3. Let w' = min {1, m2}. Then for a sufficiently large

(2.9) W f /A(a)||Vt,||2 á 2 f A(«)|Lw,t|+ f       A(«)PÄ,B(Vt»).
Jd Jd Js*od)

Proof. This follows from (2.7) since we have

Ph.u^v) = (vf+ J «W^Ü ̂  t»2 + ̂ 2 2 < ^ w'(^+ 2 <V
\ l/«l / i = l \ i = l        /

3. Basic a priori estimates. Suppose y is a C2 function. In this section we derive

the crucial family of weighted L2 estimates for v and Vv in terms of Lv.

Let/satisfy (Px). We assume that L satisfies (A!) relative to this/ In the course

of the derivation we will impose additional technical conditions (P¡) on/ conditions

which are verified for allfe^.

First we apply a variant of Protter's method [5], [6] to estimate »ona bounded

convenient domain D in which r^e>0. We employ the parametrized family of

weight functions A = A(«) = e"ni), a > 0.

For an a>0, let z denote the auxiliary function z = \(a)v. Since v = e~afz, com-

putation shows that

(3.1) A(a)Lt; = Lz + 2aftZt + a(ftt-aft2)z.

Applying the elementary inequality (A + B+C)2~^2(A + C)B, we find

(3.2) A(2a)(Lt;)2 S: 2{Lz + «(/„ - a/2)z}{2a/zt}.

Expanding the right-hand side of (3.2) we obtain

(3.3) A(2cO(Lt;)2 ̂ 2«{2Iz/zt} + 2a2/(/tt - a/2) 8 (z2)/8t.

Integrating (3.3) over D does not yield a useful estimate. Instead we must first

multiply (3.3) through by the positive quantity ff 1X(ß) where ß is chosen large

enough that \ßm2 2: vB(¿). This yields

(3.4) j ff iA(j3 + 2a)(Lv)2 2: 2« £ LzA(/3)zt + 2a2 j" X(ß)(ftt - *ft2) | (z2).

Now ß was chosen so that Lemma 2.2 applies. Thus

(3.5) f LzX(ß)zt * - f       A(/3)/Vn(Vz).
Jd Js + <d)

Integration by parts yields

£ A(w((-a/(2) I (^2) = £ I {^u-«^»-jt ¿21 {^(/tt—/t2)}

(3.6) = f   «ozV^'X/i-«/2)

+ £ zV'ijS/M2 -/J + (2«//t -/«)}•
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We add two more technical properties of/to improve (3.5):

(P2) For all t>0, a>0, (ftt - af2) 2: -(« +1)/2. For each e>0, there is an

ct,(e) >0 such that (ftt — of2) is negative whenever 12: e and a2: aj(e).

(P3) For each e > 0 and ß 3: 3, there is an a2(e, ß) such that

aßfn(2a-ß)ftftt-fttt ^ af3

whenever / 2: e and a 2: a2(e, ß).

The property (P2) simplifies the boundary integral in (3.6). We have assumed

that r2:e>0 in D and we know that n0>0 on S+(D). Thus by (P2) if a>ax(e) we

have

nQz2eB'(ftt-aft2) 2. 0    onS-(Z)),

«ozVW, - a/2) è -(«+ l)«oZ2ew/2    on S HD),

and therefore

f   n0z2e"(ftt-af2) 2: -(«+1) f       «0zV/(2.
JêD Js + (D)

The property (P3) has the consequence that

f z2A(/3){ai3/3 + (2a-iS)//(í-/í(} 2: a f z2A(j9)/3 = a f f?W + 2*)*
Jd Jd Jd

provided that /32;3 and a^a2(e,ß). Now if /S is chosen so that both /32:3 and

^ßm2^vB(e), then with the help of (P2) and (P3) we strengthen (3.6) to obtain the

inequality

(3.7)     f  X(ß)(ftt-aft2) % 2:  -(a+\) f        «0z2A(£)/2 + « f /3A(^ + 2a)
Jd °* Js + (D) Jd

V2

for all a 2: max {«.(e), a2(e, ß)}. Combining (3.5) and (3.7) with (3.4) we obtain the

estimate

(3.8)

2a3 f ft3X(ß + 2a)v2 í   f /-1A(j8 + 2a)(Lt»)2
Jd Jd

+ 2a f A(^)P,,n(Vz) + 2a2(a + 1) f «0X(ß)f2
JS+I.D) JS + (D)

which is valid for all sufficiently large a.

With this indication of the purpose of (P2) and (P3) we can summarize the

derivation of (3.8) in the following lemma:

Lemma 3.1. Suppose f satisfies (Pt)for i=\, 2, 3 and L satisfies (A.) relative tof.

Let D be a bounded convenient domain in which 12; e > 0. Let ß be a constant such that

j82:3 and \m2ß^vB(e). If ve C2(D) then for all sufficiently large a

(3.9) 2«3 [ ft3éB + 2a)lv2 á  f ff1eß + 2a}'(Lv)2+E1
Jd Jd
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where, letting z = eafv, Ex denotes the quantity

= 2a f        e^P,>n(Vz) + 2«2(a+l) f        «o/V
JS*t.D) JS + ID)

Proof. Since we have defined X(a) = ea! for all a>0, the inequality (3.9) is

essentially a restatement of (3.8).

The next task is to derive a companion estimate for ¡V»J in terms of Lv, one

with the same weight function multiplying (Lv)2 as in (3.9). This is done using

(2.8) from Corollary 2.3. Recall that «î' = min {1, »î2}.

Lemma 3.2. Suppose f satisfies (P¡)for i= 1, 2, 3 andL satisfies (Ax) relative tofi

Let D be a bounded convenient domain in which / ^ e > 0. Let ß be a constant such

that m'ß>2 and %m2ß^vB(e). If ve C2(D), then for all a>0

(3.10) m'a f fteiß + 2a»\\Vv\\2 ^  f ff1eiß+2a»(Lv)2 + E2
JD JD

where E2 denotes the quantity J.S*(D) e(ß + 2a'>rPhtn(Vv).

Proof. If |8«j2 ^ vB(¿), then by Corollary 2.3 we have the inequality

(2.8) i8m' f /^||Vt;||2 Í 2 f e»\lAWt\+[        e°rPh,n(Vv).
JD JD JS + (D)

Since / > 0 everywhere we have

2\Lvvt\ ^ff\Lv)2+ftv2 ift-\Lv)2+ft\\Vv\\2.

Thus for sufficiently large 8 we get

(3.11) (-iSm'-l) f fteif\\Vv\\2 S  f ffie°'(Lv)2+ f       ^Pfti»(Vp).
JD JD JS*W)

If we set 8 = 2« + ^, then (2.8) and (3.11) hold for all a>0. Furthermore ^Sw' — 1

= am'+ißm'—l ^am', so (3.10) follows.

The boundary integral terms E1 and E2 are easily computed for the particular

bounded convenient domains we employ. For any nonnegative e and R we define

the unbounded domain

D(e, oo, R) = {(t,x)eRxRv : e ^ / < oo;r ^ Mt + R}.

If L is the wave operator, L=A — d2/dt2, then m = M= 1 in (A0) and 7J>(0, co, R) is

the "domain of influence" of the sphere of radius R at time / = 0. In general the

lateral boundary, r = Mt + R, will not be a characteristic hypersurface for L. The

outer normal along r = Mt + R is given by

n = (l+M2)1/2(-M, xjr,..., xv/r)

and thus

((«, «)) = (! + M2){(- M)2 - (2 % y yj-
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Because of (A0)

((«,«)) ^ (\+M2){M2-M2} = 0

and therefore the lateral boundary of D(e, co, R) is never spacelike. The domains

D(0, oo, R) are the smallest convenient conical regions containing the " domain

of influence" of the initial sphere of radius R.

The bounded convenient domains for which we specialize the estimates (3.10)

and (3.11) are the "cork-shaped" domains

D(e, T, R) = {(/, x) : e ^ t ^ T;r ^ Mt + R}

where 0 < e < T and 0 < R. The boundary dD(e, T, R) has three smooth parts :

SM = {(/, x) e dD(e, T,R):r = Mt + R},

S(T, R) = {(/, x) e dD(e, T,R):t = T},

S(e, R) = {(/, x) e dD(e, T, R) : t = e}.

On the lateral boundary Sla,t we have seen that the outer unit normal « is negative

nontimelike. OnS(e, R)clearly n = (- 1, 0,..., 0). And on S(T, P),« = (l, 0,..., 0).

Thus these D(e, T, R) are indeed convenient domains, and

S+(D(e,T,R)) = S(T,R)

S-(D(e,T,R)) = S1&tuS(e,R).

Suppose D is one of the D(e, T, R). The terms E1 and £2 of the Lemmas 3.1 and

3.2 can be estimated in terms of the energy integral

*(v,T,R)=  f        {*;2+||Vt>||2}i/x.
Jscr.R)

Since / is constant on S(T, R) we have

Ei = 2aei'OT f       Phth(Vz) + 2a2(a+l)ft2(T)emn f        z2
JSiT.R) JSiT.R)

and

E2 = e«+sou/m f       PK/l(Vv).
JS(T,B)

Let A/' = max {1, M2}. So for any C1 function w, it follows that

Pfc.n(Vw) = w?+ 2 a.^,w^ k wf + M2 2 »Î, ^ M'||Vw||2.
w=i ¡=i

Since z = eafv, we find that

||Vz||2 = (ea/t;)2+2 (eafv)2Xi

¡ = i

^^{(a/^ + ^+i^}

^ 2e2af{a2ft2v2 + \\Vv\\2}.
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Thus

E1 ^ 2a2{2M'a + a+\}ft2(T)eas + 2amr> [        v2
JS(T,B)

+ 4ctM'e(e + 2aMT) f        ||Vt;|
Js<r,R)

and

E2 ^ M'e(6 + 2a'"iT) \ ||Vt»||2.
JsiT.R)

At this point we introduce the following additional restriction on/:

(P4) There is a constant juä 1 such that f2(T) ^ p.enT} whenever T> 1.

This property is easily verified for /e#"; indeed for/(r) = ln (?) or f(t) = t we

can take /u=l, and if/(r) = r'' with y> 1 then /x = 2y2 will suffice.

If we now assume that/satisfies (P¡) for /= 1, 2, 3, 4, then for sufficiently large T

fi2(T) ¿, p,efm,       1 < efm ^ pefm,

and thus

(3.12)

E1 + E2<> 2a2{2aM' + a+l}fiea + B + 2amT)  f V2
Js(T,R)

+ (4a+l)M'p.ea + B + 2a)fm f ||Vî;||2.
Jscr.R)

Letting

(3.13) p(a) = 2a2{2aM' + a+l}/* + (4a+l)M>

we get the bound

(3.14) Ex+E2^ p(a)ea + » + 2a»m£(v, T, R)

for sufficiently large a and T.

The next result gives the crucial family of a priori inequalities from which our

decay results follow.

Theorem 3.3. Suppose that f satisfies (P¡) for i= 1, 2, 3, 4 and that L satisfies

(Ai) relative to f Let e and R be positive constants. For each T> e let DT denote

D(e, T, R) and let ST denote S(T, R). Choose ß so that 02:3, m2ß>2vB(e), and

m'ß>2. If ve C2(D(e, co, R)) and if a and T are sufficiently large, then

(3.15) 2a3 f   ft3e^ + 2a)rv2 + m'a f   /íe«s + 2a)'||V¡;||2 ̂ 2 f   ff^^^(Lvf + E^
JD-r J Dt J Dt

where, using the p(a) defined in (3.13),

E3 = p(a)ea + ß + 2tt)nT^(v, T, R).

Proof. Each DT is a bounded convenient domain in which r2:e>0. The con-

stant ß is chosen to meet the conditions of Lemmas 3.1 and 3.2. Thus there is a
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constant o, depending on e and ß and R only, such that (3.9) and (3.10) hold when

a^a and P>e. Adding (3.9) and (3.10) we get

2a3 f   f3ëi> + 2a)fv2 + m'a f   ftéB + 2a»\\Vv\\2 Ú 2 f   /-1e(i + 2<l)/(P/;)2 + P1 + P2.
J Dt Jd? jdt

But with the help of (PjJ and (P2) we have seen that (3.14) holds for sufficiently

large a and T. The inequality (3.15) now follows.

4. Decay rate results. Let/be a function with the properties (P¡) for /= 1,2,3,4.

In this section we study the inequality

(1.1) \Lu\ ^k-St,x)\u\+két,x)\Vu\

under the following assumptions about the coefficients:

(A0) There are positive constants m, M such that

m2 ^ 2 "<><>> *)tâ * M2
ii = l

whenever /ä0 and 2iy=i l2 = l-

(Aj) For each e>0 there is a P(e)>0 such that |(oy)t| ^ P(e)/ whenever t^e.

(A2) In each D(e, oo, R) with e>0 and P>0,

k¿t, x) = 0(ft2)   and   k2(t, x) = 0(ft).

Notice that (A2) does not control the asymptotic behavior of k1 and k2 uniformly

in x, but only on each truncated cone 7J(e, oo, R). Actually (Aj) could also be

given as |(ow)(| = 0(f) in each D(e, oo, R) at the cost of more complicated technical

requirements in the preceding sections.

The rate of decay of a solution u of (1.1) in some D(e, oo, R) is described in

terms of the energy integral

ê(u,T,R)=  f        {M2+||VM||2}.
JS(T,B)

Let g(t) be a continuous function with lim,..«, g-(/) = 0. We say that u decays

faster than g(t) in D(e, oo, R) if

We say u does not decay as fast as g(t) if the ratio of S (u, T, R) to g(T) grows

unbounded as T^co.

Theorem 4.1. Let u be a C2 solution of

(1.1) \Lu\ â kx(t, x)\u\+k2(t, x)\\Vu\\

in some D(e, oo, R). There is a positive constant p such that if u decays faster than

e-pfm ¡n £)^e^ qq^ ̂  men u must vamsn identically in D(e, oo, R).
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Proof. For each 7">e let DT denote D(e, T, R). To show m = 0 in D(e, co, R) it

suffices to show that u vanishes in all DT.

Since u is C2 on D(e, co, R) we may apply Theorem 3.3. Thus there is a ß depend-

ing on e such that for all sufficiently large a and T

(3.15)   2«3 f   ft3eie + 2a)fu2 + am' f   fte(ß + 2a»\\Vu\\2 ̂ 2 f   ft-1e^ + 2^'(Lu)2 + E3
Jdt Jdt Jdt

where E3=p(a)ea + 2a + infm<?(u, T, R).

Because u is a solution of (1.1) we have

(Lu)2 ^ {k^ul+k^WuW}2 S 2{k21u2 + k22\\Vu\\2}.

By the assumption (A2) we have constants AT. and K2 such that

k,(t, x) Ú KJt2(t);       k2(t, x) ^ K2ft(t)

at all point of D(e, co, R). Hence,

(Lu)2 ¿ 2K!ftiu2 + 2Klft2\\Vu\\2.

Combining this with (3.15) we obtain the inequality

2«3 f   ft3e(S + 2a"u2 + am' f   fteiB + aaV\\Vu\\a
Jdt Jdt

(4.1) £2¡   fr1e«i + ™f{2K?ftiu2 + 2Kïft2\\Vu\\2} + E3
JDt

S 4K? i   f?e{lí + 2a)fu2 + 4K¡ f   fteiß + 2a)i\\Vu\\2 + E3.
Jdt Jdt

Hence we have

(4.2) (2a3-4K2) f   /V + 2a)'«2 g (4/¡:|_aOT') f   fte(ß + 2a)i\\Vu\\2 + E3.
Jdt Jdt

The inequality (4.2) is true for all sufficiently large a and T. We now pick an a

large enough that (4.2) holds and also so large that

(2<*3-4á:í) 2: 1;        (4Ki-am') ^ 0.

For this a and all sufficiently large T we now have

(4.3) Oáf   ft3e(ß + 2a)fu2 ¿ E3 = p(a)ea + B + 2amT^(u, T, R).
Jdt

The integral over DT in (4.3) is a nonnegative increasing function of T. Set

p=l+ß + 2a. So, if

lim ePímS(u, T,R) = 0

then it follows from (4.3) that

IDt

and therefore that w = 0 in all DT.

f   f3ée + 2a)u2 = 0j    for an r> e>
Jdt
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This theorem gives a bound on the rate of decay of a nonzero solution u in

D(e, oo, R): its energy i(u, T, R) cannot decay faster than e~0,m.

Corollary 4.2. Suppose u satisfies (1.1) in 3^={(t,x) : i^O}. 7/ for every

e > 0 and R>0,u decays faster than all e ~ pfm, p>0, in D(e, co, R), then u = 0 in Jf.

Proof. For each positive e and R the theorem applies to show that u vanishes in

D(e, co, R). Thus u(t, x) = 0 wherever />0. By continuity w = 0 in Jf.

Each of the functions/ e & satisfy all the properties (P(), 1 ¿¡ i ¿¡4. The interpreta-

tions of Theorem 4.1 for/(/) = In (/),/(/) = /, and/(/) = /T withy>l respectively

yield the results (I), (II), and (III) given in the introduction.

Corollary 4.2 is the best result possible if we add one more condition on /

namely

(P5) For all a>v, lim^«, Tve-"fm = 0.

This property is easily verified for the functions in &.

Suppose now that/satisfies (P5) as well as (P,), /'= 1,..., 4. For a fixed a> v set

w(t, x) = e~"m. Then by a straightforward computation

Lw = a(ftt-aft2)w.

Set k¡{t, x) = a(a+\)f2 and k2(t, x) = 0. These kt satisfy (A2). Because of (P2) we

have

\Lw\ = a\ftt-af2\ \w\ í ki(t,x)\w\+k2(t,x)\\Vw\\.

So this w is a nonzero solution of an inequality of the form (1.1). Computation

shows that

S(w, T,R)=  f        e-2a/(l +a2/2) dx.
Jsçr.m

Let Cv be the measure of the unit ball in Rv. Using (P4) we find

ê(w, T, R) <> p.(\ +a2)ea-2amT)Cv(MT+R.y.

By using (P5) we see that

lim (l+«2)Cve-a/OT(MP+P)v = 0
T-* oo

for any P>0 and thus that w decays faster than e~ia~1)nT) in each D(e, co, R). Thus

for any particular a we can find a nonzero solution of (1.1) which decays faster than

e-(a-D/(D s0 no rate 0f decay slower than that of Corollary 4.2 is sufficient to

insure that a solution vanishes.

5. Decay rates outside a characteristic conoid. The maximal decay rate estab-

lished in §4 holds for solutions in other domains provided appropriate boundary

conditions are added. As examples we consider in this section solutions outside a

characteristic conoid, and in the next section solutions outside a reflecting obstacle.

Throughout this section we assume that / satisfies (Pt) for l^/^5 and that L

satisfies (Aj) relative to /
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The inequality (1.1) can be considered as describing the time course of a dis-

turbance u in x-space. The form

V

dp2 = 2 aiÂ{> x) dXi dXj
w = i

is a time varying metric in x-space. The characteristic conoid <& at the origin is the

set of points (t, x) such that t is the p-distance between x and 0 at time t. It can be

verified that ^ is a characteristic hypersurface in R x Rv. In the special case that L

is the wave operator and v = 3, the conoid ^ is just the forward light cone. Saying

that (t, x) lies outside ^ means that the p-distance between x and 0 at time t is not

less than t.

Notice that (A0) assures us that tf lies in the region {(t, x) : r^Mt}. Thus for

e > 0 and R > 0 it follows that the sets

P(e, co, R) = {(/, x) e D(e, co, R) : (t, x) lies outside ^}

are unbounded domains. All the bounded domains

P(e, T, R) s {(t, x) eP(e, co, R) : t ^ T}

are convenient since the boundary 8P(e, T, R) is composed of smooth parts along

the characteristic hypersurface c€, and along the nontimelike hypersurfaces t = T,

t = e, and r = Mt + R.

The first step in adapting Theorem 4.1 to the case of solutions outside ft is to

adapt Theorem 3.3.

Theorem 5.1. For fixed positive e and R let PT denote P(e, T, R) for each T>e.

Let ST denote {(t,x)e8PT : t = T}. Suppose v is a C2 function outside ^ which

vanishes along c€. There is a ß such that for all sufficiently large a and T

(5.1)    2«3 f  f3eu, + 2a)fv2 + am' \  /e(í + 2a)/||Vy||2 á  f   f-1éll + 2a)'(Lv)2 + Ei
JpT JPt JpT

where, for the polynomial p o/(3.13), Eé denotes the quantity

Ei = p(a)ea + »+ 2a)ím Í   {v2 + || Wv ]|2} dx.
J St

Proof. Choose ß so large that the Lemmas 3.1 and 3.2 hold for all PT with T> e.

This choice of ß is independent of v. Then under the hypotheses of Lemma 3.1 we

get the estimates

(3.9) 2«3 Í   /3e« + 2«>V ̂   f  ff^^^^Lvf + E^T)
Jpt JpT

where, in terms of z = eBfv, E^CT) denotes the quantity

E,(T) = 2 Í e"PKn(Vz) + 2a2(a+l) f        n0ft2eB>z2.
Js + (PT) Js + (f>r)
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The S + part of dPT is composed of ST and the portion of dPT along (€. Since v

vanishes along <€ so does z. Thus we know that Vz is a scalar multiple, In, of the

outer unit normal along ^ n dPT. Since "if is characteristic we have ((«, «)) = 0 on

if. Thus along <<f

Pft.n(Vz)  =  £2Pft» =  t2{2((h, «))((«,«))-((«, «))((«,«))} = 0.

So both integrands in P^P) vanish off ST, and Pi(P) takes the form

E¿T) = 2a f   ewpft,n(Vz) + 2a2(a+l) f   «0/V'z2.

Similarly, under the hypotheses for Lemma 3.2 we find that

' f   fteie + 2a^\\Vv\\2 ̂  f  /rVi + 2^(Lü)2 + P2(P)am
Jpt JPt

where

P2(P) =  f   c»+a^PÄ>8(Vi;).
»J Sj"

Now since / = P along Sr, we can repeat the argument of §3 to obtain the estimate

E¿T) + E2(T) <, p(a)ea + e + 2a^m f   {y2+||Vy||2}
JSt

where p(a) is defined by (3.13).

With (5.1) established, we can mimic the proof of Theorem 4.1 exactly for

solutions of (1.1) outside ^ which vanish on (€.

Theorem 5.2. Suppose kx and k2 satisfy the conditions

(A2) kx(t, x) = 0(ft2);       k2(t, x) = 0(f),

in some P(e, oo, R) with e>0, P>0. Let u be a C2 solution of

(1.1) \Lu\ <. kx(t, x)\u\ +k2(t, x)\\ Vm||

in P(e, oo, R) which vanishes along c€. Then there is a positive p such that if

lim epfm f   {k2+|Vw||2} = 0,
r->eo JsTT-.CO JsT

then u vanishes identically in P(e, co, R).

Proof. For a fixed large ß and all large enough a and T we have the estimate

(5.1). Because of (1.1) and (A2) we find that

(Lu)2 Ú 2Klftiu2 + 2Kift2\\Vu\\2

in P(e, co, R). Combining this with (5.1) we obtain

(5.2)   (2a3-47í2) f   /3e« + 2")V S (4K2-am') f   ftëff + 2a)r\\Wu\\2 + E3(T)
JPt JPt
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for all large enough a and T. Now fix a value of a so large that (5.2) holds and that

(2a3-4A:2)2:l and (4Ki-am')£0. With this fixed a and sufficiently large T we

now obtain

0 ^   f    /3e« + 2a)/M2 ̂  p(a)ea + 2a + ßmn  f    {u2+\\Vu\\2}.
JPx vSt

Picking p=l+2a+ß, the theorem follows.

6. Decay in exterior domains. Much attention has been given to the asymptotic

behavior of solutions of the wave equation outside a reflecting obstacle. In this

section we consider solutions of

(1.1) \Lu\ ^ k¿f, x)\u\+k2(t,x)\\Vu\\

in an exterior domain. We assume that L satisfies (A0) and (Ax) with respect to

some function/satisfying (P¡) for 1 S/^5.

Let 6 he a bounded domain in x-space with smooth boundary and connected

complement. Let R0 = ma\{r(x) : x e &}. We consider solutions outside 0, in

other words, solutions in the region 3/t where

3t = {(t, x) : t 2; 0;x^lnt ((?)}.

We further restrict our attention to solutions in the class

t = {ae C2(0t) : u(t, x) = 0 if x e 8(9}.

The technique employed to establish bounds on the decay rate in this situation is

a slight modification of that used in §§3 and 4.

The standard domains in the a priori estimates are the sets

Q(e, T,R) = ¿%n D(e, T, R)

= {(t, x) : e á t ^ T;r ^ Mt + R; x $ Int (0)}

for e>0, R>RQ, and e<T<oo. The boundary 8Q(e, T, R) is composed of three

pieces :

S+ ={(t,x)e8Q(e,T,R): t = T},

S~ = {(t, x) e 8Q(e, T, R) : t = e or r = Mt + R},

S1 = {(t, x) 6 8Q(e, T,R):xe 80}.

On iS'+ US" the outer unit normal n satisfies ((n, n))2:0. But on S* n is spacelike;

indeed the time component n0 is zero. So the domains Q(e, T, R) fail to be con-

venient. However the formulas of Lemma 2.2 are still valid if we insist that ve°U.

Lemma 6.1. Let Q denote one of the domains Q(e, T, R). If ve°U, and \am2

2; vB(e), then

(6.1) f 2Lt»ea/t»t = -¡ '     eafPKn(Wv)
Jq Js+(0)
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and

(6.2) icon' f fteaf\\Vv\\2 £ 2 f ea'\vtLv\+ {       ea!PKn(Vv).
Jq Jq Js + (Q)

Proof. We can apply (2.4) with X = eaf to obtain

jQ2Lvea% = ^e«<LftPh,h(Vv)+ f («,>,,»,,}-£   ea'PKn(Vv).

Because of Lemma 2.1 and the definition of m!, we get

[ 2Lveafvt 2: \am' f fteaf\\Wv\\2- f   eafPKn(Vv).
Jq Jq JdQ

On S~(Q) we know that PKn(Vv)^0. On S', we have n0=0 and ^ = 0. Hence,

on 5",

V

A.n(Vy) = nQPhih(Vv)-2vt 2 -VW», = 0.
« = i

Therefore

f 2Lt»ec/yi 2: \<mï \ /ea/||Vî;||2- [        eafPh,n(Vv).
Jq Jq Js*iQ->

The inequalities (6.1) and (6.2) now follow directly.

Using this modified version of Lemma 2.2, the method of §3 adapts to establish

the following estimates.

Theorem 6.2. For fixed e>0, R>R0, let QT denote Q(e, T, R) for each T>e.

There is a ß such that ifve'W and if a and T are sufficiently large then

(6.3) 3a3 f   ft3eiB + 2a)fv2 + ccm' f   fteiB + 2a),\\Vv\\2 ̂ 2 f   ft~1e'-B + 2^r(Lv)2 + E5
J Qt J Qt J Qt

where, for p defined in (3.13), E5 denotes the quantity

= p(a)ea + e + 2amT) f {¡;2+||Vt»||2}.
Js+(QT)(.Qt)

Letting Q(e, co, R) denote the unbounded domain 01 C\ D(e, co, R) we make the

following assumption about the coefficients kt in (1.1):

(A2) k¿t, x) = 0(ft2); k2(t, x) = 0(/) uniformly in each Q(e, co, R).

Suppose u e °U is a solution of (1.1) in some Q(e, co, R). Then following the

method of proof of Theorem 4.1, we find an a so large that

(6.4) Oaf   f3e(B + 2a)iu2 ¿,p(a)eil + 2a + BmT> {        {u2+\\Vu\\2}
Jqt Js + «3t)

for all sufficiently large T.
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Theorem 6.3. Suppose ueffl is a solution o/(l.l) in Q(e, co, R). Let ST denote

S + (QT) = {(T, x) : x$ Int (0); r S Mt + R}. There is a P>0 such that if

(6.5) lim epfm f   {m2+||Vh||2} = 0
r^oo JSt

then u vanishes identically in Q(e, oo, R).

Proof. Set p= 1 +2a+j8 for the a and ß of (6.4). Since the integral over QT in

(6.4) is an increasing nonnegative function of T, then (6.5) implies that u must

vanish in all QT, and thus in Q(e, co, R).
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