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A THEORY OF FOCAL POINTS AND FOCAL INTERVALS

FOR AN ELLIPTIC QUADRATIC FORM
ON A HILBERT SPACEO

BY

JOHN GREGORY

Abstract. The theory of focal points and conjugate points is an important part

of the study of problems in the calculus of variations and control theory. Hestenes

has shown that for many problems this theory may be studied by Hubert space

methods. In a previous paper the author has extended the theory of Hestenes to

elliptic quadratic forms J(x; a) defined on %(a) where a is a member of the metric

space (S, p) and 21(a) denotes a closed subspace of 31. A fundamental part of this

extension is concerned with inequalities dealing with the signature s(a) and nullity

n(o) of J(x; a) on %(a) where a is in a p neighborhood of a fixed point oa in S.

The purpose of this paper is threefold. The first purpose is to show that the extended

theory includes the focal point hypotheses of Hestenes. The second purpose is to

obtain a focal point theory much like that of Hestenes. It is interesting to note that

our theory is based only on the nonnegative integers s(A) and n(X). This will facilitate

later work on numerical calculations of focal points. Our final purpose is to obtain an

abstract focal interval theory in which the usual focal points are (degenerate) focal

intervals.

While previous authors have considered specific problems, no general results for

the focal interval case seem to be contained in the literature. An expression for the

number of focal intervals on a subinterval (A', A") of [a, b] is given. This expression

is a key result for our work on approximation of focal intervals (to be published).

For completeness we give comparison theorems for focal point problems. In

addition an example is given for problems in optimal control theory. The corres-

pondence between our focal intervals and solutions to the differential equations of

the example is given.

I. Preliminaries. We now state the approximation hypothesis given in [3] and

[4] and the focal point hypothesis of Hestenes given in [6]. The former is contained

in (1) and (2), the latter in (3). 3Í will denote a Hubert space with inner product

(jc, y) and norm \\x\\ =(x, x)112. Strong convergence will be denoted by xq => x0 and

weak convergence by xq -*■ x0.

Let S be a metric space with metric p. A sequence {ar} in S converges to a0 in 2,

written ar -> a0, if limr= x p(ar, a0) = 0. For each a in S let 31(a) be a closed subspace

of 31 such that

Received by the editors June 29, 1970.

AMS 1969 subject classifications. Primary 4615, 49XX, 9340.

Key words and phrases. Focal points, conjugate points, calculus of variations, control

theory, Hubert space, quadratic forms.

O The preparation of this paper was sponsored in part by the U.S. Army Research Office

under Grant DA-31-124-ARO(D)-355. Reproduction in whole or in part is permitted for any

purpose of the United States Government.
Copyright © 1971, American Mathematical Society

119



120 JOHN GREGORY [June

(la) if CTr -> ct0, xr in 9((<rr), xr -> j0 then y0 is in 91(ct0)> and

(lb) if jc0 is in 2l(<70) and £>0 there exists S>0 such that, whenever p(o, a0)<8,

there exists x„ in 91(a) satisfying \\x0 — x„\\ <e.

For each a in S let J(x; a) be a quadratic form defined on 9i(a) with J(x, y; a) the

associated bilinear form. For r = 0, 1, 2,... let xr be in 9t(t7r), yr in 9l(ar) such that if

xr -> x0, yr => y0, and ar -* o0 then

(2a) limr= „ J(xr, yr; <jt)=J(x0, y0; a0),

(2b) lim infr= M /(xr; (rr)ä/(x0; <r0), and

(2c) limr= M J(xr; ar)=J(x0; o-0) implies xr => x0.

Let a, A be real numbers (a<b) and define A = [o, è]. Let {91(A) : A in A} be a

one parameter family of closed subspaces of 91 such that 91(a) = 0, 91(e) = 21. and

9i(A1)<=9I(A2) whenever Al7 A2 in A, A1<A2. In this paper we will require that one

(or both) parts of the additional hypothesis is satisfied :

(3a) 9t(A0) = nA0<AS6 51(A) whenever a^A0<è, and

(3b) 9((A0) = C1 (UasA<*0 *(*)) whenever a< X0^b.

Lemma 1. If 93 is a closed subspace of%, {xn}c93, xn^y0 then y0 in 93.

The proof of this lemma is straightforward and will be omitted.

In this paper we will consider (1) and (2) in the " A-setting". Thus we set 2 = A

= [a, b] and p(A1; A2) = | A2 — X11. We now show that the hypotheses in (3) are stronger

than those in (1). The converse of Theorem 2 holds in our setting and is left as an

exercise.

Theorem 2. Hypothesis (3) implies (1). In particular (3a) implies (la) while (3b)

implies (lb).

For (la) let Ar -»> A0, xT in 9I(Ar) and xr->y0. If there exists a subsequence {ArJ

such that Ar/c f A0 we have xrj£c:9((A0) so that y0 is in 9t(A0) by Lemma 1.

Thus assume Ar\ A0 and \^b. Let X be given and satisfy X0<X^b. By (3a)

there exists A such that rä N implies xr in 9i(X). By Lemma 1, y0 is in 91(A). Finally

y0 in 9t(A0) follows from (3a).

For (lb) assume x0 is 9t(A0) and £>0 are given. We assume XQ^a; if A0 = a the

result follows immediately as x0 = 0. From (3b) there exists X (a ^ A"< A0), x in 9i(X),

such that \\x — x0||<£. Let S^A0 — X. Then A^A0 —S implies X^A0 — S<A,

9l(A)<= 91(A) and hence x in 21(A). This completes the proof.

The form J(x) is elliptic on 9t if conditions (2b) and (2c) hold with J(x) replacing

J(x; a) and 91 replacing 9l(<r). Let J(x; A) denote the restriction of J(x) to 91(A). The

following theorem is immediate as J(x) is elliptic on 91.

Theorem 3. The forms J(x; A) satisfy hypothesis (2).

The signature and nullity of J(x) restricted to 9t(A) are now defined. The signature

(index) of J(x; A), written s(X), is the dimension of a maximal linear subclass 33 of

91(A) on which J(x; A)<0 for x#0. The nullity of J(x; A), written «(A), on 91(A) is

the dimension of the subspace ¥ of 9((A) where (ë={y in 91(A) | J(x, y; A) = 0 for
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all x in 31(A)}. We will denote the set # by 3C0(A). The symbolism s{X — 0) is used to

denote the left-hand limit of s{X). Similar remarks hold for s(A + 0), m(A —0) and

n(A + 0). We set ¿(a-0) = 0, n(a-0) = 0, and s(b + 0) = s(b) + n(b).

Theorem 4 has been given in [6].

Theorem 4. The quantity s(X) is the dimension of a maximal subspace S of

21(A) on which J{x; A) á 0 such that S n 2t0(A) = 0. The sum m(X) = s(X) + n(X) is given

by the quantity : The dimension of a maximal subspace 3¡ of 21(A) in which J(x ; A) 5¡ 0.

Thus the quantities s{X) andm{X) are nondecreasing functions on A.

A point A at which s(X) is discontinuous will be called a focal point oiJ(x) relative

to 21(A) (A in A). The difference /(A) = s (A + 0)-j(A-0) will be called the order of

A as a focal point. A focal point A will be counted the number of times equal to its

order.

II. Inequalities. We now give inequalities involving s(X) and «(A). We note that

inequalities (4), (5), and (6) have been given in the more general o-setting of

hypotheses (1) and (2). Thus they follow immediately by Theorems 2 and 3.

Theorem 5. Assume hypothesis (3a) holds. Let A0 in A be given. Then there exists

â > 0 such that A in A and | A — A01 < 8 imply

(4) i(A)+«(À) g s(X0) + n(X0).

In particular s(a + 0) = n(a + 0) = 0. Finally s(X0) + n(X0) = s(X0 + Q) + n(X0 + 0).

Inequality (4) holds by our discussion. The second result follows as s(a) + n(a) = 0.

The final result holds by Theorem 4.

Theorem 6. Assume hypothesis (3b) holds. Let A0 in A be given. Then there exists

S > 0 such that A in A and | A — A0| < 8 imply

(5) í(A0) Ú s(X).

In particular s (A0 — 0) = s (A0).

Inequality (5) holds by our discussion. The remaining result holds by Theorem 4.

Theorem 7. Assume hypothesis (3) holds. Let A0 in A be given. Then there exists

S > 0 such that A in A and | A — A01 < S imply

(6) s(\0) á s(AJ Ú s(X) + n(X) ¿ s(X0) + n(\0).

In addition we have, for such X,

(7) «(Ao) = 0 implies s(X) = s(X0) and m(A) = 0,

(8a) n(X)^n(X0), and

(8b) n(A) = n(A0) implies í(A) = j(A0) and m(X) = m(X0).

Theorem 8. Assume Xy^X2 in A implies SÎ^Aj) n 2I0(A2) = 0. Then a-¿X<X1<^b

implies s(X) + n(X)^s(X1). In addition if (3a) holds then s(X + Q) = s(X) + n(X). If (3)

holds thenf(X) = n(X) and the set AX={A in A | n(A)#0} is finite.
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For the first result let (€ = 3S @ 9t0(A) be a subspace of 9i(A) where 93 is a maximal

space such that x=£Q in 93 implies J(x; A)<0. By Theorem 4 we have s(A) + «(A)

^s(Xx). If (3a) holds we have the inequalities

¿(A + 0) á i(A + 0) + rt(A + 0) = w(A) + 5(A) ̂  ¿(A + 0).

Finally if (3b) also holds we have/(A) = ¿(A + 0)-¿(A) + ¿(A)-¿(A-0) = n(A). Thus

Ax is finite as s(b) is.

III. Focal point theory. We note that Theorem 9 characterizes the "usual"

focal point problem. In Theorems 10 to 13 we allow a nonzero vector x to belong to

9ío(^i) n 9i0(A2). This gives rise to a focal interval theory. For convenience we will

assume that (3) holds for the remainder of this section. The cases where (3a) or (3b)

hold separately will follow immediately with weaker results.

The following theorem follows immediately. It characterizes the usual focal point

problem.

Theorem 9. 7/(3) holds and //9I0(A1) n 9t0(A2) = 0 when Xx ̂ X2, thenf{d) = 0 and

/(A) = «(A) on a^X^b. Thus if X0 in A the following quantities are equal:

(9a) the number of focal points on a^X<X0,

(9b) the signature ¿(A0) ofJ(x) on 9l(A0),

(9c) the sum 2as\<\0 n(A)> and

(9d) the sum 2 [s(A¡ + 0) —¿(A¡)] taken over all A¿ such that a^A¡<A0 and s(X)

discontinuous at A¡.

We will denote the set {x \ J(x, y) = 0 for all y in 9t(A)} by 9i(A)J. Clearly 9I0(A)

= 9í(A)n9I(Ay.

Lemma 10. IfX1<X2 and x^Q in 9t0(A1) n 9t0(A2) then x in 9I0(A) for Xx ̂ A^ A2.

For A in A! ̂  A^ Aa we have 9i(A1)c9l(A) and 9t(Aayc9i(A)/. Thus 9t0(A1) n 9t0(A2)

= 9I(Aj) n 9C(A2)7c: 91(A) n 9l(Xy = 9l0(Xy.

Lemma 11. Ifx^Oin 9C0(A), Xx < X < A2, then x is in 9l0(A), Xx ̂ A S X2.

Clearly x is in 9I(A2). If x is not in 9i(A2y there exists y in 9i(A2) such that J(x, y)

= 1. We may choose sequences {/*„} and {yn} such that yn in 9t(^n), yn => y as ¡j.n / A2.

Thus 1 =J(x, y) = limn= x J(x, yy,) = 0. Thus x is in 9t0(A2).

Conversely if X satisfies A1<A<A2 then x is in 9l(Xyc9i(Aiy. But x is in

Oak a 9i(A) = 9l(A1). Thus x is in ^(X,).

Theorem 12. Ifx # 0 in 9(0(A1) n 9t0(A2), Ax ̂ A2, then there exists a closed interval

Ai ={A | A' á A ̂ A"} of A such that {X | x in 9(0(A)} = Ax.

Let A' = glb {A | x in 9i0(A)} and A" = lub {A | x in 9t0(A)}. By Lemma 10, x is in

9t0(A), A' < A < A". The theorem now follows by Lemma 11.

Theorem 13 restates inequalities involving the indices s(X) and «(A) which

characterizes focal interval problems.
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Theorem 13. Let X0 be given such that a<X0<b. Then the following inequalities

hold.

(10a) j(Ao-0)=j(Ao), i(Ao+0)^j(Ao),

(10b) n(Ao)^fi(Ao-0), n(A0)^«(A0 + 0),

(10c) i(A0 + 0)-5(A0) = /î(A0)-«(A0 + 0)^0.

All results have been given above.

It is instructive to "describe" two types of focal point phenomena. For conven-

ience we will describe the first type as "focal point theory" and the second type as

"focal interval theory." In the former, a vector x#0 cannot be a / null vector of

two distinct spaces 2l(Ai) and 2i(A2), A^A^ In the latter case a vector x/0 is a /

null vector of 31(A) (A in A^ where Ax is a closed subinterval of A. We allow A

to be a singleton. Thus focal points are focal intervals.

Focal Point Theory is characterized by Theorem 9. A graph of A versus 5(A)

shows that the discontinuities in s(X) are at points at which n(A)#0; in fact the

value of the jump at A is n(A).

Focal Interval Theory is characterized by Theorems 12 and 13. A graph of A

versus s(X) and «(A) shows that the points of interest are those in which «(A) is dis-

continuous. If the nullity is increasing at A, «(A) is continuous from the right. If

the nullity is decreasing at A, «(A) is continuous from the left and the signature

increases by an amount equal to «(A) —n(A + 0).

We continue our study of focal interval theory by defining "focal intervals".

For this purpose we assume Aj < A2 < ■ ■ ■ < Ap are the distinct focal points on A

where e¡ will denote the order of A¡ as a focal point. For convenience the space

3I0(A) will be called the J null vectors of 31(A). Let E¡ denote the J null vectors of

3Í(A¡) which are not J null vectors of 31(A), A > A¡. The following procedure is given

to make "focal intervals" well defined.

To obtain the e1 focal intervals 71(..., Iei associated with (which end at) Ax we

proceed as follows: choose 7i = [íu, AJ where |11 = min{A^A1 | x in 3t0(A) for

some x#0 in EJ. Let ïn be the vector giving |ai. Choose 72 = [f21, AJ where

£21 = min {A¿ X± I x in 3I0(A) for some x^O in E± and (x, x11) = 0}. Let x21 be the

vector giving £21. ■ • • Choose Iei= [£eil, AT where |eil = min {Aá Ax | x in 2I0(A) for

some x#0 in E1 and (x, xkl) = 0; k=l,..., e1 — 1}. If xexl is the vector giving £Cll

then 3I0(A1) is the direct sum of the span of {xlux21,.. .,xeil}and2I0(A1)n3t0(A1-|-0).

With obvious modifications we define the e2 focal intervals Iei + 1,..., Iei + ea

associated with A2;... ; the ep focal intervals Ik,..., I¡ associated with Ap (A: = ex

+ e2-\-r-ep-i+1; l=e1 + e2-\-\-ep).

Let A', A" in A with a ^ A' < A" ̂  b. We denote the number of focal intervals on

(A', A") by /(A', A"), the number of focal intervals on (a, A") containing the point A'

by g(A\ A"), and the dimension of the space 2I0(A') 0 2I0(A') n 2l0(A") by rn(X', A").

Lemma 14. IfX',X"in A,agA'<X"<b,thenf(a,X")=f(a,A')+/(A',A")+g(A',A").
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/ is a focal interval on (a, A") if and only if it satisfies one of the following three

mutual exclusive descriptions: lis a focal interval on (a, A'), lis a focal interval on

(A', A"), or I is a focal interval on (a, A") containing A'.

Lemma 15. If X in A then f(a, A) = ¿(A).

The result follows by the definition of Ik.

Lemma 16. If a^X'<X"<b then g{X',X") = rn(X',X").

The number of focal intervals on (a, A") containing A' is equal to the number of

null vectors of 9t(A') not contained in 9l(A").

The next result now follows immediately.

Theorem 17. If A', A" in A, a^X"<b, then

(11) /(A', A") = ¿(A")-¿(A')-r«(A', A").

We note for completeness that Hestenes, in unpublished notes, has proven the

following result: If ^ is a closed subspace of 91 then s($l) = s(ß) + s(881) + rn{ßff)

where SS1 are the /orthogonal vectors ofá?, rn{ß) is the dimension of 3S0Q 38 Q n 9t0.

Thus the number of focal points on (A', A") is equal to s(â8J).

Let m(X', A") denote the dimension of the space 9Í0(A') n 9Í0(A"). Noting that

n(X') = rn(X', X") + m(X', A") we have

Corollary 18. If A', A" in A, a ¿A' <A"<b, then

(12) /(A', A") = ¿(A")-[¿(A') + «(A')] + w(A', A").

IV. Comparison theorems. We now consider comparison theorems for focal

point problems. These results have been given by Hestenes [6] and Lopez [8] and

are included for completeness. We note that these results depend only on the dis-

continuity of ¿(A) and not upon what the discontinuity is due to. Thus we need not

assume that either (3a) or (3b) hold.

Theorem 19. Let 91* be a subspace of H, 9l*(A) = 91(A) n 91* for X in A. Let

Aj ̂  A2 í£ ■ • ■ á Am be the focal points of J(x) relative to 91(A), A in A and let

Xx ̂ A2 ̂ • ■ • ̂  A*, be the focal points of J(x) relative to 9l*(A), A in A. Then the

relations

(13a) K^X*        (r=l,...,m*)

hold. If 91* = 91 © 2, tí*=dim 3¡ then we have in addition

(13b) A* r£ Ar + d

provided that r + d^m.

Theorem 20. Let J*(x) be a second quadratic form on 9Í such that J*(x)^J(x)

on 9Í. Let Ax ̂  A2 ̂  • • ■ á Am and A* á A| á ■ ■ ■ ̂  A*, be respectively the focal points

of J(x) and J*(x) relative to 9i(A), A in A. Then the inequalities

(14a) Ar ̂  Ar*       (r = l,...,m*)
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hold. If (6.1d) holds andJ*(x)>J(x)for all x^O in 2t then

(14b) Ar < A*       (r = 1.....W*).

V. An example. We now consider an example to simultaneously illustrate the

usual focal point phenomena and focal interval phenomena. The setting will be in

the theory of optimal control problems. Many details for this example are found

in [9].

An element x of 2Í is an arc

x:x\t),   u\t)   (a¿t£b)      (i = 1,...,«; k = 1,.. .,q)

where x\t) and uk(t) are Lebesgue square integrable functions. The subspace 93 of

2Í will denote all arcs which also satisfy

(15) x = Ax + Bu   and    C*x{a) = 0.

Finally <€ will denote all arcs x in âS which also satisfy x(b) = 0.

The quadratic form

J(x) = x*(a)Dx(a)+     2w{t, x, u) dt
Ja

is assumed elliptic relative to the inner product

(x, y) = x*(d)y(d)+     (y*x + v*u) dt
Ja

where

x:x{t),   u{t),       y.y(t),   v(t),

and

2oj(t, x, u) = x*Px + x*Qu + u*Q*x + u*Ru.

In the above let "*" denote the transpose of a matrix. The matrices A, B, C, and

D are respectively nxn,nxq, nxr and nxn constant real matrices where the rank

of C is r S n ; P(t) and Q(t) are nxn and nxq Lebesgue square integrable matrices

on [a, b] with P{t)=P*{t); and R{t) = R*(t) is a qxq essentially bounded and

Lebesgue integrable matrix on [a, b] satisfying R(t) ê el almost everywhere for

some £>0. The ellipticity of/is a consequence of the fact that R is positive definite

in this sense.

For each A in [a, b] let i?(A) be given by <ë{X) = {x in % | x(t)=0, u(t) = 0 a.e. on

A Ú t ^ b}. Let s(X) and «(A) denote the signature and nullity of J(x) on ^(A). We

note that X1 < X2 implies ^(A^c^A^ and that (3) holds with ^ and ^(A) replacing

2Í and 2i(A) respectively.

Intuitively the difference between the usual focal point phenomena and focal

interval phenomena is the concept of abnormality. In the latter case a nonzero

solution of Euler's equation (satisfying the transversality conditions) is allowed

to equal zero on a subinterval of [a, b]. This is impossible in the former case.
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Mikami [9] has shown that if the matrices A and P are analytic in [a, b] then, for

such solutions, x(t) = 0 on some proper subinterval [a1, b'] of [a, b] implies x(t) = 0,

u(t) = 0 a.e. on [a, b]. Thus all focal intervals degenerate to focal points in this case.

As our final effort we will consider focal intervals in the setting of this example.

Of special interest are the differential equations and boundary conditions associated

with extremal solutions and their correspondence with the null vectors and focal

intervals of §111. We note that the notion of focal intervals in an optimal control

setting was suppressed in [9]. Hazard [5] defines focal intervals for the problem of

Bolza in the calculus of variations setting, in terms of differential equations and

"side" conditions.

An arc x in 93 n <£J is called a focal arc. From [9] we have : x is a focal arc if and

only if there exists an adjoint vector p = (p1,..., pn) and constant multipliers

v = (v1,..., vr) such that the vector

xp:x(f),   u(t),   p(t)

satisfies the Euler-Lagrange equations

x = Ax + Bu,       p + A*p = wx,       B*p = wu,

the end conditions C*x(a) = 0, and the transversality condition p(a) = Dx{a) + Cv.

In the above/?' is absolutely continuous and/)' is Lebesgue square integrable on the

interval [a, b]. Thus

Theorem 21. Ifx^Oisin %(X) for X in I=[X', A"], and not in ^0(A) for X in an

extension of I; there exists a focal arc y which is identically zero on I and not iden-

tically zero on an extension of I, such that x(t)=y(t) on [a, A"] andx(t) = 0 on [A', b].

This follows for if x in ^0(X"), it coincides with a focal arc y on the interval [a, A"].

The arc y has the properties of the theorem.

The converse is not true. For if y is a focal arc described in Theorem 21 there may

exist a focal arc z which is zero on [a, A"] and satisfies z(t)=y(t) on [A", X] for

A" < Xa b. The focal arc y1=y — z"extends" the interval on which x is a null vector.

That is x is in ^a{X) for A in [A', X]. This discussion partially motivates the following

definition.

Let a < A' ̂  A" ̂  b. A focal arc y is called a maximum focal arc associated with an

interval 1= [A', A"] if (i) y is identically zero on I, (ii) y is not identically zero on an

extension of I, and (iii) there exists no focal arc yx having yi(t)=y(t) on an exten-

sion of I to the left and yi(t) = 0 on an extension of I to the right. By "extension"

we mean an interval extension which includes /. This definition was used by Hazard

[5] to define focal intervals.

The condition "(iv) there exists no focal arc y2 having y2(t)=y(t) on an extension

of I to the right and y2(t) = 0 on an extension of I to the left" is necessary to our

definition. However it is redundant, for if y2 satisfies (iv) the arc yx=y—y2 satisfies

(iii) and conversely.
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The interval 1= [A', A"] will be called a maximum focal interval if there exists a

maximum focal arc associated with I. The order of the maximum focal interval is

the member n of linearly independent maximal focal arcs yu ..., ynina maximum

set, every proper linear combination corresponding to I.

Theorem 22. Let x = xkl in ^0(A), A'^ASA", be a null vector associated with a

focal interval I=Ikl = [X', A"] described in §111. Then there corresponds a unique

maximal focal arc y associated with I such that x(t)=y(t) on [a, A"] and x(t) = 0 on

[A', b].

Let xlt..., xmhe a maximum set of m linearly independent arcs associated with

a focal interval I=Ikl described in §111. By Theorem 21 there exists focal arcs

Ji, • • -, y m vanishing on I and no extension of/such thatxi(i)=jj(/) for t in [a, A"];

furthermore xt(t) = Q on [A', b]. If ajyj(t) = 0 0=1,.. .,m;j summed) on a^tf^b

then ajxj(t) = 0 on a^t<b so that a, = 0 for j= 1,..., m. Thus if / is a maximal

focal interval of order n we have n^m.

Conversely if n>m there exists m+\ linearly independent maximal focal arcs

yu ■ ■ ■> ym + i associated with /. Let Xt(t)=yt(t) on ta> ̂ "] ar>d *i(0 = 0 on t^'> b] for

/=l,...,m+l. Leta1(..., am + ! be real and chosen such that a;ay/0 and ajxj(t)=0

on [a, b] for 7=1,..., m+\;j summed. Then <xy_y/r) = 0 for t in [a, A"] which

contradicts the requirement that every proper linear combination vanish only

on /.

Corollary 23. If X in [a, b] then s(X) is equal to the number of maximal focal

intervals on the open interval (a, A).

This result follows immediately from Lemma 15.
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