ERRATA TO "GENERAL PRODU.CT MEASURES"

BY
E. O. ELLIOTT AND A. P. MORSE

Theorem 5.9 is false and the proof we gave of Theorem 7.7 used 5.9. Fortunately a proof of 7.7 , known earlier to us, makes no use of 5.9 . For the record we also note that the conclusion about B in Theorem 7.2.4 is also false but this was not used anywhere in the paper.

The proof of Theorem 7.7 can be repaired by replacing Part 2 thereof (p. 282) by the following.

Part 2. If $\mathfrak{F} \subset \mathfrak{B}$ and $\sigma \mathfrak{F}=S$ then there is such a countable subfamily \mathfrak{G} of \mathfrak{F} that.$\psi(S \sim \sigma(\mathbb{G})=0$.

Proof. The desired conclusion is found in Step 2 below.
Let $V_{u}=\operatorname{tpr} u$ whenever $u \in \mathrm{fnt} \cap \mathrm{sb} t$ and $F_{p}=\mathrm{E} A$ (for some $B \in \mathfrak{F}$ and $u \subset t$, $\operatorname{dmn} u=\operatorname{dmn} p, A \in V_{u}$ and cyl $A S \subset B$) whenever $p \in \mathrm{fnt} \cap \mathrm{sb} m$. Now we take

Step 1. If $p \in \mathrm{fnt} \cap \mathrm{sb} m$ then there is such a countable subfamily \mathfrak{F} of \mathfrak{F} that

$$
. \psi\left(\operatorname{cyl} \sigma F_{p} S \sim \sigma(\mathbb{S})=0 .\right.
$$

Proof. Suppose $\mu=\operatorname{prm} p, u \subset t, \operatorname{dmn} u=\operatorname{dmn} p, \mathfrak{B}^{\prime}=\operatorname{tpr} u, \mathfrak{F}^{\prime}=F_{p}, S^{\prime}=\operatorname{spc} p$ and $\mathfrak{S}^{\prime}=\bigcup B \in \mathfrak{S} \operatorname{sng} \operatorname{prj} B S^{\prime}$. Clearly $\mathfrak{F}^{\prime} \subset \mathfrak{B}^{\prime}$ and $\sigma \mathfrak{F}^{\prime} \in \mathfrak{B}^{\prime}$. Noting that $\mu \in \operatorname{Clin} \mathfrak{B}^{\prime}$ and $\mathfrak{S}^{\prime} \subset \mathrm{dmn}^{\prime} \mu$ we can and do select such a function w on \mathfrak{S}^{\prime} that, for each $A \in \mathfrak{S}^{\prime}, . w A \in \mathrm{cbl} \cap \mathrm{sb} \mathfrak{F}^{\prime}$ and

$$
. \mu\left(\left(\sigma \mathfrak{F}^{\prime} \sim . w A\right) \cap A\right)=0 .
$$

We let $\mathscr{C S}^{\prime}=\bigcup A \in \mathfrak{S}^{\prime} . w A$ and check that $\mathscr{C b}^{\prime} \in \mathrm{cbl} \cap \mathrm{sb} \mathfrak{F}^{\prime}$ and

$$
\begin{aligned}
0 & \leqq . \mu\left(\left(\sigma \mathscr{F}^{\prime} \sim \sigma \mathscr{S}^{\prime}\right) \cap \sigma \mathscr{S}^{\prime}\right) \\
& =. \mu\left(\cup A \in \mathfrak{S}^{\prime}\left(\sigma \mathscr{F}^{\prime} \sim \sigma \mathfrak{S}^{\prime}\right) \cap A\right) \\
& \leqq . \mu\left(\cup A \in \mathfrak{S}^{\prime}\left(\sigma \mathscr{F}^{\prime} \sim . w A\right) \cap A\right) \\
& \leqq \sum A \in \mathfrak{S}^{\prime} \cdot \mu\left(\left(\sigma \mathscr{F}^{\prime} \sim . w A\right) \cap A\right)=0 .
\end{aligned}
$$

Hence taking $\mathscr{S b}^{5}$ to be such a countable subfamily of \mathfrak{F} that each member A of $\mathfrak{G s}^{\prime}$ is related to some member B of $\mathbb{C b}$ by having cyl $A S \subset B$ we have cyl $\sigma \mathscr{G} \mathscr{S}^{\prime} S \subset \sigma \mathscr{G}$ and infer

$$
. \phi\left(\left(\mathrm{cyl} \sigma \mathfrak{F}^{\prime} S \sim \sigma \mathfrak{G}\right) \cap \sigma \mathfrak{I}\right)=0
$$

and

$$
\begin{aligned}
0 & \leqq . \psi\left(\text { cyl } \sigma \mathfrak{F}^{\prime} S \sim \sigma \mathfrak{F}\right) \\
& =. \phi\left(\left(\operatorname{cyl} \sigma \mathfrak{F}^{\prime} S \sim \sigma \mathfrak{G}\right) \cap T\right) \\
& \leqq . \phi\left(\left(\operatorname{cyl} \sigma \mathfrak{F}^{\prime} S \sim \sigma \mathfrak{S}\right) \cap \sigma \mathfrak{G}\right)+. \phi(T \sim \sigma \mathfrak{g}) \\
& =0+0=0
\end{aligned}
$$

to complete our proof.
STEP 2. There is such a countable subfamily \mathfrak{F} of \mathfrak{F} that $. \psi(S \sim \sigma \mathbb{F})=0$.
Proof. Let $P=$ fnt $\cap \mathrm{sb} m$, note that $P \in \mathrm{cbl}$, and using Step 1 secure a function f on P for which.$f p \in \operatorname{cbl} \cap \mathrm{sb} \mathfrak{F}$ and $. \psi\left(\operatorname{cyl} \sigma F_{p} S \sim \sigma . f p\right)=0$ whenever $p \in P$. Taking $\mathfrak{G}=\bigcup p \in P . f p$ we have

$$
\begin{aligned}
& S=\bigcup p \in P \operatorname{cyl} \sigma F_{p} S \\
& S \sim \sigma \mathscr{G} \subset \bigcup p \in P\left(\operatorname{cyl} \sigma F_{p} S \sim . f p\right)
\end{aligned}
$$

and consequently

$$
0 \leqq . \psi\left(S \sim \sigma(\mathbb{S}) \leqq \sum p \in P \cdot \psi\left(\operatorname{cyl} \sigma F_{p} S \sim . f p\right)=0\right.
$$

which completes the proof.

References

1. E. O. Elliott and A. P. Morse, General product measures, Trans. Amer. Math. Soc. 110 (1964), 245-282.

Bell Telephone Laboratories, Inc., Holmdel, New Jersey 07733
University of California,
Berkeley, California 94720

