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Abstract. We study stochastic differential equations, dx = adt + adß where ß

denotes a Brownian motion. By relaxing the definition of solutions we are able to

prove existence theorems assuming only that a is measurable, a is continuous and

that both grow linearly at infinity. Nondegeneracy is not assumed. The relaxed

definition of solution is an extension of A. F. Filippov's definition in the deterministic

case. When o is constant we prove one-sided uniqueness and approximation theorems

under the assumption that a satisfies a one-sided Lipschitz condition.

We consider the stochastic equation

dx = adt + adß.

If the drift coefficient, a, and diffusion matrix, a, are continuous on Rd + 1, then

solutions are known to exist [1], If a is assumed to be nondegenerate, i.e. aa* is

positive definite, then existence of a solution can be proved assuming that a is

bounded and measurable [9]. Moreover, consideration of the one-dimensional

example ct = 0, a(t, x)= — sgn (x) shows that continuity is necessary if degeneracy

is allowed. However, in the deterministic case (a = 0), A. F. Filippov [2] has shown

that a natural and fruitful theory for discontinuous direction fields is possible if the

definition of solution is relaxed. In this paper we bring Filippov's ideas into the

stochastic context. This results in a fairly general existence theorem (Theorem 3).

We were less successful in our treatment of uniqueness, however. That result

(Theorem 4) is limited to the case of constant diffusion matrix. Our last result

(Theorem 5) concerns approximation of relaxed solutions by solutions of non-

degenerate equations.

It is a pleasure to acknowledge J. Goldstein with whom I have had several

fruitful conversations. I also thank the referee for bringing the work of Prohorov

to my attention.

1. Existence  of relaxed  solutions.    We  shall  denote points of  Rd  by  x =

(xu...,xd) and   points  of Rd + 1  by  (t, x) = (t, xu ..., xd).   (x, y} = x1y1-\-

+ xdyd denotes the inner product in R" and |x| =\/(x, d'y.
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We shall be concerned with the stochastic equation

(1.1) x(t) = x0+\   a(s,x(s))ds+      a(s, x(s)) dw(s)

for t e 7= [i0, T], a maps IxRd into R" and a maps IxR" into dxl matrices with

components denoted by crtf. x0 is an Pd-valued random variable on a probability

space (Q, 2, P) and {w(t) : t e 7} is the generic symbol for an /-dimensional Wiener

process (mean = 0, variance parameter=l) [1] (cf. also "standard Brownian

motion process" in [3]). The stochastic integral in (1.1) is the Pd-valued process

whose z'th component is

2       o-u(s, x(s)) dwj(s)
1 = 1   J*o

where these integrals are the usual Itô integrals with respect to the (independent)

component processes of {w(s) : sel} [1].

Definition. Let W={w(t) : t e 1} be a Wiener process over a probability space

(Q, 2, P) and x0 be a random variable over this space. A solution o/(l.l) relative to

W is a sample continuous process {x(t) : t e 7} over (O, 2, P) such that P(A)= 1

where ,4 is the subset of O for which (1.1) holds for all tel.

Skorohod has shown in [1] that if a and a are continuous and have at most linear

growth at infinity then there is a solution relative to some Wiener process over the

Lebesgue interval, [0, 1], as sample space. In studying discontinuous coefficients

we shall also consider the associated "mollified" equation

(1.2) jc<">(r) = x0+ f ain\s, xln\s)) ds+ |   oM(s, x™(s)) dß(s)

where

aM(t, ■) = a(t, ■) * w1/n,       o™(t, ■) = c(t, ■) * wlln

and a>0 is the usual «"-dimensional smoothing kernel of support radius p (cf.

"regularizaron" in [4]).

Theorem 1. Let (i) a and a be Lebesgue measurable,

(ii) there be a function b in Lp(I),p>4, such that \a(t, x)\2¿¡b2(t)(l + \x\2) and

\atj(t, x)\2úb\t){\ + \x\2), i= 1,. ..,d;j= 1,..., I, for all t e I and all x,

(iii) x0 be a random variable on (Q, S, P) such that P{|x0|4}<oo,

(iv) B = {ß(t) : tel} be any Wiener process over (£1, 2, P).

Then the sequence of solutions relative to B of (1.2) for «=1,2,... is tight in the

space of continuous Revalued functions, C(I).

Remarks. Conditions (i) and (ii) imply that o(n) and c/"' are smooth functions of

x for fixed / in 7. This, together with (iii), assures the existence of unique solutions,

x<n>, of (1.2) [1, Chapter 3, Theorem 3]. For a discussion of tightness in C(7) see [5].
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We also note that without loss of generality we may assume the following inequal-

ities to be valid :

Wn\t, x)\2 è b2(t)(\ + \x\2),

(1.3)
\o$\t, x)\2 ^ b2(t)(\ + \x\2)

for all n = \, 2,....

Lemma 1. There is a constant C, independent ofn= 1, 2,..., such that

E{\x<-n\t)\1} <t C

for all tel.

Proof. For this proof we suppress the superscript (n). Let g(t) be the indicator

of the event [t < tn] where tn is the first hitting time relative to {xin)(s) : s e 1} of

the set {xeRd : \x\ ^ N}. Then

g(t)\x(t)\* á c 2 {l*o|4+áKo(£ g(s)at(s, x(s)) as)'

+ g(t) J (J* g(s)(rij(s, X(S)) dß(s)f}

where we have used the fact that g(t)=g(t)g(s) for t>s and basic properties of

stochastic integrals. The constant cx depends only upon d and /. Having truncated

we may now take expectations.

E{g(t)\x(t)\*} è c1E\x0\i + c2 f b\s)ds + c2 f bi(s)E{g(s)\x(s)\i} ds

where we have used Holder's inequality, (1.3), and an estimate of the fourth

moment of a stochastic integral as is found in Theorem 4, Chapter 2 of [1]. The

constant c2 depends upon d, I and T—10. We now apply a Gronwall-like result to

conclude from the above estimate that

(1.4) E{g(t)\x(0\'} è (c0E{\x0\*}+1) exp {c2 £ b*(s) dfV

Since this is true for all A^>0 we see that Lemma 1 is proved.

Lemma 2. There are positive constants K and a, independent of n, such that

(1.5) EWXtù-x^Xt,)]*} S K\tl-t2\í + "

for all tu t2 in I and all integers n.

We again suppress the superscript (ri).

Proof. From (1.2) and Holder's inequality we derive

l*0i)-*('2)|4 á c3 2 (J(2 ais, x(s)) d¡j +c3 2 (T «Ti/i, x(s)) dß\
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where c3 depends upon d and /. From Lemma 1 we see that the expectations in

question are finite. We may therefore proceed as in the proof of Lemma 1 to derive

E{\x(tJ-x(ta)\'} ¿ dh-tJl fV(j)[l+£{|*(i)|*}]<fc

where c4 depends upon d, I and T—10. Using Lemma 1 we obtain

(1.6) E^xitJ-xit^} fk c5\tl-t2\ f* b\s) ds
Jti

where again c5 does not depend upon «. But since b is in Lp,p>4, we can apply

Holder's inequality to derive (1.5) with a=p/(p — 4).

Now according to a theorem of Prohorov (Theorem 12.3 in [5] ; original reference

is [6]) condition (iii) and Lemma 2 imply the tightness in C(7) of the sequence

{x™(t) : tel}.

By the "Lebesgue interval" is meant [0, 1] endowed Lebesgue measure.

Theorem 2. With the same assumption as Theorem 1 there is a subsequence of the

integers, Ju and a sequence of sample continuous stochastic processes {w(t) : tel},

{w{n\t) : tel}, {y(t) : tel}, {y{n)(t) : tel}, neJx, having the Lebesgue interval

as sample space and possessing the following properties:

(A) {(/n)(0, w(B)(f )) : tel} and {(xln)(t), ß(t)) : t e 1} have the same distribution

considered as random elements in C(I) x C(I).

(B) w and win) are Brownian motion processes.

(C) For « eJuy(n) is a solution of (\.2) relative to the Brownian motion process,

w{n), i.e. almost surely,

(1.7) yin\t) = y(n\t0)+ f én\s, yM(s)) ds+ f <jw(s, yin)(s)) dw™(s)

for all t e I.

(D) With probability one, ym converges uniformly to y and w<n) converges uniformly

to w as « -> co, « e J^.

Proof. According to an important theorem due to Prohorov ([6]; Theorem 6.1

of [5]) tightness of the processes xin\ näl, implies the relative compactness of their

distributions in C(7). It is also clear that the joint processes {(xin\t), ß(t)) : te 1}

are tight hence their distributions in C(7) x C(7) also form a relatively compact

sequence. Hence, there is a subsequence of the integers, /, such that the distribu-

tions of the joint processes converge weakly as n-^-oo,neJu to a probability

measure on C(7) x C(7). From a theorem of Skorohod [7, Theorem 3.1.1] we can

then conclude that there exist the processes (y, w) and (y(n\ wM) mentioned in

the theorem such that (A) and (D) are satisfied and the distribution of (y, w) is the

limiting probability measure referred to above. That (B) is true follows from the

continuity of the processes and the fact that the finite-dimensional distributions
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are those of Brownian motion. The proof of (C) is elementary and we shall not

give the details.

It seems reasonable to refer to the process {y(t) : t e 1} as a generalized solution

of (1.1). This is a definition of solution via a "completion" of a family of approxi-

mating solutions. We emphasize that measurability and certain growth conditions

were the only assumptions made concerning the drift and diffusion coefficients in

proving the existence of solutions in this sense. If we assume now that the diffusion

coefficient is continuous, we can say a bit more concerning this generalized solution.

For this we shall need a few ideas from real variable theory.

For a function a: Ix Rd -> Rd we shall define its Rd-essential extension, A, as the

set-valued mapping defined on Ix Rd with values

A(t, x) = fi A\t, x)
6>0

where

A\t, x) = H co {a(t,y) : \y-x\ ûKyiN},
N

A ranging over all sets of zero ¿/-dimensional Lebesgue measure and co { } denoting

the closed convex hull of { }. All operations and relations are to be interpreted

memberwise, e.g. (A(t, x), v} denotes the set of real numbers <a, i;> for a e A(t, x);

A(t, x) ^ B(t, x) (for d= 1) means that a ^ ß for all a e A(t, x) and ß e B(t, x).

Definition. A process {x(t) : tel} is said to be a relaxed solution of (1.1)

relative to a Wiener process {w(t) : tel} if with probability one the following

conditions are satisfied:

(a) x(t0) = x0.

(b) For all v e Rd and for all tu t2 el,ti< tz,

(1.8)    (x(h)-x(t2), vy Ú ^ sup (A(s, x(s)), vy ds+ «^ j ' a(s, x(s)) dw(s), y^>.

The following propositions are easily checked. In both propositions we assume

that a and a are Lebesgue measurable and that, for x confined to any compact set,

a and a are dominated by functions which are integrable on /. We refer to this

assumption as Condition L.

Proposition 1. If a relaxed solution is almost surely bounded on I then it is almost

surely continuous on I.

Proposition 2. If for all t in I, a(t, ■) is continuous in Rd, then a relaxed solution

which is almost surely continuous is a solution in the ordinary sense.

When we say that there exists a solution (resp. relaxed solution) of (1.1) on /

with a given distribution function F0, as initial distribution, we mean that on some

probability space there is a Wiener process W and a random variable x0 having

F0 as its distribution function relative to which there is a solution (resp. relaxed

solution) of (1.1) on /.
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Theorem 3. Let (i), (ii) and (iii) be as in Theorem 1. Let a be continuous in xfor

each fixed t in I. Then there is a relaxed solution of (I.I) whose initial distribution

is that of x0. In fact, each process {y(t) : tel} of Theorem 2 is such a relaxed

solution.

Proof. For t% —12 we see that

\™(s,yM(s))dwinXs)-    ' <j(s, y(s)) dw(s)
Jii Jii

(1.9) ^ E f2 \a™(s, y™(s))-o(s,y(s))\2 ds
Jti

+ e\\2 a(s, y(s)) dww(s) - f2 a(s, y(s)) dw(s)

by the isometric property of the Itô integral. The first term on the right -> 0 because

of the continuity of a in the space variables and the growth condition (ii). That the

second term —> 0 is an easily verified fact concerning Itô integrals.

Hence there is a subsequence J2 of Jx such that with probability one

(1.10) f2 c^\s, yw(s)) dwin\s) ■•* f2 o(s, y(s)) dw(s)
Jti Jii

for an everywhere dense countable set of values of tu t2 as n -> co, n eJ2.

Now let v e Rd and let 8 be any positive number. Then from (1.7) we see that,

for n > 8 "1, with probability one we have

<yin\t2)-y^(t1),vy

S  Í 2 sup (Ad(s, y(n)(s)), vyds+/j2 a(n)(s, y(n)(s)) dw(n)(s), v\

for all ?! ̂  t2. But from the almost sure uniform convergence of y{n) to y we see that

lim sup       sup (A6(s, yln)(s)), v> ds ^       sup (A26(s, y(s)), vy ds.
neJ2       Jt1 Jti

Since this last is true for all S>0 we see that, with probability one,

<y(t2)-y(ti),vy

á  U sup <^(i, y(s)), vy ds + lim sup /    2 ain)(s, yM(s)) dwin)(s), v\

where the lim sup is taken over nej2. But then from (1.10) we see that with

probability one,

(1.11) <y(t2)-y(td,vy á  \ * sup <A(s,y(s)),vyds+((\(s, y (s)) dw(s),v
Jti \Jíi
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for all t\t t2'^t1 in an everywhere dense countable set. But then the sample con-

tinuity of the processes figuring in (1.10) allows us to conclude that it is satisfied

for all tu /2 = /*i. This proves the theorem.

2. One-sided  uniqueness  and  approximation  of relaxed  solutions.    We  now

restrict our attention to the case of a constant diffusion matrix, v. A relaxed solution

in this case is a process {x(t) : te 1} such that, with probability one,

(2.1) <*(/».)-x(/2), u> ̂        sup (A{s, x(s)), vy ds + ^owitu-owih), «>>

for all v e Rd and all t1 ̂  t2 in 7. A second characterization of relaxed solution is

given by

Proposition 3. A necessary and sufficient condition that a process {x(t) : t e 1}

which is almost surely bounded on I be a relaxed solution of

(2.2) dx = adt + cdw

is that, with probability one, the process {z(t) = x(t) — <jw(t), tel} have absolutely

continuous paths and

(2.3) dz(t)/dt e A(t, x(t))

for almost all t in I.

Proof. The sufficiency is clear. On the other hand if x is a relaxed solution then

it follows from (2.1) that

KzOO-zi/a), v}\ á  f * sup \<A(s, x(s)), »>| ds
Jt2

so that absolute continuity follows from the boundedness of the sample paths and

Condition L.

We can use (2.1) to conclude

{dz(t)ldt, vy £ sup (A(t, x(t)), vy

for all v e Rd. Relation (2.3) follows from this since a compact convex set is the

intersection of all half-spaces containing it.

The basic condition which we shall impose on the drift coefficient is the

following:

Condition M. For each N>0 there is a nonnegative function kN, integrable on I,

such that

(2.4) (a{t,x)-a{t,y),x-yy í kN(t)\x-y\2

if\x\<:Nand\y\<,N.
It is an easy exercise to prove

Proposition 4. If a satisfies Conditions L and M then

<A(t,x)-A(t,x),x-yy S kN(t)\x-y\2,        \x\ = N,    \y\ < N.
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We remind the reader that this is a set inequality the sense of which is that

(x'—y1, x—yy-¿kN(t)\x—y\2 for all x' e A(t, x) and y' e A(t,y).

Theorem 4. Let a satisfy Conditions L andM. Let x and y be two relaxed solutions

of (2.2) relative to the same Wiener process. Then if P{x(t0)=y(t0)}=\ then

P{x(t) = y(t) i t0 á t £ T) - f:

Proof. Let A(i) = *(/) — y(t) for t in 7. Then since o- is constant we see from

Proposition 3 that {A(?) : te 1} has absolutely continuous paths (a.s.) and

A(t)eA(t,x(t))-A(t,y(t)).

Therefore, for any N>0,

$d\A(t)2\/dtí(Á(t),A(t)y

^ sup (A(t,x(t))-A«, y(t)),x(t)-y(t)y á kN(t)\A(t)\2

for all t<rN = smaller of the first hitting times for x and y of the set {x : |x| = A}.

(We define ^=—00 if \x(t0)\ or |j(i0)| exceeds N.) Integrating this simple in-

equality results in

|A(0|2^ |A(i0)|»exp(2jt kN(s)ds}

for t0i=t<TN. Since A(i0) = 0 almost surely, the truth of the theorem follows

immediately since P{tn=— 00}^ 0 as JV^oo (sample continuity of relaxed

solutions!).

Theorem 5. Lei   (i)   cin): Rd + ' -> Rd   satisfy   Condition   L   and   |c(n)(/, x)\2

¿ b2(t)(l + \x\2) for all « ä 1 where b is as in Theorem 1 ;

(ii) a:Rd + 1^Rd satisfy Conditions L, M and |a(t, x)\2^b2(t)( 1 +1x\2);

(iii) c(n> converge to a in Lf0C(Rd + x) as n -> 00 ;

(iv) j<n>, a be dxd matrices, sln} -> a as « —> 00;

(v) each sin} be positive definite, i.e. <f, sln)£y>0for f ^0 in Rd;

(vi) j<n) ¿e a solution of

(2.5) a>(n) = c(n) o"í+í(n) a\v

w«ere w is a d-dimensional Wiener process;

(vii) x be the unique solution of (2.2) relative to the same Wiener process;

(viii) yX'o) converge in probability to x(tQ) ;

(ix) E{\x(t0)\2} and E{\/nXt0)\2}, «^ 1, Z>e bounded by a constant K.

Then for all t in I, y(n)(t) converges in probability to x(t).

Proof of Theorem 5. We first note that for any e>0 and any A>0

P{\y(nXt)-x(t)\ >e}< E{\xit)-^t)\^>}l.3+P{^ = 0}

where 0J"' is the indicator function of {supi6/ |/n)(*)| +supie; \x(t)\ <N}. But

p{ffl = 0} ¿ Pjsup |x(í)| > A/2|+P[sup |y»>(í)| ̂  A/21
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and since c(n) and a satisfy the same growth condition (i.e. (i) and (ii)) it easily

follows (as in Lemma 1) that E\yin)(t)\2 and E\x(t)\2 are bounded by a constant

kQ depending on b, T—t0, \a\ and k but independent of n. Therefore there is an

A>0 such that P{>/j^) = 0} is less than e/2. For this N, which we fix, we have

(2.6) P{\y™(t)-x(t)\ > e}< E{\x(t)-y^(t)W}/e2 + e/2.

Now let z(t) = x(t)—y + (s — a)(w(t)-w(t0)) for r in / where for the moment we

have suppressed superscripts. From Proposition 3 we conclude that {z(t) : tel}

has absolutely continuous paths and that

(2.7) z(t)eA(t,x(t))-c(t,y)

for almost all / in /. Obviously then {z(t)</iN : t e 1} also has absolutely continuous

sample paths and

(d/dt)^Nz(t) = >/>Nz(t) e </,NA(t, x(t))-c(t, y(t)).

Now

,„ „,   <M0, z(t)y = <<M(0, x(t)-y(t)y+(iNz(t), (s-v)(w(t)-w(t0))y
(2.5) ■    -   Ô1+Ô2,

where from (2.7) we see that

ß» Í sup (A(t, x(t))-c(t, y(t)), x(t)-y(t)y<pN

^ sup (A(t, x(t))-a(t, y(t)), x(t)-y(t)y>/>N

+ {a(t, y(t))-c(t, y(t)), x(t)-y(t)y^N

the supremum being taken over the elements of A. Now using Condition M and

Proposition 4 we have

Q1 ¿ kN(t)\x(t)-y(t)\2^ + 2NUa(t,y{t))-c(t,y(t))\

ú2k„(t)\z(t)\2>/,N + 2kíl(t)\s-o\2\w(t)-w(t0)\2

+ 2N>pN\a(t, y(t))-c(t, y(t))\.

Hence,

E{QJ i 2kN(t)E{\z(t)\24>N} + 2kN(t)\s-a\2(t-t0)

+2NEWMt,y(t))-c(t,y(t))\}.

But,

E&MU y(t))-c(t, y(t))\} Ú f        \a(t, £)-c(t, £)\p(t, 0 d$

where p(t, f) is the density function of the distribution P{y(t) < £}. It is here that

we make use of the nondegeneracy of the processes y (condition (iv)). We must
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have that the distribution of y be absolutely continuous relative to Lebesgue

measure in Rd. We therefore have

E{Qu í 2kN(t)E{\z(t)\2íN} + 2kN(t)\s-o\2(t-t0) + 2N2\\a-c\\N

where ¡| • \\N denotes the L2 norm over 7x{f : ||| 5¡N}.

On the other hand, using Cauchy's inequality we obtain

P{ß2} ^ {E{\z{t)\2^N}y'2{E{\s-c\2\w{t)-w{t0)\2^N})^2

while from (2.7) and (i) we see that

|z(/)|2-Aiv = 2¿2(0(l + |A|2).

Hence

E{Q2} ^ b(t)\s - o\(\ + N2)ll2(2\t - t0\Y>2.

Using these estimates in (2.8) we obtain

E{i(d/dt)\z(t)\2U < 2kN(t)E{\z(t)mN} + 2N2\\a-c\\N + i\s-a\gN(t)

where

gN(t) = 4kN(t)(t-t0)\s-c\ +b(t)(l +N2y2,(8\t-t0\Y'2.

But using the Fubini theorem, (2.9), (2.6) and the dominated convergence theorem

it is easy to see that

\{dldt)E{\z{t)\2U = E{i(d/dt)\z(t)\2iN}.

To this we apply a standard result on differential inequalities [8, p. 26] to conclude

that for t^t0 (note the one-sidedness!)

E{\z(t)\2*N} á E{\z{t0)\2^}k1+\\a-c\\Nk2+\s-a\k3,

where

ki = 4     kN(n) dn,

(2.9) A:2 = 4A2Â:1|P-i0|,

k3 = &i     gN(n) dn.

But E{\x(t)-y{t)\2U^2E{\z{t)\2>l,ll} + 2\s-o\2E{\w{t)-w(t0)\2} and z(t0) = x(t0)

-y(t0) so that

(2.10) £{|x(0-j(0|2« = P{|^0)-^(?0)|2«Â:4+||o-c|UÂ:5+|5-cr|Â:6

where /c4 = 2ku k5 = 2k2 and k6 = 2k3 + 4(|a|2 +1)|T—10\. The important observation

is of course that klt..., ke are independent of «. This being the case we see that

there is an «0 such that

£{|*(0-/n)(0IW} < i«3
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for all n>n0. Hence, from (2.6) we see that

P{\x(t)-y™(t)\   >e}<e

for all n>n0. Since e was arbitrary this proves Theorem 5.
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