ERRATA TO "GENERAL PRODUCT MEASURES"

BY

E. O. ELLIOTT AND A. P. MORSE

Theorem 5.9 is false and the proof we gave of Theorem 7.7 used 5.9. Fortunately a proof of 7.7, known earlier to us, makes no use of 5.9. For the record we also note that the conclusion about B in Theorem 7.2.4 is also false but this was not used anywhere in the paper.

The proof of Theorem 7.7 can be repaired by replacing Part 2 thereof (p. 282) by the following.

PART 2. If $\mathfrak{F} \subset \mathfrak{V}$ and $\sigma \mathfrak{F} = S$ then there is such a countable subfamily \mathfrak{G} of \mathfrak{F} that $.\psi(S \sim \sigma \mathfrak{G}) = 0$.

Proof. The desired conclusion is found in Step 2 below.

Let $V_u = \operatorname{tpr} u$ whenever $u \in \operatorname{fnt} \cap \operatorname{sb} t$ and $F_p = \operatorname{E} A$ (for some $B \in \mathfrak{F}$ and $u \subset t$, dmn $u = \operatorname{dmn} p$, $A \in V_u$ and cyl $AS \subset B$) whenever $p \in \operatorname{fnt} \cap \operatorname{sb} m$. Now we take

STEP 1. If $p \in \text{fnt} \cap \text{sb} m$ then there is such a countable subfamily \mathfrak{G} of \mathfrak{F} that

$$.\psi(\operatorname{cyl}\,\sigma F_p S \sim \sigma \mathfrak{G}) = 0.$$

Proof. Suppose $\mu = \text{prm } p$, $u \subset t$, dmn u = dmn p, $\mathfrak{B}' = \text{tpr } u$, $\mathfrak{F}' = F_p$, S' = spc pand $\mathfrak{B}' = \bigcup B \in \mathfrak{H}$ sng prj BS'. Clearly $\mathfrak{F}' \subset \mathfrak{B}'$ and $\sigma \mathfrak{F}' \in \mathfrak{B}'$. Noting that $\mu \in \text{Clin } \mathfrak{B}'$ and $\mathfrak{H}' \subset \text{dmn' } \mu$ we can and do select such a function w on \mathfrak{H}' that, for each $A \in \mathfrak{H}'$, $wA \in \text{cbl } \cap$ sb \mathfrak{F}' and

$$\mu((\sigma\mathfrak{F}'\sim .wA)\cap A)=0.$$

We let $\mathfrak{G}' = \bigcup A \in \mathfrak{H}'$. wA and check that $\mathfrak{G}' \in \operatorname{cbl} \cap \operatorname{sb} \mathfrak{H}'$ and

$$0 \leq .\mu((\sigma\mathfrak{F}' \sim \sigma\mathfrak{G}') \cap \sigma\mathfrak{F}')$$

= .\mu(\boxed A \in \mathcal{F}'(\sigma\text{F}' \sigma \sigma\text{G}\text{G}') \circ A)
$$\leq .\mu(\boxed A \in \mathcal{F}'(\sigma\text{F}' \sigma .wA) \circ A)$$

$$\leq \sum A \in \mathfrak{F}' .\mu((\sigma\text{F}' \sigma .wA) \circ A) = 0$$

Hence taking \mathfrak{G} to be such a countable subfamily of \mathfrak{F} that each member A of \mathfrak{G}' is related to some member B of \mathfrak{G} by having cyl $AS \subset B$ we have cyl $\sigma \mathfrak{G}'S \subset \sigma \mathfrak{G}$ and infer

$$.\phi((\operatorname{cyl} \sigma \mathfrak{F}' S \sim \sigma \mathfrak{G}) \cap \sigma \mathfrak{H}) = 0$$

Copyright © 1971, American Mathematical Society

and

$$0 \leq .\psi(\operatorname{cyl} \sigma \mathfrak{F}'S \sim \sigma \mathfrak{G})$$

= .\phi((cyl \sigma \mathfrak{F}'S \sigma \sigma \mathfrak{G}) \cap T)
$$\leq .\phi((cyl \ \sigma \mathfrak{F}'S \sim \sigma \mathfrak{G}) \cap \sigma \mathfrak{H}) + .\phi(T \sim \sigma \mathfrak{H})$$

= 0+0 = 0

to complete our proof.

-

STEP 2. There is such a countable subfamily \mathfrak{G} of \mathfrak{F} that $\psi(S \sim \sigma \mathfrak{G}) = 0$.

Proof. Let $P = \text{fnt} \cap \text{sb} m$, note that $P \in \text{cbl}$, and using Step 1 secure a function f on P for which $.fp \in cbl \cap sb \mathfrak{F}$ and $.\psi(cyl \,\sigma F_p S \sim \sigma .fp) = 0$ whenever $p \in P$. Taking $\mathfrak{G} = \bigcup p \in P$.fp we have

$$S = \bigcup p \in P \text{ cyl } \sigma F_p S,$$

$$S \sim \sigma \mathfrak{G} \subset \bigcup p \in P(\text{cyl } \sigma F_p S \sim ..fp)$$

and consequently

$$0 \leq .\psi(S \sim \sigma \mathfrak{G}) \leq \sum p \in P .\psi(\operatorname{cyl} \sigma F_p S \sim .fp) = 0$$

which completes the proof.

References

1. E. O. Elliott and A. P. Morse, General product measures, Trans. Amer. Math. Soc. 110 (1964), 245-282.

BELL TELEPHONE LABORATORIES, INC., HOLMDEL, NEW JERSEY 07733 UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

506