A CLASS OF COMPLETE ORTHOGONAL SEQUENCES OF STEP FUNCTIONS(1)

BY
J. L. SOX, JR., AND W. J. HARRINGTON

Abstract. A class of orthogonal sets of step functions is defined and each member is shown to be complete in $L_2(0, 1)$. Pointwise convergence theorems are obtained for the Fourier expansions relative to these sets. The classical Haar orthogonal set is shown to be a set of this class and the class itself is seen to be a subclass of the "generalized Haar systems" defined recently by Price.

1. **Introduction.** Convergence theorems for the Fourier expansions relative to the classical set of Haar functions have interestingly weak hypotheses. If $f \in L_1(0, 1)$ is the derivative of its indefinite integral at $x \in [0, 1]$, the Haar expansion converges to f(x) at this point, and, if f is continuous on [0, 1], the convergence is uniform on this interval.

In this paper we prove that each sequence of points which is dense in [0, 1] determines a complete orthonormal set of step functions whose associated Fourier expansion has convergence properties similar to the Haar expansion. In fact, the Haar set is a member of the class of sets defined in §2. This class, in turn, is seen to be a subclass of the class of "generalized Haar systems" defined by Price [3].

2. **Definition of the sequences** $\{\theta_n\}$. Suppose that $A = \{a_1, a_2, \ldots\}$ is a sequence of distinct points in (0, 1) which is dense in [0, 1] and let $\{g_n\}$, $n = 0, 1, 2, \ldots$, be the set of unit step functions defined by

$$g_0(x) \equiv 1$$
 on [0, 1]

and, for $n \ge 1$,

$$g_n(x) = 0,$$
 $x \in [0, a_n),$
= 1, $x \in [a_n, 1].$

Since no two of these functions have discontinuities at the same point, it is clear that the g_i are linearly independent on [0, 1]. Consequently, one can use the Gram-Schmidt process to construct an orthonormal sequence of functions $\{\theta_n(x)\}$

Received by the editors December 10, 1969 and, in revised form, August 31, 1970. AMS 1969 subject classifications. Primary 4211, 4215, 4216, 4217; Secondary 4020.

Key words and phrases. Haar functions, Fourier analysis, orthonormal set of functions, complete in $L_2(0, 1)$, pointwise convergence, generalized Haar system.

⁽¹⁾ The preparation of this paper was sponsored in part by a grant from the North Carolina Engineering Foundation and in part by the Joint Services Advisory Group under Grant AFOSR-69-1779.

such that each θ_n is a linear combination of the g_k , $k \le n$. Because of the triangular nature of this construction, each g_i can also be expressed as a linear combination of the θ_k , $k \le i$.

3. Completeness of $\{\theta_n\}$. To obtain convergence theorems for the Fourier expansions relative to the orthonormal sequences defined in §2 one needs a rather obvious property of the sequence A which is given in Lemma 1. In the statement of this lemma and throughout this paper the term "adjacent points" of a finite subset $A_N \subseteq A$ will be used to denote successive elements of this subset when the elements are arranged in order of magnitude; i.e. a_m and a_n are adjacent points of A_N if and only if there is no $a_k \in A_N$ such that $a_m < a_k < a_n$ or $a_n < a_k < a_m$.

LEMMA 1. Let $\{a_1, a_2, \ldots\}$ be a sequence of distinct points of (0, 1) which is dense in I = [0, 1]. Then for each $\delta > 0$ there is an integer N_{δ} such that for each $N > N_{\delta}$,

- (i) any pair of adjacent points a_m and a_n in the subset $A_N = \{a_1, a_2, \ldots, a_N\}$ satisfy $|a_m a_n| < \delta$,
- (ii) $d(x, A_N) < \delta$ for all $x \in I$. $(d(x, A_N))$ is the distance from x to the set A_N defined in the usual manner.)

THEOREM 1. The orthonormal sequence of functions $\{\theta_n\}$ is complete in $L_2(0, 1)$.

Proof. Suppose that $f \in L_2(0, 1)$ and $\int_0^1 f\theta_n dx = 0$ for all n. Then since each g_n is a linear combination of the θ_i , $i \le n$,

$$\int_0^1 f g_n \, dx = \int_{0}^1 f \, dx = 0 \quad \text{for all } n,$$

and since A is dense in [0, 1],

$$\int_{x}^{1} f \, dx = 0 \quad \text{for all } x \in [0, 1];$$

i.e.

$$f \stackrel{\text{a.e.}}{=} 0$$
 on [0, 1].

4. Pointwise convergence of the Fourier $\{\theta_n\}$ expansion. Since the orthonormal sequence $\{\theta_n\}$ is complete in $L_2(0, 1)$, any function f in this space has the norm-convergent Fourier expansion

(1)
$$f(x) \sim \sum b_n \theta_n(x), \text{ where } b_n = \int_0^1 f \theta_n \, dx.$$

In this section we obtain sufficient conditions for the convergence of this expansion in the pointwise sense to f(x). The main result may be stated as follows:

THEOREM 2. The Fourier- θ_n expansion of a function $f \in L_1(0, 1)$ converges to f(x) at each point $x \in [0, 1]$ at which f is the derivative of the indefinite integral F of f. This holds, in particular, (a) almost everywhere, (b) at every point of continuity of f.

1971]

Proof. Fix N > 0 and consider the partial sum S_N of f. Let $0 < a_{i_1} < a_{i_2} < \cdots < a_{i_N} < 1$ be the points $0, a_1, a_2, \ldots, a_N, 1$ arranged in increasing order. Since each θ_i , $i \le N$, is a linear combination of the g_i , $i \le N$, S_N is a step function whose intervals of constancy are $[0, a_{i_1}), [a_{i_1}, a_{i_2}), \ldots, [a_{i_N}, 1]$. We first show that for x in any such interval I, S_N is equal to the average of f over I; i.e.

$$S_N(x,f) = \frac{1}{|I|} \int_I f dt$$
 if $x \in I$.

Suppose first that $f \in L_2(0, 1)$ and let K_0, K_1, \ldots, K_N denote the characteristic functions of the intervals $[0, a_{i_1}), \ldots, [a_{i_N}, 1]$. Then

$$S_N = \sum_{0}^{N} b_n \theta_n = \sum_{0}^{N} B_n K_n,$$

where the B's are constants. Clearly B_i is the value S_N takes in the interval associated with K_i . Now if T_N is any linear combination of the θ_k , $k \le N$, it is well known that $\int_0^1 (f-T_N)^2 dx$ assumes its minimum value when T_N is the partial sum S_N . Thus the B's must have values which minimize the integral $\int_0^1 (f-\sum_0^N B_n K_n)^2 dx$ and, equating the partial derivatives with respect to the B's to 0, we obtain, for each $m=0, 1, 2, \ldots, N$,

$$\int_0^1 f K_m \, dx = B_m \int_0^1 K_m^2 \, dx.$$

If f is merely in $L_1(0, 1)$, there is a sequence $\{f_k\}$ of functions in $L_2(0, 1)$ such that $||f-f_k||_1 \to 0$. It is immediate that each Fourier coefficient of f is the limit of the corresponding coefficient of f_k and we have, for $x \in I$,

$$S_N(x,f) = \lim_k S_N(x,f_k) = \lim_k \frac{1}{|I|} \int_I f_k dx = \frac{1}{|I|} \int_I f dx.$$

Now if x_0 is in the interval I=[a, b) where a and b are adjacent points of the subset A_N ,

$$|f(x_0) - S_N(x_0, f)| = \left| f(x_0) - \frac{1}{|I|} \int_I f \, dx \right|$$

$$= \left| \frac{x_0 - a}{|I|} \left[f(x_0) - \frac{1}{x_0 - a} \int_a^{x_0} f \, dx \right] + \frac{b - x_0}{|I|} \left[f(x_0) - \frac{1}{b - x_0} \int_{x_0}^b f \, dx \right] \right|.$$

Since by Lemma 1 the length of I can be made arbitrarily small by taking N sufficiently large, the last equation implies that the Fourier expansion of f converges to $f(x_0)$ at any point $x_0 \in [0, 1]$ at which f is the derivative of its indefinite integral.

The expression for S_N obtained in the preceding proof and a theorem from [4, p. 32] can be used to establish the following corollaries to Theorem 2.

COROLLARY 1. If
$$f \in L_p(0, 1)$$
, then $||f - S_N||_p \to 0 \ (1 .$

COROLLARY 2. If $f \in L_p(0, 1)$, then $\|\operatorname{Sup}_N S_N\| \le A_p \|f\|_p$ $(1 where <math>A_p$ is constant for each p.

THEOREM 3. The Fourier- θ_n expansion of a function f which is continuous on [0, 1] converges uniformly to f(x) on [0, 1].

Proof. If $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x_1) - f(x_2)| < \varepsilon$ when $x_1, x_2 \in [0, 1]$ and $|x_1 - x_2| < \delta$. By Lemma 1 an integer N_{δ} exists such that if $N > N_{\delta}$, the set A_N determines a partition of [0, 1] into subintervals of length less than δ . Thus if x_0 is in any subinterval I = [a, b] of this partition we have

$$|f(x_0) - S_N(x_0, f)| = \left| f(x_0) - \frac{1}{|I|} \int_I f(x) \, dx \right|$$

$$= |f(x_0) - f(\xi)| \quad \text{where } \xi \in [a, b]$$

$$< \varepsilon.$$

5. Behavior of the Fourier- θ_n expansion at a point of discontinuity of f. Suppose f has an isolated finite discontinuity at a point a_i of the set A. Since the step function g_i has a unit jump at a_i , a function G which is continuous at a_i can be constructed by adding a constant multiple of g_i to f. By Theorem 2, the Fourier expansion of G converges to $G(a_i)$ and since the θ_n expansion of g_i is a finite sum, it follows that the Fourier expansion of f must converge at a_i . In fact, one can readily prove the following

THEOREM 4. If $f \in L_2(0, 1)$ has a finite discontinuity at a point a_i of the sequence A (which determines $\{\theta_n\}$) the Fourier- θ_n expansion of f converges to $f(a_i^+)$ at this point.

The fact that the expansion converges to $f(a_i^+)$ rather than $\frac{1}{2}[f(a_i^+)+f(a_i^-)]$ or some other value between $f(a_i^+)$ and $f(a_i^-)$ is not significant since this value is determined solely by the definition of $g_i(a_i)$.

No general statement can be made concerning the convergence of (1) at a point of discontinuity of f that is not in A. To show this we consider two expansions corresponding to different A sequences (hence to different θ_n sets) of a simple step function with a discontinuity at a point $c \in (0, 1)$ which is not in A. Let

$$g_c(x) = 0,$$
 $x \in [0, c),$
= 1, $x \in [c, 1],$

where $c \notin A$. Suppose that N is an integer sufficiently large for the subset A_N to contain points in both (0, c) and (c, 1) and let S_N denote the partial sum of the Fourier expansion of g_c . If $a_l(N)$ and $a_r(N)$ are the points of A_N adjacent to c on the left and right, respectively, we find

(2)
$$S_N(c, g_c) = \frac{1}{a_r - a_l} \int_{a_l}^{a_r} g_c \, dx = \frac{a_r(N) - c}{a_r(N) - a_l(N)}.$$

1971]

Equation (2) suggests that the convergence of the Fourier expansion at the point c depends on the sequence A. To see that this is actually the case, construct a sequence A, by choosing $a_1 = c/2$ and $a_2 = (c+1)/2$, the respective midpoints of (0, c) and (c, 1). These two points along with c determine four successive subintervals of (0, 1); let their midpoints (from left to right) be a_3 , a_4 , a_5 , a_6 . Continue this subdivision process (with 2^n new midpoints at the nth stage) to obtain A. In (2), $a_r(N)-c$ is the distance from c to the closest point of A_N on the right and has the form $(1-c)/2^k$ for some integer c. On the other hand, the distance from c to the closest point of a_N on the left will either be $a_N = c/2^k$ or $a_N = c/2^{k+1}$ depending on $a_N = c/2^k$. Since these expressions are independent of $a_N = c/2^k$ or $a_N = c/2^k$ consists of two distinct constant subsequences and cannot converge.

As a second example we construct the sequence A as follows: $a_1=c/2$, $a_2=(1+c)/2$, $a_3=c/3$, $a_4=2c/3$, $a_5=(1+2c)/3$, $a_6=(2+c)/3$, ...; i.e. the elements of A are the distinct points which divide the intervals (0, c) and (c, 1) into two equal parts, three equal parts, four equal parts, etc. For this sequence, the distance from c to the closest point of A_N on the right has the form (1-c)/k(N) where k(N) is an integer that depends on N; and the distance from c to $a_i(N)$ is either c/k(N) or c/[k(N)+1]. In the first case (2) gives $S_N=1-c$ and in the second

$$S_N = \frac{1-c}{1-c/(k(N)+1)}$$

Since k(N) approaches infinity with N, the limit of the subsequence given by the second equation is also 1-c. Thus $\lim S_n(c)$ exists for this sequence A; i.e. the Fourier expansion of g_c determined by this particular sequence converges at c to 1-c.

6. The structure of $\{\theta_n\}$. The orthonormal sequence $\{\theta_n\}$ defined in §2 is obtained by applying the Gram-Schmidt orthogonalization process to the linearly independent sequence $\{g_i\}$. Since this process gives θ_n as a linear combination of the g_i , $i \le n$, it is clear that θ_n is a step function which is constant on the subintervals $[0, a_{i_1}), [a_{i_1}, a_{i_2}), \ldots, [a_{i_n}, 1]$ of [0, 1] determined by the successive points of A_n . We shall now see that a precise expression for θ_n in terms of the points of the subset A_n can be obtained by induction.

Let $\theta_0 = g_0$ and assume that θ_{n-1} , $n \ge 1$, has been determined. Suppose a_n falls in the interval (a, b) whose endpoints are successive points of the partition of [0, 1] determined by A_{n-1} , and let f_n be given by

$$f_n(x) = 1/(a_n - a),$$
 $x \in [a, a_n),$
= $-1/(b - a_n),$ $x \in [a_n, b),$
= 0, otherwise.

Since a and b are either in A_{n-1} or are endpoints of [0, 1], it is obvious that f_n is a linear combination of the g_i , $i \le n$. Furthermore if k < n, θ_k is constant on (a, b) so

$$(\theta_k, f_n) = \int_0^1 \theta_k f_n \, dx = c \int_a^b f_n \, dx = 0$$

and we see that f_n is orthogonal to each θ_k , k < n. It follows, of course, that the function θ_n given by the Gram-Schmidt process must be $\pm f_n/\|f_n\|$.

- 7. Examples and remarks. (A) The set of rationals in (0, 1) is countable and different enumerations of this set lead to an infinity of sequences of the type A described in §2. For example, one can take $a_1 = 1/2$, $a_2 = 1/3$, $a_3 = 2/3$, $a_4 = 1/4$, $a_5 = 3/4$, ... (where the irreducible fractions with denominator 2, 3, 4, ... are used successively in blocks) and the corresponding $\{g_i\}$ will be the set of all unit step functions with jumps at the rational points of (0, 1). The orthonormal set $\{\theta_n\}$, in this case, consists of step function with discontinuities at the rationals.
- (B) If p is any prime, the set of all numbers of the form k/p^m where m and k are integers, $k < p^m$ and $k \not\equiv 0 \pmod p$, is countable since it is a subset of the rationals and is obviously dense in I. Any such set with an appropriate specific enumeration could therefore be used for the sequence A. In fact, if A is a particular sequence of this type with p=2, the corresponding g_i can be orthonormalized to obtain the familiar Haar functions $\{\chi_j^n\}$. Thus if $a_1=1/2$, $a_2=1/4$, $a_3=3/4$, $a_4=1/8$, $a_5=3/8$, ..., $a_n=(2n+1-2^k)/2^k$, ..., where k is the smallest integer such that $2^k > n$, the corresponding θ_i are the classical Haar functions.
- Price [3] has defined a class of orthonormal sets of step functions of a more general type. Price's definition is not sufficiently restrictive to imply the completeness of his sets. It is readily verified that the class of sequences $\{\theta_n\}$ defined in this paper is a subclass of Price's and that our requirement that A be dense in [0, 1] (which insures completeness) is the essential difference.

Franklin [1] constructed a complete orthonormal sequence of linear functions related to the Haar functions. It can be readily generalized. Let $\{g_n\}$ be defined as in §2 and construct a sequence $\{h_n\}$ on [0, 1] with

$$h_0(x) \equiv 1$$
 and $h_n(x) = \int_0^x g_{n-1}(t) dt$, $n \ge 1$.

The sequence $\{h_n\}$ is linearly independent on [0, 1] and the Gram-Schmidt process yields a complete orthonormal sequence of continuous polygonal functions.

8. Acknowledgment. The authors express their gratitude to the referee of the first draft of this paper. His constructive comments provided a stronger and more general Theorem 2.

REFERENCES

- 1. P. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529.
- 2. A. Haar, Zur Theorie der Orthogonalen Funktionenysystems, Math. Ann. 69 (1910), 331-371.
- 3. J. J. Price, An algebraic characterization of certain orthonormal systems, Proc. Amer. Math. Soc. 19 (1968), 268-273. MR 37 #682.
- 4. A. Zygmund, *Trigonometrical series*, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.

NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607