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A CLASS OF COMPLETE ORTHOGONAL SEQUENCES

OF STEP FUNCTIONS!1)

BY

J. L. SOX, JR., AND W. J. HARRINGTON

Abstract. A class of orthogonal sets of step functions is defined and each member

is shown to be complete in L2(0, 1). Pointwise convergence theorems are obtained

for the Fourier expansions relative to these sets. The classical Haar orthogonal set

is shown to be a set of this class and the class itself is seen to be a subclass of the

"generalized Haar systems" defined recently by Price.

1. Introduction. Convergence theorems for the Fourier expansions relative to

the classical set of Haar functions have interestingly weak hypotheses, life Lx(0, 1)

is the derivative of its indefinite integral at x e [0, 1], the Haar expansion converges

tof(x) at this point, and, if/is continuous on [0, 1], the convergence is uniform on

this interval.

In this paper we prove that each sequence of points which is dense in [0, 1]

determines a complete orthonormal set of step functions whose associated Fourier

expansion has convergence properties similar to the Haar expansion. In fact, the

Haar set is a member of the class of sets defined in §2. This class, in turn, is seen

to be a subclass of the class of "generalized Haar systems" defined by Price [3].

2. Definition of the sequences {dn}. Suppose that A={au a2,...} is a sequence

of distinct points in (0, 1) which is dense in [0, 1] and let {gn}, n = 0, 1, 2,..., be

the set of unit step functions defined by

g0(x) =1 on [0, 1]

and, for «^ 1,

gn(x) = 0, x e [0, an),

= 1, xe [an, 1].

Since no two of these functions have discontinuities at the same point, it is clear

that the g¡ are linearly independent on [0, 1]. Consequently, one can use the

Gram-Schmidt process to construct an orthonormal sequence of functions {6n(x)}

-
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such that each 6n is a linear combination of the gk, k^n. Because of the triangular

nature of this construction, each g¡ can also be expressed as a linear combination

of the 6k, k g /.

3. Completeness of {6n}. To obtain convergence theorems for the Fourier

expansions relative to the orthonormal sequences defined in §2 one needs a rather

obvious property of the sequence A which is given in Lemma 1. In the statement

of this lemma and throughout this paper the term "adjacent points" of a finite

subset AN<=-A will be used to denote successive elements of this subset when the

elements are arranged in order of magnitude; i.e. am and an are adjacent points of

AN if and only if there is no ak e AN such that am<ak<an or an<ak<am.

Lemma 1. Let {al7 a2,...} be a sequence of distinct points of(0, 1) which is dense

in I=[0, 1]. Then for each S>0 there is an integer Nô such that for each N>N6,

(i) any pair of adjacent points am and an in the subset AN = {a1, a2,..., aN} satisfy

\am-an\<8,

(ii) d(x, AN) < S for all x e I. (d(x, AN) is the distance from x to the set AN defined

in the usual manner.)

Theorem 1. The orthonormal sequence of functions {6n} is complete in L2(0, 1).

Proof. Suppose that/eL2(0, 1) and jlf8ndx = 0 for all n. Then since each gn

is a linear combination of the 0¡, i^n,

fSn dx =      fdx — 0   for all n,
JO Ja„

and since A is dense in [0, 1],

f fdx = 0   for all xe[0, 1];

i.e.

/*=ä0   on [0,1].

4. Pointwise convergence of the Fourier {9n} expansion. Since the orthonormal

sequence {#„} is complete in L2(0, 1), any function/in this space has the norm-

convergent Fourier expansion

(1) Ax)~^bn6n{x),   where bn = C f6n dx.

In this section we obtain sufficient conditions for the convergence of this expan-

sion in the pointwise sense tof(x). The main result may be stated as follows:

Theorem 2. The Fourier-6n expansion of a function f e L^O, 1) converges tof(x)

at each point x e [0, 1 ] at which f is the derivative of the indefinite integral F off.

This holds, in particular, (a) almost everywhere, (b) at every point of continuity off.
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Proof. Fix A>0 and consider the partial sum SN off. Let 0<ah<ai2< ■■ ■ <aif!

< 1 be the points 0, au a2,..., aN, 1 arranged in increasing order. Since each

0¡, iííN, is a linear combination of the g¡, UN, SN is a step function whose inter-

vals of constancy are [0, ah), [aH, a¡2),..., [aifl, 1]. We first show that for x in any

such interval /, SN is equal to the average off over /; i.e.

Sn(x,f) « rjT J fdt   ifxel.

Suppose first that /eL2(0, 1) and let K0, Ku..., KN denote the characteristic

functions of the intervals [0, ah),..., [a¡N, 1]. Then

N N

0 0

where the B's are constants. Clearly B¡ is the value SN takes in the interval asso-

ciated with K¡. Now if TN is any linear combination of the 0k, k^N, it is well

known that J"¿ (J— TN)2 dx assumes its minimum value when TN is the partial sum

SN. Thus the B's must have values which minimize the integral J¿ (/—2o SnKn)2 dx

and, equating the partial derivatives with respect to the B's to 0, we obtain, for

each m = 0, 1, 2,..., N,

CfKm dx = Bm f K2 dx.
Jo Jo

Iff is merely in Li(0, 1), there is a sequence {/k} of functions in L2(0, 1) such that

11/—/k||i -*■ 0- It ¡s immediate that each Fourier coefficient of /is the limit of the

corresponding coefficient of fk and we have, for x e I,

SN(x,f) = lim SN(x,fk) = lim -ryr \ fk dx = jyj    fax.
k k    ]¿1 Jl \I\  Jl

Now if x0 is in the interval /= [a, b) where a and b are adjacent points of the

subset AN,

\Ax0)-SN(x0,f)\ = |/(JCo)-|7| \/dx

Since by Lemma 1 the length of / can be made arbitrarily small by taking N

sufficiently large, the last equation implies that the Fourier expansion off con-

verges tof(x0) at any point x0 s [0, 1] at which/is the derivative of its indefinite

integral.

The expression for SN obtained in the preceding proof and a theorem from

[4, p. 32] can be used to establish the following corollaries to Theorem 2.

Corollary 1. IffeLp(0,l),then \\f-SN\\p -*0 (1 <p<oo).
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Corollary 2. IffeLp(0, 1), then \\SupN SN\\^Ap\\f\\p (\<p^co) where Ap is

constant for each p.

Theorem 3. The Fourier-6n expansion of a function f which is continuous on [0, 1]

converges uniformly to f(x) on [0, 1].

Proof. If £>0, there exists a S>0 such that \f{x¡)— f{x2)\ <e when xlt x2 e [0, 1]

and |a_! — x2\ <8. By Lemma I an integer Nd exists such that if N>NÖ, the set AN

determines a partition of [0, 1] into subintervals of length less than 8. Thus if x0

is in any subinterval /= [a, b] of this partition we have

\f(x0)-SN(x0,f)\ = /(*0)-TJ|j7( x) dx

= \f(x0)-JW\    where S e [a, b]

< e.

5. Behavior of the Fourier-ön expansion at a point of discontinuity of/. Suppose

/ has an isolated finite discontinuity at a point ax of the set A. Since the step function

gi has a unit jump at ah a function G which is continuous at a¡ can be constructed

by adding a constant multiple of g¡ to f. By Theorem 2, the Fourier expansion of

G converges to G(a¡) and since the 9n expansion of gt is a finite sum, it follows that

the Fourier expansion off must converge at at. In fact, one can readily prove the

following

Theorem 4. IffeL2(0, 1) has a finite discontinuity at a point at of the sequence

A (which determines {#„}) the Fourier-0n expansion of f converges to f(a¡+) at this

point.

The fact that the expansion converges to/(a¡+) rather than i[/(tf¡+)+/(flf )] or

some other value between /(a¡+) and f(a¡~) is not significant since this value is

determined solely by the definition of gi(a¡).

No general statement can be made concerning the convergence of (1) at a point

of discontinuity off that is not in A. To show this we consider two expansions

corresponding to different A sequences (hence to different 0„ sets) of a simple step

function with a discontinuity at a point c e (0, 1) which is not in A. Let

gc(x) = 0,       x e [0, c),

= 1,       xe [c, 1],

where c <£ A. Suppose that N is an integer sufficiently large for the subset AN to

contain points in both (0, c) and (c, 1) and let SN denote the partial sum of the

Fourier expansion of gc. If a,(N) and ar(N) are the points of AN adjacent to c on

the left and right, respectively, we find

1      Ca'

(2) SN(c, gc) = -—-       gc dx
ar~al Ja,

ar(N)-

ar(N)-at(N)
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Equation (2) suggests that the convergence of the Fourier expansion at the point

c depends on the sequence A. To see that this is actually the case, construct a

sequence A, by choosing a1 = cj2 and a2 = (c+l)/2, the respective midpoints of

(0, c) and (c, 1). These two points along with c determine four successive subintervals

of (0, 1); let their midpoints (from left to right) be a3, a4, ab, a6. Continue this

subdivision process (with 2n new midpoints at the nth stage) to obtain A. In (2),

ar(N) — c is the distance from c to the closest point of AN on the right and has the

form (1 — c)/2k for some integer k. On the other hand, the distance from c to the

closest point of AN on the left will either be c/2k or c/2k + 1 depending on N. In the

first case (2) gives SN=l— c, and in the second SN = 2(\—c)/(2 — c). Since these

expressions are independent of N, we see that the sequence {Sn(c, gc)} consists of

two distinct constant subsequences and cannot converge.

As a second example we construct the sequence A as follows: a1 = c/2,

a2 = (.l+c)/2, a3 = c¡3, a4 = 2c/3, a5 = (l +2c)/3, a6 = (2 + c)/3,... ; i.e. the elements

of A are the distinct points which divide the intervals (0, c) and (c, 1) into two

equal parts, three equal parts, four equal parts, etc. For this sequence, the distance

from c to the closest point of AN on the right has the form (1 —c)/k(N) where k(N)

is an integer that depends on N; and the distance from c to a¡(N) is either c/k(N)

or c/[k(N) +1]. In the first case (2) gives SN= 1 — c and in the second

s 1~C
°w      l-c/(k(N)+l)

Since k(N) approaches infinity with N, the limit of the subsequence given by the

second equation is also 1— c. Thus lim Sn(c) exists for this sequence A; i.e. the

Fourier expansion of gc determined by this particular sequence converges at c

to 1-c.

6. The structure of {#„}. The orthonormal sequence {8n} defined in §2 is ob-

tained by applying the Gram-Schmidt orthogonalization process to the linearly

independent sequence {g¡}. Since this process gives 8n as a linear combination of

the gi, i^n, it is clear that 8n is a step function which is constant on the subintervals

[0, ah), [ah, al2),..., [ain, 1] of [0, 1] determined by the successive points of An.

We shall now see that a precise expression for 8n in terms of the points of the subset

An can be obtained by induction.

Let 80=go and assume that 8n_1, «^ 1, has been determined. Suppose an falls in

the interval (a, b) whose endpoints are successive points of the partition of [0, 1]

determined by An-X, and let/, be given by

fn(x) = l/(an-d), x e [a, an),

= -l/(b-an), xe [an,b),

= 0, otherwise.
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Since a and b are either in An„x or are endpoints of [0, 1], it is obvious that/n

is a linear combination of the g{, i^n. Furthermore if k<n, 6k is constant on

(a, b) so

(ok,fn) = f ejn dx = cCfndx = o
Jo Ja

and we see that/",, is orthogonal to each 9k, k<n. It follows, of course, that the

function 9n given by the Gram-Schmidt process must be ±/n/||/„||.

7. Examples and remarks. (A) The set of rationals in (0, 1) is countable and

different enumerations of this set lead to an infinity of sequences of the type A

described in §2. For example, one can take ax = l/2, a2=\/3, o3 = 2/3, a4=l/4,

a5 = 3/4,... (where the irreducible fractions with denominator 2, 3, 4,... are used

successively in blocks) and the corresponding {g¡} will be the set of all unit step

functions with jumps at the rational points of (0, 1). The orthonormal set {#„}, in

this case, consists of step function with discontinuities at the rationals.

(B) If p is any prime, the set of all numbers of the form k/pm where m and k are

integers, k<pm and k^O (mod p), is countable since it is a subset of the rationals

and is obviously dense in /. Any such set with an appropriate specific enumeration

could therefore be used for the sequence A. In fact, if A is a particular sequence of

this type with p = 2, the corresponding g¡ can be orthonormalized to obtain the

familiar Haar functions {x"}. Thus if ax = \/2, a2=l/4, a3 = 3/4, a4=l/8, a5 = 3/8,

..., an = (2« + 1 — 2k)j2k,..., where k is the smallest integer such that 2k>n, the

corresponding 0¡ are the classical Haar functions.

Price [3] has defined a class of orthonormal sets of step functions of a more

general type. Price's definition is not sufficiently restrictive to imply the complete-

ness of his sets. It is readily verified that the class of sequences {9n} defined in this

paper is a subclass of Price's and that our requirement that A be dense in [0, 1]

(which insures completeness) is the essential difference.

Franklin [1] constructed a complete orthonormal sequence of linear functions

related to the Haar functions. It can be readily generalized. Let {gn} be defined as

in §2 and construct a sequence {hn} on [0, 1] with

h0(x) s 1    and   hn(x) = J   gn-^ft) dt,       n à 1,

The sequence {hn} is linearly independent on [0, 1] and the Gram-Schmidt process

yields a complete orthonormal sequence of continuous polygonal functions.
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