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THE LOGARITHMIC LIMIT-SET OF AN

ALGEBRAIC VARIETY

BY

GEORGE M. BERGMAN^)

Abstract. Let C be the field of complex numbers and V a subvariety of (C— {0})".

To study the "exponential behavior of Vat infinity ", we define V£> as the set of limit-

points on the unit sphere S1"-1 of the set of real n-tuples (ux log |jci|, .. ., ux log \xn\),

where xeV and «* = (l + 2 (log |^¡|)2)_1'2. More algebraically, in the case of

arbitrary base-field k we can look at places "at infinity" on Kand use the values of

the associated valuations on Xu ..., X„ to construct an analogous set KÏ'. Thirdly,

simply by studying the terms occurring in elements of the ideal / defining V, we

define another closely related set, KS'.

These concepts are introduced to prove a conjecture of A. E. Zalessky on the

action of GL{n, Z) on k[Xtx,.... X^1], then studied further.

It is shown among other things that V£1= K£'2 (when defined) K£?'. If a certain

natural conjecture is true, then equality holds where we wrote " =?", and the common

set Va^S"'1 is a finite union of convex spherical polytopes.

1. A conjecture of Zalessky. Let A: be a field, and k[X±] = k[X11,..., Xf1]

the ring obtained by adjoining « commuting indeterminates and their inverses to k.

This is the group algebra on the free abelian group of rank «, Zn, so GL(n, Z) has a

natural action on it.

Call a subgroup of Zn nontrivial if it is of infinite order and infinite index in Zn;

and call an ideal I^k[X±] nontrivial if it is of infinite dimension (i.e., nonzero)

and infinite codimension in A:[A'±] as Ac-vector spaces. A. E. Zalessky conjectures

in [1, Problem V.9], and we shall here prove:

Theorem 1. Let I be a nontrivial ideal in k[X± ], and 77c <JF(«, Z) the stabilizer

subgroup of I. Then H has a subgroup 770 of finite index, which stabilizes a nontrivial

subgroup of Z" (equivalently, which can be put into block-triangular form

loi*/1
in GL(n, Z)).
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The conclusion is equivalent to saying that some nontrivial subgroup of Zn

has finite orbit under the action of H, and hence to the statement that H stabilizes

some finite family of nontrivial subgroups of Zn. We shall prove it in this last form.

The proof is sketched conceptually for k = C, the complex numbers, in §2. In §3

a version of the proof valid for any k is given.

In the remaining §§4-8, we shall formulate precisely and study further the basic

concept used in these proofs: the set of "logarithmic points at infinity" of a variety.

(Note. An ordinary polynomial ring k[X] = k[Xu ..., Xn] can be looked at as

the symmetric tensor algebra on the n-dimensional A>vector space kn, and so a

natural action of the automorphism group of this space, GL(n, k) on k[X] is

induced. The analog of Zalessky's conjecture for this action is not true. E.g., the

stabilizer of the principal ideal generated by (2 X2) — 1 is the orthogonal group

0(n, k), but this stabilizes no finite family of subspaces of kn, when n 2:3 and k is

infinite.)

2. Assume k = C, and let V^(C— {0})" be the variety defined by a nontrivial

ideal /. We shall consider the behavior of V "near infinity". Usually, this means

looking at the limiting values of the coordinate-ratios xf.x2:.. .:xn as (at least

some of) the coordinates of x e V becomes large. But because of the way GL(n, Z)

acts here, it is more natural for us to consider the ratios log \xt\ '.•••'. log |xn|(2).

We shall understand the "ratio" of such a sequence of real numbers (not all zero)

to mean its equivalence class under multiplication by positive real constants, so

that the set of all ratios can be identified with the n— 1-sphere Sn~1, rather than

projective space.

The set of limits of coordinate-ratios Xt : ■ ■ ■ :xn (x e V, V a nontrivial variety in

C) as x becomes large can form an arbitrary proper nonempty subvariety of

complex projective (n—l)-space. But the limiting ratios of the logarithms(3) will

form a different sort of set. In particular, we shall soon see that it lies in a finite

union of proper great subspheres on S""1, having rational defining parameters.

Assuming this for the moment, we note that the intersection of two such finite

unions of subspheres will again be one, and the family of all finite unions of great

subspheres is easily seen to have descending chain condition. Consequently, there

will exist a unique finite union U of subspheres minimal for the property of con-

taining all "logarithmic limit-points at infinity" of V. Further, V is of positive

dimension, hence is unbounded, hence its set of logarithmic limit-points on 51*1"1

will be nonempty, so U must be nonempty.

Now the space Rn, in which we took our n-tuples of logarithms, arises as the

dual of Zn, that is, Homgroups (Zn, R). Thus we get a natural action of GL(n, Z)

on Rn, and so on S71'1. Clearly, U will be invariant under the induced action of the

(2) D. Mumford has pointed out to me that this point of view is similar to that of the

theory of Néron models—cf. [4].

(3) For a formal definition, cf. the abstract, or §5 below.
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stabilizer subgroup, H, of 7. By duality, we can obtain from the great subspheres

of U a family Q of nontrivial subgroups of Zn, also invariant under H.    Q.E.D.

To establish the claim that the logarithmic points at infinity of V lie in a finite

union of proper great subspheres of S"'1, choose any nonzero ae7, and define

the support of a to be the set s (a) of a e Zn such that Xa occurs with nonzero

coefficient in a. This will be finite, say of cardinality r. We now write

o = 2 caXa (a e s(a), ca e C— {0}). At each point x = (xu ..., xn)e V we have

2 caxa = 0. Hence, at each point two terms of this sum—the two of largest absolute

value, for instance—must be of the same order of magnitude. Precisely, there will

exist a^ßes(ä) suchthat l/ir-l)S\caXa/c„xe\^r-l.

Taking logarithms, and putting C=supa,/Ses(a) log ir-\)\ce/ca\, we get:

Mxe V 3a, ß e sia), a ± ß : -C á log |jca-s| ^ C.

If we rewrite log \x"~e\ as (a —(8)-log \x\ (dot-product of vectors!), we see that

this says that each «-tuple log | jc| =(log \xi\,..., log \xn\) (x e V) lies in one of the

finite family of "planks" in Rn (one for each pair a^ßesia)) defined by the

linear inequalities — CS(«-ß)-log \x\ ¿C. Clearly this restricts the "points at

infinity" to a corresponding finite family of great subspheres of Sn~x.

3. In this section k will be an arbitrary field, and F will denote Spec A:[Ar±]/7;

however, we shall refer to F only to give "geometric" interpretations to operations

we will describe algebraically. We shall use the same symbols Xlt...» X% to desig-

nate elements of A:[A'±] and their images in Ac[Ar±]/7.

The analog of "letting point-coordinates go to infinity" will here be to look at

"places at infinity" on the variety V. Since the usual definition of a place requires

an integral domain, let us choose an arbitrary prime ideal p^I, still of infinite

codimension in A:^*]—i.e., we choose a reduced irreducible subvariety of V, of

positive dimension. Then by [5, Chapter VI, Theorem 6], the field of fractions of

k[X±]/)p will have a place whose valuation ring does not contain all of kiX^yp.

This means we can find a function (the associated valuation, restricted to our ring)

v. k[X±]/p -> A u{ + oo}, where A is a totally ordered abelian group, with the

properties :

(1) via) = 0 for aek-{0}; u(0) = +oo,

(2) viab) = via) + vib),

(3) via-b)Zinfivia),vib)),

(4) via)= +00 => o = 0, and

(5) v assumes a negative value on some element of the ring.

This induces a function (which we shall by abuse of symbolism again call v) on

k[X±]/I satisfying all these properties except for (4), which we do not need. We

shall call such a function a place embedded in V at infinity. Note that (5) tells us

that the homomorphism of Zn into A given by a h-> viX") is nonzero—since all

elements of our ring are linear combinations of the Xa.
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We shall say that v annihilates a subgroup G^Zn if v(Xa) = 0 for all a eG.

Let a subgroup system mean a finite nonempty family S of subgroups of Zn.

We shall write S^T, for subgroup systems 5 and T, if every member of S contains

some member of T, and call S and T equivalent if S è T and T'a S (easily seen to be

an equivalence relation). S will be called irredundant if no subgroup belonging to S

properly contains another. It is easy to see that any subgroup system S is equivalent

to a unique irredundant subgroup system S', consisting of the minimal subgroups

in S.

A subgroup system S will be called compatible with V if every place embedded in

V at infinity annihilates some subgroup belonging to S. Note that if S^T and S

is compatible with V, then so is T. (Hence if S and T are equivalent and one is

compatible with V, so is the other.)

The equivalence classes of subgroup systems will form a lattice, with least upper

bound given by Ss/T={G + H\ Ge S, HeT}, and greatest lower bound given

by set-theoretic union. It is easy to verify that this lattice will have ascending chain

condition. (If S is irredundant, let pt(S) denote the number of groups of rank i in S.

Then for T>S, we have (Pt(T),...,pn(T))<(p^S),...,pn(S)) under lexicographic

ordering.) The lattice also has a minimal element, {{0}}, and a maximal element,

{Z%

It is easy to verify, from our construction for S V F, that if S and F are com-

patible with V, so is S V T. It follows that there will exist a unique maximal irre-

dundant subgroup system compatible with V. Let us call this Q.

Now let us choose any nonzero element a = 2s<a) caXa e I (ca e k — {0}). For any

place v embedded in V at infinity, eQF caXc') = v(0)= +co, hence two of the terms

v(Xa) and v(Xß) (a, ß e s(a)) must be equal. (In fact, the minimum value of v(Xa)

among the a's in s (a) must be assumed twice.) Thus v(Xa~e) = 0. Thus, every such v

annihilates a cyclic subgroup of Zn generated by one of the differences a — ß

(a, ß e s(a), ccy^ß), which means that the subgroup system S consisting of this finite

family of cyclic groups is compatible with V. Hence our maximal subgroup system

Q compatible with Fis >{{0}}. Also, Q<{Zn}, for we showed earlier that we can

construct at least one place embedded in V at infinity, and this will not annihilate

all of Zn.

It follows that Q is a finite nonempty family of nontrivial subgroups of Zn, and

it will clearly be invariant under H, the stabilizer of /, which completes the proof of

Zalessky's conjecture for arbitrary base-field.

4. In the next section we shall formalize the ideas used in the above proofs, but

we wish to make some preliminary observations.

When we studied "points at infinity" as represented by places, we allowed these

to be defined by maps into an arbitrary ordered abelian group. Now if u is a

positive element of an ordered abelian group A, the set {t e A | 3m : — mu <t< mu}

forms a subgroup AU^A, which has a nonzero homomorphism of ordered groups

into the real numbers R, uniquely determined by assigning a positive value to the
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image of u. The images of the other elements are then determined by the relation

mt^m'u and mt^m'u which they satisfy. (This map may have nontrivial kernel.)

Now if v: Ä:[Ar±]//-^ A u { + 00} is a place embedded in V at infinity, let u be the

maximum of the v(Xi±1) (i=l,..., n). Note that every element v(a) (a e k[X*]/I)

will be ~^mu for some me Z. Let us construct a map <p: Au —>- R as above. We can

now define a real-valued place v' as follows: If v(a) e Au, let v'(a) = y>v(a). In the

contrary case, v(a) must be greater than every mu, and we define v'(a)= +00. Note

that v'\Xz" is nonzero. Thus embedded places with real value-group—or real-

valued valuations as we shall call them now—provide a good approximation to the

most general valuation, and we shall limit our consideration to the former in what

follows. To be precise, we shall understand by a valuation on an algebra a function

into R u {+00} satisfying conditions (l)-(3) of §3, and the valuations we deal with

will always satisfy a further restriction implying condition (5).

With our valuations all real-valued, we will be able to obtain from them points

of Sn~\ giving a treatment parallel to that which we had using logarithms, rather

than having to work with "dual" objects: subgroups of Zn. We shall also define

5n_1 to be, concretely, the unit sphere {p e Rn \ %pf=l}.

Let us now look at a very simple example of these " sets at infinity ". Let V be the

subset of (C— {0})2 defined by an equation x1+x2 = c (c^O). In V, log |x»| and

log |x21 can approach +00 in the ratio 1:1, or log \xt\ can approach —00 while

log |jc2| remains bounded, or vice versa. Projecting these three directions onto the

unit circle S1, we get three points (2"1/2, 2"1'2), (-1, 0) and (0, -1).

When we use valuations, we must reverse signs because a "large" element is one

with a negative valuation. If v is a valuation on a ring k[Xxx, X2±1]/(X1 + X2 — c),

which is nonzero on at least one of Xt and X2, then either v(X1) = v(X2)<0, or

v(X1)>0 = v(X2), or vice versa. Reversing signs and projecting on S1, we again get

the points (2~112, 2"1'2), (-1, 0) and (0, -1).

If one analyzes similarly the equation in three variables, Xx + X2 + X3 = c, one

finds that the induced subset of S2 consists of 6 arcs of great circles, which form

the 2-skeleton of a tetrahedron !

5. Formal definitions. Let A: be a field, n a positive integer, AfA'*] as previously

defined, / any ideal of this ring, and V the associated subvariety of Spec k[X*].

By an "absolute value" on k, we shall understand a function | | into non-

negative real numbers, satisfying |0|=0, |1| = 1, |jcy| = |jc| \y\, \x+y\^\x\ + \y\,

and 3x, 0< \x\ <1.

(a) Suppose k has an absolute value function | |. Then we can map the set of

/¿-valued points of V, a subset of (k — {0})", into the interior of the real closed unit

ball Bn by sending (xu ...,xn) to (ux log \xt\,..., ux log \xn\), where ux

= (1+2 (log |*>|2))-1'2. We define Vig* as the intersection of the closure of this

image with the boundary S"-1 of the unit ball. In this construction, we will want

k algebraically closed.

(b) Define V{£> as the set of n-tuples ( — v(Xx),..., — v(Xn)) as v runs over all
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real-valued valuations on A:[A'±]/7 satisfying ^2,v(X¡)2 = \. (These will satisfy con-

dition (5) of §3 because not all viX¡) can be 0.)

(c) As before, we define the support sia) of an element a e k{X±] to be the set

of a e Z" such that Xa occurs with nonzero coefficient in a. We define V£> to be

the set of points feS""1 such that for all nonzero a el, the maximum value of the

dot product f •« as a runs over sia) is assumed at least twice.

We can now state the key properties of "points at infinity" used in our proof of

Zalessky's conjecture as:

(i) If V is of positive dimension then K£f> (respectively, V£>) is nonempty.

(ii) If 7 is nonzero, then V^ lies in a finite union of proper subspheres of 5n_1,

defined over the rationals.

(iii) V£> contains V^ and V<£\

In the next three sections we shall prove much stronger versions of each of these

observations. Let us make one more elementary observation here.

Lemma. If V is a subvariety of Spec k[X±], then Vg* (resp. V£>) is the union,

over the reduced irreducible components C/Ç V, of the sets U^ iresp. U^).

Proof. This is immediate for V£K To see it for V£\ let 7 be the ideal associated

with V. A valuation on A:[A'±]/7is equivalent to a valuation v on klX*] such that

the set i>_1(-|-co)—which is always a prime ideal—contains 7. Clearly v~1( + co)

contains 7 if and only if it contains one of the minimal prime ideals containing 7,

and these are the ideals corresponding to the reduced irreducible components of V.

6. The relation between V-^, V£\ and V£\ We can strengthen observation (iii)

to

Theorem 2. Let A; [A"*] and I be as above. Then V<£>= V<£\

Also, if k is algebraically closed and given with an absolute value function, then

V^ is a closed subset of VS)=V^\ containing all points thereof with rational

coordinate-ratios.

Proof. We shall show (1) F«"c yg\ (2) V$>3V%>, and, assuming an absolute

value function given on k, (3) K£?}£ V¿\ and finally, assuming k is also alge-

braically closed (K'JVt.Ç V£\ That F<?> is closed in S71'1 is clear from the

definition.

(1) Consider any element £-=(—V^Xi), • • •> — viXn)) e V™\ v a valuation on

k{X±]/I. For any nonzero a = "2caXa e I, we note that v(d) = v(0)=+oo, so the

minimum value of the terms v(Xa) = — i■ a (aes(a)) must be assumed twice,

whence | s V£\

(2) Let £e V£\ Define a valuation v on Ac[A'±] by v(a) = infaes(a) — $ ■ a. If we

designate by S the multiplicative group generated by Xx,..., Xn e klX*], then

the hypothesis f e K£> tells us that no member of 7 is equal to a single element of

S plus an element of higher valuation under v. Corollary 1 of [2] (and see also

comment after Corollary 2) says that in this situation, there will exist a valuation
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v' ^v on AfA'*] equal to +00 on all of I, and agreeing with v on S. This is equivalent

to a valuation v" on k[X±]/I satisfying (-v(Xt),..., -v(Xn)) = t    Q.E.D.

(3) Let a = 2 c^a De any nonzero element of /, r the cardinality of s (a), which

we can assume > 1 (otherwise I=k[X±] and the result is trivial), m = minaes(a) \c„\,

and M=maxaes(a) |ca|. Given any family of real numbers (t¡) indexed by a set J of

finite cardinality > 1, let us write maxf ' t} for the second largest value in our

family, equal to max., t3 if this value is assumed twice. This will be a continuous

function of the /-tuple (tj).

Now as in §2, we see that for all xeV,

(max \caxa\\¡(maxw \cax"\\ <, r-l.

Since max \cax"\ ^M max \xa\, and max<2) \caxa\ âm max<2) \xa\, we get

/max \xa\\ I( ma\(2) \x"\\ â M(r-l)/m.

Taking logarithms of both sides, and multiplying by the function ux in the

definition of V£\ we get

max (cc-ux log I jc|) — max(2) (aux log \x\) ^ uxlog(M(r—l)/m).
aesia) œss(a)

Now let x vary so that ux log \x\ approaches an arbitrary point £ of V£\ Then

ux will approach 0, hence so will the right-hand side of the above equation, and

taking the limit, we get

max a ■ I — max(2> a ■ £ = 0,
aesia) aes(a)

i.e., f e V<¿\    Q.E.D.

Let us indicate another approach, by which one can prove that Vi£)<^. V{¿¡\ One

associates to every xe V the function px: sh- — ux loga(x), and considers px a

point of the compact space [ — 00, +co]klx±VI. Given a filter J5" in F such that

limjr ux log \x\ is an arbitrary point f of V(£\ let v e [-co, +oo]fcCX±1" be a cluster

point of the px under JT Then it is not hard to show that v is ( — 00, +oo]-valued,

and is in fact a valuation on k[X±]/I such that (-t;(A'1),..., — v(Xn)) = $.

(4) Let £ be a point of V^ the ratios of whose coordinates are rational ; we wish

to prove f e V£\ Making use of the action of GL(n, Z) on /rfA'*] (cf. §1) and the

induced action on 5n_1 (not isometric!), we can reduce to the case where

f = (0,...,0, -1).
Let R' designate the ring k[Xxx,..., X^\; Xn]^R = k[X±], and R0 the ring

klXt1,..., A'n±_11], into which we map R' by sending Xn to 0. Let F designate

/n R', and I0 the image of T in R0. Thus, I0 consists of the components of degree 0

in Xn of elements of/'. Let V designate the subvariety of (k — {0})n_1 x k defined

by F, and V0 = V n ((k - {0})" "1 x {0}), the subvariety of (k - {0})n 'x x {0} defined

by I0. V will be the Zariski closure of V in (Ar-iO})"-1 x k, and V= V'-V0.



466 G. M. BERGMAN [June

If (0,..., 0, — 1) e V-f?, this means that every nonzero a e I has more than one

term of minimal degree in Xn. Hence every nonzero element of 70 has more than

one term, i.e., 70 is a proper ideal of R0. Then V0 is nonempty: let xe V0.

Now V will in fact be dense in V under the topology induced by the absolute

value on k. For Ac = the complex numbers, this comes from [3, Theorem 1.10.1,

p. Ill]; we show in the appendix to this article that the proof can be modified to

work for any algebraically closed field topologized by a nontrivial absolute value.

Hence we can obtain x as a limit of points y e V. As y approaches x, log |j>([ will

approach the finite values log |x,| for /=1,...,«— 1, but log \yn\ will approach -co.

Hence the points uy log |y\ eBn (see definition of V^) will approach (0,..., 0, — 1).

Hence that point lies in V£\   Q.E.D.

Henceforth, we shall write Fœ for K«" = V£>.

A conjecture we shall make in the next section, which seems very likely to be

true, would imply that points with rational coordinate-ratios are dense in V«,, and

hence that for k an algebraically closed field with absolute value, V¿^ also equals

Va,. Another approach to proving this might be to attempt to prove a general

statement such as that any real-valued valuation on a Noetherian ring is approxim-

ate by rational-valued valuations.

7. Duals of convex polytopes, and the geometric structure of V*,. Our definition

of K£° is related to an interesting geometric construction:

Given any bounded convex polytope C in Rn (i.e., polygon if « = 2, polyhedron

if « = 3, etc.) containing a neighborhood of 0, we may define the dual polytope C*

as the set of $ e R" such that supaeC «•£á 1. The boundary (n— 1-skeleton) of C*

will consist of those points £ for which this supremum is exactly 1. To each vertex

a0 of C will correspond an «— 1-face of C*, the set of f for which this value 1 is

achieved at aa. Similarly, for each edge of C, we get an n — 2-cell, the set for which

the maximum value occurs all along this edge, etc.

The projection of the « —2-skeleton of C* on the unit sphere 5n_1 can be

characterized as the set of £ of norm 1 such that the supremum supaeCa-£ is

achieved for more than one a. This construction is invariant under translation of

C (which that of C* itself certainly is not); hence we shall now drop the restriction

that C contain a neighborhood of the origin, and we shall not even require that C

have nonempty interior in Rn. We shall call this set the spherical dual of the poly-

tope. We now see that given an ideal 7^Ac[A'±], the set K«, we have associated with

7 is the intersection of the spherical duals of the convex hulls in Rn of the sets s(a),

as a runs over 7— {0}.

Let us call a closed subset of S1""1 convex if it is the set of all £ satisfying a family

of inequalities a-^0, as a runs over some family A^Rn; let us call it a convex

spherical polytope if A can be taken finite, and let us say such a polytope is rational

if A can be taken to be a finite subset of Zn. (Note that under this definition, a

great subsphere of Sn~x is a convex spherical polytope—e.g., an « — 2-dimensional

great subsphere is defined by one equation af = 0, which can be written «^¿0,
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a-(—|)^0.) Then we assert that the spherical dual of the convex hull of a finite

subset A^Zn of cardinality r is a finite union of rational convex spherical poly-

topes. Indeed, it can be described as the union, over all a0, axe A of the set of f

satisfying the 2r inequalities (a0 — a)|S:0, (otj — a)-£2:0 where a ranges over A.

Note also that a finite intersection of rational spherical polytopes is again one,

and that in a rational spherical polytope, the set of points with rational coordinate-

ratios is dense. (This is not true of general convex spherical polytopes. E.g., if a is

an element of Rn, whose coordinates are linearly independent over the rational

numbers, then the great sphere given by af = 0 contains no point with rational

coordinate-ratios.)

If 7 is a principal ideal of k[X±\, generated by an element a-,^0, it is easy to

show that the set Fœ is precisely the spherical dual of the convex hull of s(ax).

This explains the tetrahedron we noted earlier. It is not true that if au..., am

generate 7, then Vœ is the intersection of the spherical duals associated with these

elements. For example, X1 + X¡¡+1 and Xx + X2 + 2 yield the same three points of

S1, but generate the unit ideal, with Vm= <Z■

Conjecture. Vœ is always equal to the intersection of the spherical duals of the

convex hulls of supports of a finite set of elements of 7.

In particular, this would imply that Vx is always a finite union of convex

rational spherical polytopes, and hence that points of V«, with rational coordinate-

ratios are dense.

8. The dimension of V„, By a rational great subsphere of 5"1"1 of dimension

n — m, we shall mean the solution-set of a family of equations £a¡ = 0

(z'=l,..., m— 1), where au ..., am_x are linearly independent elements of Zn.

A rational great hemisphere of dimension n — m will mean the set defined by such

a set of equations, and one inequality, f-am^0, where a1;..., am are all linearly

independent. The set of all w — m-dimensional great sub (hemi)spheres of Sn~1 has

a natural structure of compact manifold, in which the rational (hemi)spheres are

dense, and such that the set of (hemi)spheres lying in a given open subset of Sn~x

is open.

The first statement of the following theorem generalizes our observation that if

7#0, Va, lies in a finite union of proper great subspheres of 5""1; the second,

the observation that if V is of positive dimension, Fœ =¿ 0.

Theorem 3. Let V be a reduced irreducible subvariety of Spec AcfA'*], of dimen-

sion m. Then V^ lies in a finite union of rational m — l-dimensional great subspheres

of S"-1, and has nonempty intersection with every n — m-dimensional great

hemisphere.

Proof. Let V be defined by the prime ideal Isk[X±].

Proof of first assertion. Given any rational great subsphere S0^Sn'1 of dimen-

sion >m— 1, we shall construct a finite family A of « —2-dimensional rational

great subspheres of Sn~1 the union of which contains Vm, and no member of which
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contains S0. It is easily deduced that if we choose a minimal finite union of great

subspheres which contains Vx, all the subspheres involved in this union must have

dimension ¿¡m— 1.

Let   50   be   m— 1 +r-dimensional   (r^l)   defined   by   equations   a¡ • | = 0,

i=l,..., n — m — r.   Then   we  can  choose  elements  ßu ..., ßm+re Zn  linearly

independent of the o^. Since k[X±]/I has transcendence degree m, the elements

Xet thereof will be algebraically dependent, hence we can find a nonzero element

ae I n k[X0i,..., XB"+r], Vx lies in the spherical dual of the convex hull of s(a),

hence, in particular, in the union of the n - 2-dimensional great spheres defined by

the equations (a — a')| = 0, where a and a range over pairs of distinct elements of
s (a).

Since each a —a' is linearly independent of au ..., an_m_r, none of these spheres

contains S0.    Q.E.D.

Second assertion. Because rational hemispheres are dense in the space of all

hemispheres, it will suffice to prove this claim for a rational hemisphere, defined

by relations ax ■ | = ■ • ■ = am _ x ■ £ = 0, am ■ $ S: 0 (a¡ e Z").

If A"ai,..., Xa" are algebraically independent in k[X±]/I, then they generate a

polynomial subring therein, and we can define on it a valuation v with

v(Xai)=-- .=v(Xa™-i) = 0, v(Xan)=-\. By [5, Chapter VI, Theorem 5'], this

will extend to a valuation on all of k[X±]/I, possibly with larger value-group. We

reduce this to a real-valued valuation as in §4, which we see will satisfy

f(A"ai)= • ■ • =v(Xa™-i) = 0, ¡)(I"»)S0, and so the corresponding point of Vx lies

on our hemisphere.

If, on the other hand, the Xa' are algebraically dependent over k, then k[X±]/I

is transcendental over the subring they generate, so by [5, Chapter VI, Theorem 6]

we can find a valuation v on this ring which is zero on that subring, but not on all

AV This will yield a point £ e Vx satisfying £-<xi= ■ ■ ■ =f -am = 0.

From the above result and Theorem 2, one can deduce that the same statements

hold for V^—the key observation for obtaining the second assertion is that the

intersection of a rational great m—l-sphere and a rational great hemisphere of

dimension n — m, in general position, is a point with rational coordinate-ratios.

One can deduce other properties of Vm from the above theorem—for instance,

it will contain an open subset of a rational great m— 1-sphere. If the conjecture of

our last section is true, so that Vw is a finite union of spherical polytopes, this says

that the maximum of their dimensions will be exactly m—l, and an interesting

question is whether Vm will be a union of polytopes all having dimension m—l.

A general field open for investigation is the geometric structure of Vm—con-

nectedness, homotopy and (co)homology groups, "vertex figures", etc.—and its

relation to the properties of the variety V.

Appendix—the closure of an open subvariety. Theorem 1 of Chapter 1, §10 of

[3] says that a nonempty open subvariety U of an irreducible variety X over the

complex numbers is dense in the "strong topology" on X—that induced by the
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topology of the complexes. The proof makes use of the local compactness of the

complex field at one point, p. 114, line 5. But it may be modified to work over any

nondiscrete algebraically closed topological field k having the following continuity-

of-roots property also assumed in the proof given:

If P is a monic polynomial over k, and P' another monic polynomial of the same

degree whose coefficients are sufficiently near those ofP, then every root ofP' is near

a root of P.

It is not hard to show that this holds for any algebraically closed field k whose

topology is defined by an absolute value.

To adapt the proof in [3]: we make no changes in pp. 111-113 iq.v. !), up to the

last paragraph, except that we require the g of p. 113, bottom, to satisfy gix2) =

■ ■ ■ =g(xN)= 1. We complete the argument as follows:

Let « be any element of F(X, ox), and P(XU ..., Xn; h) its minimal polynomial

over kiXx,..., Xn), which, because T(A', ox) is integral over k[Xx,..., Xn], will

have coefficients in that ring. On X, we have P(7r(z); «(z)) = 0 identically. By our

assumption on the topology of k, we see that when / is large, so that 7r(z(i)) is near

7r(x), the value «(z{i)), satisfying P(ir(za)); «(z<0)) = 0, must be near a root of

P(tt(x); t) = 0, i.e., one of the values «(xj),..., «(*#). Which one it is near could

depend on i.

Choose ae k not equal to any hixp) — hixQ) ip, o= 1,..., N). For i sufficiently

large, «(z(i)) will be near some «(xp), and h(x + ag)(zw) will be near some

ih + ag)ixq) = hixq) + agixq). Since g(z(i))^0 (by choice of zm, p. 113), they will

also be near each other. But the only pair of h(xv) and h(xq) + ag(xq) that are equal

is h(xl) = h(x1) + ag(x1), by choice of g and a. So in fact, «(z(i)) must approach h(x)

for any «, which means that z(i) -» x in the function topology on X.
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