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Abstract. Sufficient conditions are given so that the multicoherence degree of

continua is not raised when taking inverse limits. These results are then applied to

inverse limits of special types of spaces.

1. Introduction. In §3 we prove a structure theorem (Theorem 6) for arcwise

connected inverse limits of circles (with onto bonding maps). We use results

announced in [11] that relate the theory of multicoherence to inverse limits. In §2

we sketch proofs of some of the results in [11].

Throughout this paper a continuum is a compact connected Hausdorff space

containing more than one point. For the notation and terminology relating to

inverse limits, see [4] and [7]. In particular, XlÁ denotes projection from the inverse

limit space into the Ath factor space. All notation and terminology in this paper

pertaining to multicoherence or to property (b) can be found, for the metric case,

in [14]. Since the results we use from [14] are valid for (nonmetric) continua

without essential changes in the proofs, we shall frequently refer to results in [14]

as though they were stated for the more general class of continua.

2. Multicoherence and inverse limits. If A' is a continuum, then we say that X

has multicoherence degree k [14, p. 83] provided

lub {r(Xu X2): X± and X2 are subcontinua of X with X± u X2 = X} = k,

where r(Xu X2) denotes the number of components of X^ n X2 less one. The

multicoherence degree of Xis denoted by r(X). We note that r(X) = Ois equivalent

to X being unicoherent.

Lemma 1. Let X denote the inverse limit of an inverse system {XA,fau, A} of

compact Hausdorff spaces X^. If XA has no more than I components (where /<co is

fixed) for each A e A, then X has no more than I components.
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Proof. Suppose that X has more than / components and let Ku K2,..., Kl + l be

l+l distinct components of X. For each z'=l, 2,..., /+1 and j=\, 2,..., /+1

with /Vy let A,,/ = {A e A : nA(7\¡) and UA(Kj) lie in the same component of XA}.

Since for each AeA there exist two of the components K1, K2,..., Kl + l that

project down into only one component of A"A, {Au : 1 ̂ /^/+ 1, 1 újúl+i, and

/ ¥1j} = A. Since there are only a finite number of the sets A¡ tj, at least one of them,

sayA¡0 Jo, is cofinal in A. It follows from 2.1 of [4, p. 234] that, for each AeA, nA(7C¡0)

and YlA(KJ0) are in the same component CA of A"A. Since Kio is the inverse limit of the

inverse system {fïA(Kio),fAll\UA(Kio), A} and KJ0 is the inverse limit of the inverse

system {YlA(KJo),fAlÀ\ïlA(Kh), A} (see 2.8 of [4, p. 235]), K¡0 and KJ0 are each con-

tained in the inverse limit of the inverse system {CA,fAu\CA, A}. Since the sets CA

are compact and connected, their inverse limit is connected (2.10 of [4, p. 236]) and

this contradicts the assumption that Kio=£KJ0.

Theorem 1. Let X denote the inverse limit of an inverse system {XA,fA¡1, A} of

continua XA. If r(XA)^k (where k<co is fixed) and each bonding map fAll maps XA

onto Xu, then r(X)^k.

Proof. Let A and Pbe subcontinua of A" such that A u P=A"and let C = A n B.

Since nA maps A'onto A"A (see 2.6 of [4, p. 235]) and r(Xj)1kk for each /= 1,2,...,

fïA(A) n IIA(P) has no more than k+\ components. Applying 2.9 of [4, p. 235]

and Lemma 1 above, we see that C has no more than k+ 1 components. Hence,

r(X)Sk.

Remark. The inequalities in Theorem 1 cannot be strengthened to equalities;

for the dyadic solenoid, the inverse limit of circles with the onto bonding maps

z —*■ z2, is well-known to be indecomposable and therefore unicoherent. Even a

locally connected inverse limit space may be of strictly smaller multicoherence

degree than each of the factor spaces. This is easily deduced from example (1) of

[9, p. 203] and Theorem 1 of [8].

Corollary 1. Let X denote the inverse limit of the inverse system {XK,fAil, A}

of continua XA. If XA is unicoherent and each bonding map fAtt maps XA onto Xu, then

X is unicoherent.

Remark. Without ontoness of the bonding maps the inverse limit of unicoherent

continua need not be unicoherent (see the Example on p. 412 of [11]). However,

if each space is a unicoherent locally connected metric continuum, then the inverse

limit is unicoherent (without assuming the bonding maps are onto). To see this,

note that under the assumptions above each space has property (b) [14, p. 228]

which is equivalent to its first Cech cohomology group (over the integers) being

zero [5]. Therefore, by the continuity of Cech theory, the inverse limit has property

(b) and, thus, is unicoherent [14, p. 227] (note that the inverse limit space may not

be locally connected). I thank Professor John Isbell for simplifying my original

proof of this.
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The next theorem gives sufficient conditions in terms of the bonding maps in

order that the degree of multicoherence be preserved. Capel's results on arcs and

simple closed curves [4, p. 244] can be easily obtained from it. Recall that a con-

tinuous function/from a continuum Y into a continuum Z is said to be monotone

if and only if f~\f(y)) is a continuum for each y e Y.

Theorem 2. Let X denote the inverse limit of the inverse system {XK,fKll, A} of

continua XA. Ifr(X^) = k (where k<co is fixed) for all A e A and each bonding map

fKu is a monotone mapping of Xx onto Xu, then r(X) = k.

Proof. By Theorem 1 above, r(X)^k. Let A0 e A. Use 4.2 of [4, p. 241] and

8.62 of [14, p. 154] to conclude that r(XAo)Sr(X), i.e., k^r(X).

The proof of Theorem 3 below is immediate from 2.8 of [4, p. 235] and Theorem 1

above.

Theorem 3. Let X denote the inverse limit of an inverse system {XK,fKu, A} of

compact Hausdorff spaces AV If each subcontinuum of XA has multicoherence

degree ^k (where k<co is fixed) for all A e A, then each subcontinuum of X has

multicoherence degree ■¿k. Thus, if XK is hereditarily unicoherent for all A e A, then

X is hereditarily unicoherent.

Throughout the rest of this paper we consider only countable inverse systems

indexed by the natural numbers. For convenience we denote the bonding map

from the (;+l)st space Xi + 1 to the ith space Xt by / and we denote the inverse

sequence by {Xt,fi}¡°=1.

We now apply some of the theorems above to inverse limits of dendroids and

dend rites. A dendroid is an arcwise connected metric continuum such that each

subcontinuum is unicoherent. A dendrite [14, p. 88] is a locally connected metric

continuum which contains no simple closed curve.

Theorem 4. Let X denote the inverse limit of an inverse sequence {A,/}f" i where

A is a dendroid for each /= 1, 2,....

1. If X is arcwise connected, then X is a dendroid or a singleton.

2. If X is locally connected, then X is a dendrite or a singleton.

3. If D{ is a dendrite and f is a monotone mapping of A + i into A for each

i= 1, 2,..., then X is a dendrite or a singleton.

Proof. Without using any of the hypotheses in 1,2, or 3, we know from Theorem

3 that each subcontinuum of A'is unicoherent. This proves 1 ; it also proves 2 since

a locally connected dendroid is a dendrite. To prove 3 note that, by 2.8 of [4, p. 235],

A'is the inverse limit of the inverse sequence {ni(A'), g¡}¡™ 1 where gi=/|LTi + 1(A)

for each i=\, 2,.... It is not difficult to verify that, since every subcontinuum of

A is unicoherent for each /'= 1, 2,...,g¡ is monotone for each /= 1, 2,.... Also

gt maps ni + 1(A0 onto U^X) (see 2.8 of [4, p. 235]). Therefore, by 4.3 of [4, p. 241],

A"is locally connected. Part 3 now follows from part 2.
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In [4, p. 244] Capel proved that the inverse limit space of an inverse sequence of

arcs with monotone onto bonding maps is an arc. Fort and Segal [7, p. 256]

generalized Capel's result by requiring not that the bonding maps be monotone

but only that the inverse limit space be locally connected. We now (Theorem 5)

extend the result of Fort and Segal concerning arcs by only requiring that the

inverse limit space be arcwise connected. Most of the proof of this result appears

in [11]. However, we include here the following lemma which verifies the second

sentence of the proof in [11].

Lemma 2. If a dendroid is not an arc, then it contains a triod.

Proof. Let A'be a dendroid. Note that if two arcs in A" intersect, then their union

is either an arc or contains a triod. Suppose X does not contain a triod. Then a

countable dense subset of X can be used to construct a monotone increasing

sequence of arcs whose union is a dense subset of X. By Lemma 3 of [3] such a

union must be contained in an arc, and it now follows that A" is an arc. This estab-

lishes a contradiction and completes the proof of the lemma.

Theorem 5. Let X denote the inverse limit of an inverse sequence {At,fi}¡% ». where

A¡ is an arc for each i= 1, 2,.... If X is arcwise connected, then X is an arc or a

singleton.

Proof. By Theorem 4, A" is a dendroid or a singleton. If A" is neither an arc nor a

singleton then, by Lemma 2, X contains a triod T. Using 2.8 and 2.11 of [4] we see

that T is an inverse limit of arcs, a contradiction (see the remark below).

Remark. Using Lemma 1 above it is easy to give a direct proof that a triod is

not an inverse limit of arcs (we could also use Theorem 4 of [7]). There is a well-

known theorem (which could also be used to justify the contradiction at the end

of the proof of Theorem 5) that a metric continuum is chainable if and only if it is

the inverse limit of an inverse sequence of arcs. Hence, Theorem 5 proves that the

only arcwise connected chainable metric continuum is an arc. See "Added in

proof".

3. Arcwise connected circle-like continua. In this section we use material from

§2 of this paper and from [12] to obtain information about the structure of arcwise

connected inverse limits of circles (with onto bonding maps). We point out that a

very simple proof of the second part of Theorem 4 of [7] (which says that a locally

connected inverse limit of circles with onto bonding maps is a circle) can be

obtained using some of our results in §2.

We will use the terms simple closed curve and circle interchangeably to mean a

space homeomorphic to {z in the plane: \z\ = 1}.

Theorem 6. Let X denote the inverse limit of an inverse sequence {Si,f¡\^L1 where

St is a simple closed curve andfi maps S¡ + ». ohto S{for all /= 1, 2,.... If X is arcwise

connected, then either
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1. X is a simple closed curve, or

2. X can be written in the form A u C where A is an arc, C is a chainable metric

continuum with exactly two arc components, and A n C is exactly the two noncut

points of A. Furthermore, the two points of A n C are opposite end points of C.

Conversely, a metric continuum satisfying 1 or 2 is an arcwise connected inverse

limit of circles with onto bonding maps.

Proof. First note that by 2.8 and 2.11 of [4]

(a) X is fl-triodic, and

(b) each proper subcontinuum of X is chainable.

By Theorem 1, r(A)á 1. Suppose r(A") = 0. Then it follows from (b) that A' is a

dendroid. Thus, by Lemma 2 and (a), A'must be an arc. However, a simple applica-

tion of Lemma 1 (or direct use of Theorem 4 of [7]) shows that A" cannot be an arc.

Thus, r(X)=£0 which implies that r(A") = l. Let E and F he subcontinua of A" such

that X=E u F and E r> F is not connected. Assume first that E and F are each

arcwise connected. Then, from (b) and Theorem 5 above, E and F are each arcs.

Thus, since E n Fis not connected, E u F contains a simple closed curve S. But,

by (b), S must equal A'which proves that A" is a simple closed curve. From now on

we assume that at least one of E and F is not arcwise connected, say F. Suppose F

had three (or possibly more) distinct arc components Fu F2 and F3. Let ß he an arc

in X with one noncut point in F» and the other in F2 and let y be an arc in X with

the same noncut point in F2 as ß and with the other noncut point in F3. Ifß u y = X,

then the non-unicoherence of X would imply X contained, and therefore was, a

simple closed curve; this would contradict the assumption about F. Hence, ß u y

is a proper subcontinuum of X. From (b) above and the local connectivity of

ß u y, it now follows that (Suy is an arc. Now since each component of

F n (ß u y) is a subcontinuum of ß u y, each such component is an arc. Hence,

there are at least three such components, so r(Fu (ß u y))^2 which contradicts

the proven fact that r(X)= 1 (clearly Fu (ß u y), not being unicoherent, cannot

be chainable; so by (b), Fu (ß u y) = X). Since Fis not arcwise connected, we

have now proved that F has exactly two arc components. Also, F being a proper

subcontinuum of A, Fis a chainable metric continuum. Let C=F. To show how

to pick A and verify the properties of A n C we use the following lemma which is

the main result of [12].

Lemma 3. If a chainable metric continuum has exactly two arc components, then

one of them is an arc and the other is a half-ray (i.e., homeomorphic to [0, co)).

So, by Lemma 3, one of the arc components of C is an arc and the other a half-

ray. Denote the one which is an arc by I and the one which is a half-ray by H.

Let h denote the noncut point of H. Let a be an arc in X with one noncut point

being h and the other a point of I. Using (a) and the fact that H is not contained in

an arc, it is easy to see that a n H={h). It is also easy to see that a n 7 is an arc

or a point which includes at least one noncut point of I. If a n I includes only one
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noncut point of 7, then let e denote that noncut point. If a n 7 includes both noncut

points of 7, then let e denote the noncut point of 7 which is a cut point of a. Let A

be the subarc of a with e and « as its two noncut points. Clearly, A n C is exactly

the two noncut points of A. We now show that « and e are opposite end points

of C (in the sense of [1, p. 661]). Using that C is o-triodic [1, p. 653] (in particular,

we use that 77 contains at least one noncut point of 7) and Lemma 3 above it is

easy to verify (A) of [1, p. 660] for the point h and therefore, by Theorem 13 of [1,

p. 661], « is an end point of C. Furthermore, if 77=>7, then Lemma 3 above and (A)

and Theorem 13 of [1] can be used again to show that each of the noncut points

of 7 (thus, in particular, e) are end points of C; it then follows, using Theorem 14

of [1, p. 661], that h and e are opposite end points of C. Now we consider the case

when H$>I. If ee77, then A u 77 would not be unicoherent (because An H

would equal {«, e}) but would be a proper (because 77:b7) subcontinuum of X,

contradicting (b) above. Thus, e $ 77. It is now easy to see that

(*) any subcontinuum of C containing e and some point of 77, must contain 7.

Using (*) it is easy to verify (A) of [1, p. 660] for the point e and thus, by Theorem

13 of [1, p. 661], e is an end point of C. It is also easy to see, using (*), that C is

irreducible between « and e and therefore, by Theorem 14 of [1, p. 661], « and e

are opposite end points of C. This completes the proof of the necessity of conditions

1 and 2 of the theorem.

Conversely, let A be a metric continuum satisfying 2 (the case when X satisfies 1

is trivial) of Theorem 6. By Lemma 3 one of the arc components of C, denoted as

before by 77, is a half-ray and the other, denoted by 7, is an arc. Since the two

points of A r\ C are opposite end points of C, one of the points in A n C is the

noncut point h of H and the other is a noncut point e of 7. From the fact that A

intersects both 77 and 7 it follows easily that Zis arcwise connected. We now show

that X is an inverse limit of circles with onto bonding maps. Let e>0. Let

U={UU ..., Un} be a finite number of open subsets of C such that U is an e-chain

from « to e covering C [1, p. 661]. Let \N(U)\ denote the (geometric) realization of

the nerve of (7; note that \N(U)\ is topologically an arc. Let Y: C-^ \N(U)\ be a

canonical mapping relative to U [6, p. 286]. Since« e (U1— U2) and e e (Un— <7n_i),

Y(«) is one of the noncut points of |A(£/)[ and Y(e) is the other noncut point of

\N(U)\ (this follows directly the definition of canonical [6, p. 286]). It is also easy

to see that, since diam (£/,)<£ for all i—\,...,n, Y is an e-mapping. Let S1

denote the unit circle in the plane, let S\={(x, y) e S1 : y^O}, and let

Si ={(x, y) e S1 : y^O}. By following Y with a homeomorphism of \N(U)\ onto

S+, we obtain an e-mapping/of C onto 5+ ; without loss of generality we may

assume/(«) = ( — 1, 0) and /(e) = (1, 0). Since A is an arc with noncut points « and

e, there is a homeomorphism g of A onto SI. such that g(«) = (— 1, 0) and g(e)

= (1, 0). The function which is/on C and g on A is an e-mapping of X onto S1.

Since e was arbitrary, the fact that X is an inverse limit of circles with onto bonding

maps now follows from Theorem 1 of [8], This completes the proof of Theorem 6.
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Remark. Just as there are uncountably many topological types of chainable

metric continua with exactly two arc components [12], so there are uncountably

many topological types of arcwise connected inverse limits of circles. However,

Theorem 6 above and Theorem 1 of [12] (stated as Lemma 3 above) determine to a

large extent the structure of such continua.

Corollary. If X is an arcwise connected inverse limit (with onto bonding maps)

of circles, then X is embeddable in the plane.

Proof. By Theorem 6 (see the first remark below) such an X is decomposable

and therefore, by Theorem 2 and Theorem 3 of [13], Zis embeddable in the plane.

Remark. Theorem 6 states a specific type of decomposition for such an X.

However, any arcwise connected metric continuum is decomposable (this is easily

seen by using an argument involving composants). This general fact could have

been used here.

Remark. Two other proofs (these depend on the geometric character of X as

given in Theorem 6) of the Corollary above can be given. Theorem 6 could be

used to verify the hypotheses of Theorem 4 of [2] and thus prove that X is embed-

dable in the plane. Yet another proof could be based on Proposition 2 of [10] by

using Theorem 6 to show directly that H\X, Z) is infinite cyclic.

Added in proof. It was pointed out to me recently by W. S. Mahavier that

Theorem 5 in the form of the Remark following it was noted in a paper by him

and M. Friedberg entitled Semigroups on chainable and circle-like continua, Math.

Z. 106(1968), 159-161.
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