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Abstract. Suppose X and Y are locally convex Hausdorff spaces, H is arbitrary

and S is a ring of subsets of H. The authors prove the analog of the theorem stated in

[Abstract 672-372, Notices Amer. Math. Soc. 17 (1970), 188] in this setting. A theory of

extended integration on function spaces with Lebesgue and non-Lebesgue type convex

topologies is then developed. As applications, integralrepresentations for continuous

transformations into Y for the following function spaces F (which have domain H

and range X) are obtained: (1) H and 2 are arbitrary, t is a convex topology on the

simple functions over S, K is a set function on S with values in L[X, Y], and F is the

Lebesgue-type space generated by K; (2) H is a normal space and F is the space of

continuous functions each of whose range is totally bounded, with the topology of

uniform convergence; (3) H is a locally compact Hausdorff space, F is the space of

continuous functions of compact support with the topology of uniform convergence;

(4) His a locally compact Hausdorff space and Fis the space of continuous functions

with the topology of uniform convergence on compact subsets. In the above X and Y

may be replaced by topological Hausdorff spaces under certain additional com-

pensating requirements.

1. Introduction. Let if be a compact Hausdorff space, and let X and Y he

locally convex topological vector spaces over the real or complex field where Y is

Hausdorff. Let C(H, X) he the space of continuous functions from H into X with

the topology of uniform convergence. R. K. Goodrich [6] has given an integral

representation theorem for a continuous linear transformation T from C(H, X)

into Y. In this paper we extend the aforementioned theorem to the setting where H

is an arbitrary space and C(H, X) is replaced by a function space F which is a

subset of the closure of the totally bounded functions from H into X under a

locally convex topology r not stronger than the topology of uniform convergence

and satisfying certain extension properties relative to simple functions. The operator

valued measures which arise in connection with these integral representations are

used to generate Lebesgue-type topologies on F and then a representation theorem

is given for transformations T from F into a topological space Z under these new
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topologies. These results generalize the works of Easton and Tucker [2] who give

a Lebesgue-type integral and a representation theorem for the associated function

space in the setting where 77 is compact, X and Y are normed spaces, and K is of

bounded semivariation.

As a corollary we restrict considerations to the setting where 77 is normal and

Fis the space of continuous totally bounded functions with the topology of uniform

convergence, which extends the results in [3]. Another corollary gives a representa-

tion for continuous operators on the space of continuous functions under the

topology of uniform convergence on compact subsets where the domain space 77

of the functions is locally compact.

This paper continues the development in [3] where Xand F were assumed to be

normed spaces.

2. Notation and preliminaries. A linear map T from X into Y is (p, q) related

if for each continuous seminorm o on F there is a continuous seminorm p on X

and a constant LPi„ such that q(T(x))^LPtQp(x). Furthermore if T is (p, q) related

we define \T\p¡¡¡ = supxeX{q(T(x)) : p(x)S 1}- By X+ we mean the weak sequential

completion of X, i.e., the linear subspace of X" (the bidual of A^ such that x+ e X +

if and only if there is a sequence in A'which converges weakly to x + . The topology

onl* is the topology of uniform convergence on equicontinuous subsets of X'

(the continuous dual of X), i.e., the e00 topology. We shall let Xa denote the sub-

space of X" which is the weak closure of X. Again the topology is the e00 topology.

The development of most of this paper could be carried out with a field of sets

£<=/>(//) and integration in the Stieltjes-Hildebrandt sense [7], i.e., a function/from

77 into X is said to be integrable with respect to the finitely additive set function

K from 2 into L[X, Y] (the space of bounded linear operators from X into Y)

if lim,, 2 [K(E?)](f(t?)) exists in Y, the completion of Y, where {E?} is a partition

of 77 over 2 and tf e Ef, and where the direction on the net of partitions is refine-

ment. However, Theorems 6.2 and 6.3 require a slight extension of the notion of

integration which we now make. Let S^T^T/) denote a ring of sets rather than a

field. We shall say ir={E?}?=1 is a partition of 77 over 2 provided {Effîzî is a

collection of pairwise disjoint sets in S and En=~\jf~} Et. The collection of

partitions of 77 over 2 is directed by tt = {E$=1>tt'={Fj}f=1 if and only if

Uf^i1 /,<= (J?-1 Et and E¡ r\ F^O implies Ef=>¥¡. A function / is integrable

provided lim» 2?=í [KiE?)]ifit?)) exists in F.

Let 5(S, X) denote the linear space of X-valued simple functions on 77 over X,

i.e., functions of the form 2?=i Xe,'xí where E¡ eE, i = 1,..., n— 1, En= ~U"=Í Ft,

the complement of (JP= i1 Eh and where xn = 9X. Suppose t is a topology on 5(2, X)

under which it is a topological vector space. Then a finitely additive set function

K from 2 into L[X, Y] is said to be quasi-Gowurin with respect to r if given a

neighborhood V of 9Y there is a neighborhood U of #S(E-X) such that if 2 Xe, 'xte U,

then 2 [E(E^](x¡) e V. If t is locally convex and K is quasi-Gowurin, then for

each continuous seminorm q on Y there is a continuous seminorm p on 5(S, X)
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and a smallest constant WKPtQ such that q(2 [K(Ex)](x?j)úWKp¡c¡p(2 Xi,-*»)» If X

is a locally convex topological vector space and t is the topology of uniform con-

vergence, then quasi-Gowurin becomes bounded (p, q") variation [6]. We shall use

all other definitions and notations defined in [6], except that we shall view

X<= X + cIBcr, where Xa denotes the weak closure of X.

Let T denote the closure of 5(2, X) under the topology of uniform convergence.

The following lemma is straightforward and is stated without proof.

2.1 Lemma. Iffe T, then lim,, 2 XEff(t?)=f where the convergence is uniform.

2.2 Theorem. Suppose the linear subspace F is contained in V and t is a locally

convex topology on F+ 5(2, X) which is not stronger than the topology of uniform

convergence. If K is quasi-Gowurin with respect to t, then the linear operator T(f)

=J dKf exists for each fe F and is a continuous operator on F+5(2, X). Further-

more, ifTis (p, q) related then WKp^=\T\p>q.

Proof. Suppose fe F and q is a continuous seminorm on Y. Then there is a

continuous seminorm p on F+5(2, X) such that K is (p, q) related. Then for

partitions 7r and it',

q(Z [K(Et)](f(ti))-2 [*(£,)](/(/))) ^  WKDJ2xEi:f(tt)-2xEJf(tJ)\-

Since T is not stronger than the topology of uniform convergence, it follows that

p is continuous on 5(2, X) with the topology of uniform convergence. It follows

from Lemma 2.1 that {2* XEt-f(td)n is Cauchy in the topology of uniform conver-

gence. Therefore, {q(I„ [¿(^H/M)}» ¡s Cauchy and hence {2, [Jffö)KAg)fc is
Cauchy in Y, from which it follows that $ dKf exists in Y. Furthermore,

q{\dK-f} = lim .7(2 [^(£i)](/(0))

Ú Um sup WK^pi^xEi-ñtd)

= WKß,qP(f).

Hence Tis (p, q) related and | T\PtQ ̂ WKPtQ, from which we conclude Tis continuous.

Finally, we show Irl,,,,^ WKPt<l. Suppose {£'i} = 7r is a partition of H over 2, and

{Xi}^X. Then

q(2 [K(Ei)](xd) = ^Q^-x,)) S iTl^p&XEi-Xi}

2.3 Corollary. Suppose F, 5(2, X), t and K are as in Theorem 2.2. If {fa}

<=(F+S(Z, X)) is a net converging tofe F+SÇZ, X), then J dKfa -> J dKf.

3. The main result. Suppose F<= T is a locally convex topological space with

topology t not stronger than the topology of uniform convergence and such that

there is a ring of sets S and a subspace 5'(2, Ar)c5(2, X) satisfying:
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(i) The topology t has a locally convex extension to 77+5(2, X).

(ii) F is contained in the r closure of 5'(2, X).

(iii) There is a linear map -q from F+5(2, X) into Fw which is (p, p") related

when restricted to 5(2, X), and continuous when restricted to F+ 5'(2, X) and

such that r¡(f)=f for each/e F.

Since r¡ when restricted to 5(2, X) is (p, p") related, for each continuous semi-

norm p there is a constant |i?|„ such that /MX* Xe,•*>))= \v\pP(ln Xe,-^)-

3.1 Theorem. Suppose T is a continuous linear transformation from F into Y.

Then, there is an additive set function K on 2 with values in L[X, Ya] which is quasi-

Gowurin with respect to r such that F(/) = J* dKf. Furthermore, ifTis (p, q) related,

then WKM,.^\T\P^ WK„,Q./\r,\0.

Proof. Let Ta denote the continuous linear map from Fm into Fm which is the

natural extension of T. Define the set function K from 2 into L[X, Ya] by

[K(E)](x) = Tw(t)(xe ■ x)) for x e X and for each 7se2. Suppose o is a continuous

seminorm on Y. Since Tar¡ is continuous on 5(2, X), there is a continuous semi-

norm p on F+ 5(2, X) such that, for n = {Ex) a partition of 77 and a corresponding

collection {Xi}<=X,

= \T0\(r.Ml>Œx*t:xi)-

From which it follows that K is quasi-Gowurin with respect to t and that

WKPtq~/\r¡\p^ \T\PtQ, since |Fw|<)«jC»=|F|i,i5. Suppose feF. Then (ii) implies there

is a net {sa} in 5'(2, X) which converges to/in the t topology. Since r? is continuous

on F+5'(2, X), it follows from Corollary 2.3 that

Hf) = T"(v(f)) = lim T%r¡(sa)) = lim fdAT-í. =  \dK-fi
a ce     j J

Theorem 2.2 implies that if Fis (p, q) related, then | T\p¡q á WKp¡q~, and the theorem

is established.

The following lemma gives a necessary and sufficient condition for t¡ to be

continuous on F+5'(2, X). The proof is analogous to that given for Corollary 2.3

in [3] and is omitted.

3.2 Lemma. Suppose the linear map r¡ from F+5'(2, X) into Fa satisfies the

condition that r¡(f)=ffor each fe F. Then a necessary and sufficient condition that r¡

be continuous on F+5'(2, X) is that if the net {ja}cS"(S, X) converges to fe F in

the t topology then {r¡(sa)} converges to fin the rm topology (the e00 topology restricted

to Fm).

3.3 Remark. If the map -n takes its values in F+, then the K given in Theorem

3.1 takes its values in L[X, Y + ]. Similarly, if 77 takes its values in F, then K takes

its values in L[X, Y].
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4. The extended integral. In this section we develop a Lebesgue-type extension

of the integral and give an extended version of Theorem 3.1. We suppose the general

setting of §3. Let G denote the t completion of F. Observe that G is a collection of

equivalence classes of nets. The question of when it is possible to identify functions

from H into X with equivalence classes is of some interest. In the following three

definitions we define certain classes of functions which have natural identifications

with equivalence classes in G.

4.1 Definition. Let G(r) denote the space of functions/on //with values in X

such that all nets of simple functions of the form {2* Xe¡ ■/(í¡)}ji> where tx e E¡, are

Cauchy and Cauchy equivalent in the r topology.

Observe that r<=G(T) because the topology of uniform convergence is stronger

than t. The identification of G(r) as a subspace of G is the natural one.

4.2 Definition. A function/on H with values in X is said to be an allowable

cr-totally bounded function if its range is the union of a nested countable collection

of sets {/?„}"= i ordered as to n, such that each Bn is totally bounded and such that

Xf1[Bnyfe T. The collection {Hn} = {f~1[Bn]} is called a ¡»--totally bounded decom-

position of H with respect to/(we assume Hn e 2 for each ri).

Let A denote the directed set {(V, n) : J7 is a neighborhood of 0r and n is an

integer} whose direction is given by (V, n)>(U, m) if U=> V and n^m.

4.3 Definition. Let G"(t) denote the space of allowable a-totally bounded

functions such that if {//„} and {Fn} are two cr-totally bounded decompositions of

H with respect to / and if {sa}A and {ta}A are nets of functions in F such that for

a = (V, n), sa — Xi/„-/and ta — xF„-/are in V, then {sa} and {ta} are Cauchy and

Cauchy equivalent.

For each/e Ga(r) we identify / with the equivalence class in G determined by

Definition 4.3.

4.4 Definition. Suppose K is quasi-Gowurin with respect to t. Then, for/e G

the extended integral off with respect to Kis denoted by £ J" dKfand is defined by

lima J" dKfa e Y where {fa}^Fis a net which converges to/in the t topology.

The following lemma guarantees that the extended integral is well defined and

is consistent with the integral on G(t).

4.5 Lemma. Suppose that K is quasi-Gowurin with respect to t. Then,

(i) if {fi} and {ga} are Cauchy equivalent in F, then {J" dKfa} and {J* dK-ga} are

Cauchy equivalent,

(ii) if fe G, the extended integral E\ dKf exists,

(iii) iffe G(t), then E\dKf=¡ dKf.

The proof of this lemma follows from Theorem 2.2.

4.6 Theorem. Suppose K is a finitely additive set function on 2 with values in

L[X, Y] which is quasi-Gowurin with respect to r. Then the map T(f) = E J" dKf is a

continuous linear operator from G into Y. Furthermore, if T is (p, q) related, then

\T\     =WK
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The proof follows from Theorem 2.2 and Lemma 4.5.

4.7 Theorem. Suppose T is a continuous linear operator from G into Y. Then,

there is a finitely additive set function Kon% with values in L[X, Yœ] which is quasi-

Gowurin with respect to r such that T(f) = E J dK-f for fe G. Furthermore, if T is

(P,q) related, then WKp,q^ \T\MZ WKp_q,./\e\p.

Proof. Since F is a continuous linear operator from F into F, it follows from

Theorem 3.1 that there is a set function A'which satisfies the above conditions such

that T(f) = j dKf for fe F. Since T is continuous, it follows from Lemma 4.5(ii)

that T(f) = E¡ dKf for all/e G.
4.8 Remark. If the 17 map of §3 takes its values in F+ or F then K in Theorem

4.7 takes its values in L[X, F + ] or L[X, Y] respectively.

5. A Lebesgue-type topology. In this section we define a Lebesgue-type topology

on a space of simple functions and complete this space into what we shall call LK,

the analog of the Lebesgue integrable functions in the classical setting. A charac-

terization of the continuous linear operators from LK into a complete locally

convex space is then given. In the special case that the topology r considered in

this section is the topology of uniform convergence, we have an extension of the

results in [2] and of the corresponding results in [3] which are given in the setting

of linear normed spaces.

Let X, Y, and 77 be as in §1. Let 2<=p(77) be a ring of sets and let 7 denote a

locally convex topology on 5(2, X) which is not stronger than the topology of

uniform convergence. Suppose A' is a finitely additive set function on 2 with values

in L[X, Y] which is quasi-Gowurin with respect to t. For each continuous semi-

norm o on Y define the seminorm pq on 5(2, X) by

/m2 XEt-Xi\ = sup -M2 t^CE- n FM<*Jxd

where the supremum is taken over all partitions {F,} of 77 over 2 and corresponding

collections of scalars {«,} such that \a¿\ «| 1 for each/ Since t is not stronger than

the topology of uniform convergence the supremum exists for each q. Two simple

functions s and s' are said to be equivalent if pq(s — s') = Q for each continuous

seminorm on F. Let 5(2, X)L denote the resulting space.

5.1 Definition. Let k denote the locally convex topology generated on 5(2, X)L

by the seminorms pq. Let LK denote the completion of 5(2, X)L under the «r

topology. As is the usual practice, if a function is identified with an equivalence

class in LK, we do not distinguish between the function and the equivalence

class. In this setting we give a more general criterion than those given in §4 with

which to identify a function with an equivalence class in LK. Suppose / is an

allowable tr-totally bounded function on 77 with values in X. If there is a y e Y

such that for each cr-totally bounded decomposition {77n} of 77, limn ¡Hii dKf=y,

then / is viewed as being in LK and is identified with the equivalence class

)}



1971] INTEGRAL REPRESENTATIONS 335

containing the net of simple functions {sa}A (where A is defined as in §4) defined by

*« = 2 Xe? •/('.) for a = ( V, n) and where {£,} is a partition of Hn over 2 such that

f[E?]-f(ti)<=V,mthtieEi.

5.2 Lemma. The topology of uniform convergence on 5(2, X) is stronger than the

k topology on 5(2, X).

Proof. Suppose q is a continuous seminorm on Y. Since K is quasi-Gowurin

with respect to r, there is a seminorm p continuous in the r topology such that, for

5 = 2! XB,-xteS(Z,X),

Pq(s) = sup |«jfe [K(Ei n Fy)](ayxo)}

^ SUp j R^,ep(2 XW,«>**) |-

Since t is not stronger than the topology of uniform convergence there is a con-

tinuous seminorm p on X such that the corresponding seminorm pp on 5(2, X)

dominates /». Therefore,

pa(s)  ú  SUp j WKp,„pJ2 Xfi.n^Xij

Hence for/e T and q a continuous seminorm on Y, pq(f) = sup {#(2 «f J^, dKf)}

where the supremum is taken over partitions {£(} of // over 2 and corresponding

scalars {aj such that |a¡| ̂  1 for all i. By J"B dKfwe mean J dK(fxE) which is well

defined for/e T. Hence, it follows that iffeLK, and if q is a continuous seminorm

on Y, then />,(/) = sup {.7 2 «¡£ J£, ¿//sT-/}.

Suppose Z is a locally convex space. In the following definition we give the

analog of the concept of strongly Lipschitz in [2].

5.3 Definition. A set function G on 2 with values in L[X, Z] is said to be (q, v)

strongly Lipschitz with respect to K if given a partition {¿T¡} of H over 2 and a

corresponding collection {x,}<=X, then there is a pairing (q,v) with constants

Pq¡v such that

"(2 [G(£.)K*.)) = P*.v sup {2 W& r\ F^aficd

where the supremum is taken over partitions {Fj} of H over 2 and corresponding

collections of scalars {aj} for which |<*,| is 1.

5.4 Lemma. A set function G on 2^ with values in L[X, Z] is (q, v) strongly Lip-

schitz if and only if G is quasi-Gowurin with respect to k. Furthermore, if G is (q, v)

related, then WGBq¡v=Pq¡v.

The proof is straightforward and is therefore omitted.
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5.5 Theorem. Suppose that T is a continuous linear operator from LK into Z.

Then, there is an additive set function G on?, with values in L[X,Z] which is (q, v)

strongly Lipschitz with respect to K such that for fe LK, T(f) = E j dGf. Further-

more, ifTis (pq, v) related, then \T\PqV=Pq¡v.

Proof. The theorem follows from Theorem 4.7, Remark 4.8, and Lemma 5.4.

If Z is a complete locally convex space, then the above theorem and Theorem

4.6 yield the following characterization of the bounded linear operators from LK

into Z.

5.6 Corollary. Suppose T is a linear transformation from LK into Z. Then T is

continuous if and only if there is a finitely additive set function G which is (q, v)

strongly Lipschitz with respect to Ksuch that T(f) = E J* dG-fforfe LK. Furthermore,

ifTis (pq, v) related, then \T\Pí¡¡v=Pq¡v.

6. Some other applications. As before X and Y shall denote locally convex

spaces. In §§7, 8 and 9 we shall establish the following special cases of Theorems

3.1 and 4.7 which in the classical settings have been of particular interest. For 77 an

arbitrary normal space we shall let CTB denote the space of totally bounded

continuous functions from 77 into X with the topology of uniform convergence and

shall let CBR denote the space of bounded continuous real valued functions with

the topology of uniform convergence. If 77 is a locally compact Hausdorff space

Cc denotes the space of continuous A-valued functions of compact support and

C0 denotes the space of continuous A-valued functions which vanish at infinity,

both with the topology of uniform convergence. The space of continuous real-

valued functions of compact support with the topology of uniform convergences is

denoted by Cc7?. Finally, if 77 is locally compact, C shall denote the space of

continuous X-valued functions from 77 with the topology of uniform convergence

on compact subsets of 77.

6.1 Theorem. Let 77 denote a normal topological space and let 2 denote the field

of sets generated by the closed subsets of H. If T is a continuous linear operator from

CTB into Y, then there is a unique finitely additive weakly regular set function K on

2 with values in L[X, Ya] which is of bounded (p, q") variation such that T(f)

= J* dKf. Furthermore, ifTis (p, q) related, then WKv<q„= \T\p¡q.

When we say T is (p, q) related we mean T is (pp, q) related where pp is the

continuous seminorm on CFTi generated by the continuous seminorm p on X.

For the purpose of the next theorem we extend the notion of bounded (p, q)

variation to additive set functions defined over a ring as follows: The finitely

additive set function K from the ring 2 into L[X, Y] is of bounded (p, q) variation

if there is a pairing (p, q) such that, for each partition {E¡}f= 1 of 77 over 2 and each

collection {x¡}"=1 with xn=6, qÇ2f=1[K(Ei)](xi))^L maxláiánp(Xi) where the

constant L depends on p and o. Furthermore, the (p, q) variation of K, denoted by

WKPjQ, is given by the infimum of all such L.
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6.2 Theorem. Let H denote a locally compact Hausdorff space and let 2C denote

the ring generated by all compact subsets of H. IfT is a continuous linear operator

from Cc into Y, then there is a unique finitely additive weakly regular set function K

on 2C with values in L[X, Ya] which is of bounded (p, q") variation such that T(f)

= ( dKffor all fe Cc. Furthermore, ifTis (p, q) related then WKPtQ~ = \T\p¡q.

6.3 Theorem. Let H and 2C be as in Theorem 6.2. If T is a continuous linear

operator from C0 into Y, then there is a unique finitely additive weakly regular set

function K on 2C with values in L[X, Y] which is of bounded (p, q") variation such

that T(f) = E j dKf for feC0. Furthermore, if T is (p,q) related, then WKp<q~ =

\T\

6.4 Definition. Suppose 2C is as above and Kis a finitely additive set function

on 2C with values in L[X, Y]. To say K is of bounded (p, q) variation with compact

(7-support means, given a continuous seminorm q on Y, there are a continuous

seminorm p on X, a constant WKp_q, and a compact set Mq such that, for each x,

q([K(E)](x)) is a real-valued set function with support MQ and such that

«7(2 [K(Ei)](Xi))g WKPtQ max{p(xt) : E{ n MQ=¿ 0}. Such a set function is said to

be of bounded (p, q) variation with compact support if the compact set Mq is

independent of the seminorm q.

6.5 Theorem. Let H and 2C be as in Theorem 6.2. // T is a continuous linear

operator from C into Y, then there is a unique finitely additive weakly regular set

function K on 2C with values in L[X, Ya] which is of bounded (p, q") variation with

compact q"-support such that for fe C, T(f) = E J" dKf Furthermore, ifT is (p, q)

related, then WKPi¡1~ = \T\p¡q.

6.6 Theorem. Suppose H and 2C are as in Theorem 6.2 and Y is a normed space.

If T is a continuous linear operator from C into Y, then there is a unique finitely

additive weakly regular set function K on 2C with values in L[X, Ya] which is of

bounded (p, \\ ■ ||y») variation with compact support such that for fe C, T(f)= f dKf

Furthermore, ifTis (p, || • ||y°>) related then WKpAl.{lYia=\T\pAl.nyW.

We conclude this section by observing that the results obtained in §3 of [3]

which include generalizations of the results of Hildebrandt [7] and Fihtengol'c

and Kantorovic [5] can be obtained in this setting by using Theorem 3.1 of this

paper as Theorem 2.2 is used in [3].

7. Proof of Theorem 6.1. We show that Theorem 6.1 follows as a corollary of

Theorem 3.1. To do so it is necessary to identify the subspace 5'(2, X) and to

construct the r¡ map of Theorem 3.1. The required space 5'(2, X) is the space of

simple functions which are representable as simple functions over {Et}f=1 where

U¡ = i E¡ is a closed set and where U*«i E¡ = H. Suppose £<=2. Consider the

directed set A(E) = {(F, V) : F<^E, /"closed and E<^ V, Kopen} where the direction

is given by (F, V)>(F', V) if and only if F'^F and K<= V'. Define the net of
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functions {(/>«}A(m (using Urysohn's lemma) such that for a = (F, V), cf>a is a con-

tinuous function whose values are taken in [0, 1] which is 1 on F and 0 on the

complement of V. In the following lemma we establish the preliminaries necessary

to define the r¡ map.

7.1 Lemma. Suppose E and {<j>a}A(E) are as above. Then, for each vector xe X,

{0a-x}A(£) is weakly Cauchy in CTB. Furthermore, if{<i>a\uE) ond {ipa}Alm are any two

nets picked in the above fashion, then {</>a-x} and{<pa-x} are weakly Cauchy equivalent

in CTB.

Proof. It is sufficient to show that {</>a} is weakly Cauchy in the space C7? of

bounded continuous real valued functions on 77. Suppose c' e CR'. Then theorem

[1, p. 262] implies there is a regular bounded additive set function /v such that

(c',fy=§fdp.c.. Therefore, given e>0, there is a closed set Fe<^E and an open set

K£=>F such that \\p-\\(Ve\E) and \\p.\\(E\Fe) are both smaller than e/2. If (F, V),

(F',V')>(Fe,V£),then

i/ii(Kun£nF)í hm\Fe)

= \\p.\\(V£\E)+\\p.\\(E\Fe) < e/2 + £/2 = e.

Therefore, for a = (F, V) and a' = (F', V) and a, a'>a£ = (Fe, Vs), </>a differs from

<f>a. on a set of ||/x|| -measure less than e. Therefore, for a, a'>a£,

|<c',^>-<c',^>| =|j*(^-«fl> < e,

and it follows that {<«?', <f>ay} is Cauchy. Hence, {<f>a} is weakly Cauchy in CR'. That

{<Wa(e> and {¡Aa}A(£) are weakly Cauchy equivalent follows by an analogous

argument.

For each E e 2 and corresponding set of functions {<f>a}A(E), and each xe X, we

denote by x(F, x) the weak limit of {<j>a-x}A{Ey Define the linear map r¡ from

5(2, *)+CF77 into (CFTi)" by v(f)=f for fe CTB and ,(2, Xe, • *.) = Zi X& ■ *0-
Since the decomposition of a function into a continuous function and a simple

function is unique modulo constant functions, the linear map r¡ is well defined. In

the following lemma we establish that the 77 map has the desired properties and

thus complete the proof of 6.1 except for the uniqueness of K.

7.2 Lemma. Suppose rj is as above.

(i) For each continuous seminorm p on X, \r¡\p = 1.

(ii) The space CTB is a subset of the closure of 5'(2, X) under the topology of

uniform convergence.

(iii) The linear map r¡ is a continuous linear map from 5'(2, X) + CTB into (CTB)a.

Proof (i). We show that for each continuous seminorm p on X, Pp(-r/(2i Xe¡ ■ xt))

= PpŒi Xst'Xi). The simple function 2"=i Xm¡'xí m S(Z, X) implies that there are

nets {<pittt-Xi}MEt), i= 1,..., n, defined as in this section, which are weakly con-

vergent to r)ixEt-xt), /=!,...,«, respectively. Let A denote the directed set defined
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by A(Ei)x A(E2)x ■ ■ ■ x A(En). Define the nets {(f>ia}, i=l,.. .,n, over A by

<Pia = <l>«ai.«„>=&<.,. Then> {&«•*(} a converges weakly to rfycBixt). We now con-

struct nets {niir}A, /= 1,..., n, in the fashion of Wayment [12] such that for each

«j 0 ^ 2 h¡a(t) á 1 for / e // and such that, for each i, {hia ■ xt}A converges weakly to

rj(xE,-xt). For each a e A define hla = <p1a, h2a = <f>2a — min (<f>2a, hla), and in general

hja = <Pja — min (<pja, 2i = î hia). Then, 0 S 2"= i hia(t) á 1 for t e H. Choose/ Then

for fixed a, hJa differs from <f>ja only on Ui*; (^ n V,) where a = (a1, ..., a„) and

<xi = (/ri, Vt), i=l,..., n. Suppose c'e(CBR)'. As in 7.1 we let pc, denote the

measure corresponding to c'. Then,

\\pA(U(Ví^v,)) á 2 ImcIIW n f,)

= 2 kW n ftn $)u W n F»n £))

The last inequality follows from the fact that ||/v|| is subadditive and the fact that

Ei^Ej, the complement of E¡. As <* = («!,..., «J runs through the directed set

A, at = (Fi, Vt) runs through the directed set A(E,) for each i. Hence, for each i,

ll/vlKF n £f) converges to zero. Therefore,

lim|<c',^-nia>| = lim \(<pjtt-hla)dfic.

< liin sup (2 U/vf(ft n £,)+ |M|(^ n £,)]) = 0.

Hence, {#,,.} and {hja} are weakly Cauchy equivalent from which it follows that

{hja ■ Xj}A converges weakly to </>(xe, • xd- Observe that

:c'eB°W(2 XV*)) = supilim /c', 2 V*

where B° = {c' e (CTB)' : | <c',/> | ¿ 1 for all /e CTB such that /»„(/) á 1}. There-

fore,

pp[y{ 2 xv*)) = limasup /M 2 ****)

= limasup isup/»(2 htti(t)-xt\\

á lim sup ((sup 2 hjf)\\ max />(*,)) |
a \\ieH £M /\lS¡Sn //

= max /»(x.) = p„(2 Xe,-*)'
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Proof of (ii). Suppose fe CTB and suppose U is an open neighborhood of 9X.

Since the range of / is totally bounded, there exists a finite number of points

{x$=1 such that QU+x$=x covers the range off. Hence {^U+xt}f=1 covers the

range off. Let Fi=f~1[iÜ+xi] for each i. Define E1 = F1, E2 = F2-Eu E3 = F3

-E1V) E2, and in general let F; = F;-1J¡;Í F¡. Finally, let Su = J,f(t¡)xE¡ where

U e Et. We note that Sv e 5'(2, X) and Sv(t)-f(t) e U for each t.

Proof of (iii). Our plan is to use Lemma 3.2 to establish this result. In order to do

so, it is convenient to establish the following sublemma, which extends the corres-

ponding results in [3] and [11].

7.3 Sublemma. Suppose S is a locally convex space. A sufficient condition to

guarantee that a net {s„}A in 5™ converges to s e S is that for each a there is a net

K,«}/!£A«v) such that

(a) for each a e A, {sayB}eeMa) converges weakly to s%,

(b) ■Vjs — s converges to 9S as a runs through the directed set A.

Proof. It is sufficient to show that for each continuous seminorm p on 5 that

p"(sa— s) -*■ 0. Choose e>0. Since sa¡B — s converges to 9S then there is an a0 e A

such that a>a0 implies p(sa¡B — s)<e. Choose a>a0. Then

p"(s% — s) = sup -j lim |<s', satB — sy\ : s' eB°> ¿ lim sup p(sa,e — s) < e.

We continue with the proof of (iii). Suppose {sa}A = {JifJ"l xsf ■*?} is a net in

5'(2, X) which converges to fe CTB in the topology of uniform convergence.

Our plan is to construct for each a 6 A a net {sa,B}BeMa) which converges weakly to

r¡(sa) so that Sublemma 7.3 is satisfied in order to apply Lemma 3.2. Fix a. Since

sa e 5'(2, X), A]=(Ji=1 Ef is a closed set. For each y we define the directed set

A(A") = {(A", V) : V is an open set containing Aj}

where the direction is given by inclusion. For each / we define a net of continuous

functions {</>,;Bj}BfEAiAp sucn that, for each/ and for ß} = (A", V), <pU8¡ takes its values

in [0, 1], is 1 on A" and is 0 on V. Then for each/ {<t>j,Bj}BjSA.iAi) converges in measure

to XaI f°r every bounded regular finitely additive set function on 2, and hence is

weakly Cauchy in CBR. Define the directed set A(a) to be A(Af) x ■ ■ ■ x A(A%ia)).

For each j we define the net of open sets {VJB}BeAW by VJB= V where ßj = iA% V)

for ß = (ß1,...,ßj,...,ßn(tx)). For each ^A(a) define {hjB}fi\ by h1B = <f>1B and

hjß = 4>jß — min (<f>iß, 2¡;í hiB). Then for each |S e A(a), {«,-«}"= i is a partition of

unity subordinate to {VjB}f*\. Next we show that, for each/, {hjB}BeAW converges

in measure to xe¡ for every bounded regular finitely additive set function on 2.

Suppose p. is such a set function and suppose e > 0. For each ß, hjB differs from xe¡

on (£/n(Ui:}yu(F,14 For each /</, \\p.\\(Ef n ViS)< \\p\\(À° n ViB)
which converges to zero as ß runs through A(a) because of the regularity of p. and

because of the manner in which {VjB}BeAia) is constructed. For the same reason,
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IIfIICjíV^?) converges to zero. Hence, it follows that {hjS}BeMa) converges to xeJ in

measure for all bounded regular finitely additive set functions. Hence, it follows

that for each i, {hiB ■ x"}íeA(a) converges weakly to x(E", x?) and hence that

{2?iai V*?W> converges weakly to 2*? x(E?, x?) = 7,(^1 y£f jcf). For each

ß e A(a) define ia,/3 = 2?=ai ww*f- Then, {sa,B}BeMa), a e A, satisfies condition (a)

of Sublemma 7.3. Suppose p is a continuous seminorm on X and suppose £>0.

Since {sa}A converges to / in the topology of uniform convergence, it follows that

there is an a0 such that a>a0 implies pp(sa—f)<e. Suppose a>a0. Then

PÁs«.f-f) = sup/>(/(,)-2 MO-x?)

=   max   sup piS hiB(t)(f(t) -xf))

=    max   supp(f(t)-xf) = pp(sa-f) < e.
lS¡á»W tsEf

Hence it follows that lima pP(sa,B—f) = 0. Therefore, limaSa,B — s=0s, from which

it follows that (b) of Sublemma 7.3 is satisfied. Hence, {n(sa)}A converges to/in

CTB. Therefore, Lemma 3.2 implies r¡ is continuous on 5'(2, X) + CTB.

7.4 Lemma. Suppose Jf. and K2 are weakly regular and give the same transforma-

tion on CTB. Then K1(E) = K2(E)for all £e2.

Proof. For each y' e Y' and xe X, </, [K(-)](x)y is a bounded regular finitely

additive set function on 2 and generates a continuous linear functional on CBR.

Theorem [1, p. 262] implies such set functions are unique. Thus, if K and K2

generate the same transformation on CTB, then for each y',x,(y', [K( ■ ) — K2( ■ )](x)>

generates the zero functional on CBR. Hence for each E, [K1(E) — K2(E)](x) = 0Y

which in turn implies K1(E) — K2(E) = 0ux¡Y<°¡.

8. Proofs of Theorems 6.2 and 6.3. The proofs in this section mirror those of

§7 and hence only brief indications of proofs are given in this section. As before,

our plan is to use Theorem 3.1, and therefore, we must identify the map r¡ and the

collection 5'(2C, X). In this setting 5'(2C, X) denotes the space of simple functions

2?=i Xe,-Xi suchthat U¡ = i Ei is a compact subset of H for j<n. Let AT be a compact

subset of H and let 2K denote the field generated by the closed subsets of K. Then

Uk^h^k is a ring in H which contains all of the compact sets in H. Hence if 2C

denotes the ring generated by the compact subsets of H, we have 2ZC<={JK<-HI,K.

On the other hand if Fe{JK^H2ZK, then Fe2ZK for some K. We observe that

21* = {E n K | E e 2C} is a field of sets satisfying 2iK<=£c which contains all the

closed sets in K Hence 2Kc %K. This implies Fe 3tA- and consequently 2C

= Uí:=jí Ejt- It follows that for each E in 2C there is an open set 0E containing E

which has compact closure. Define the directed set A(E) by

A(E) = {(F, V) : F <= E is closed, E é V ¡¿ Oe is open}
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where the direction is given by (F', V')>(F, V) means F<=F' and V'cz V. For each

a = (F, V) e A(E) define (using Urysohn's lemma) a continuous function <f>a which

has its range in [0, 1] and such that </>a=\ on F and </>a=0 on V. Suppose Fis a

linear functional on Cc7?. As in [8, p. 139], it is possible to decompose F into the

difference of two positive linear functions and hence by Theorem 2.14 [9, p. 40]

there is a unique Borel measure which is outer regular and inner regular on Borel

sets of compact closure such that T(f) = ¡ fdp. for fe CCR. Then proceeding as in

the proof of Lemma 7.1, we have the following lemma.

8.1 Lemma. For each E e 2C, the net {<f>a}aeAiE> is weakly convergent. Furthermore,

if A'(E) is a directed set which is cofinal with A(E) and the net {>pa}aeA-(.E) is constructed

in a fashion analogous to that of {</>a}aeME) then the two nets are weakly Cauchy

equivalent.

For each E, since {<f>a}aeA(je) is weakly Cauchy in Cc7?, then {(f>a ■ x}aeAiE) is weakly

Cauchy in Cc for each x e X. As before, we let x(E, x) denote the weak limit of

{<t>a-x}aeA(E). Define the linear map -n from CC + 5(2C, X) into C? by t?(/+2í Xs,'xt)

=/+2i x(Ei, *.) for/E Cc and 2. *■,•* 6 5(2C, X).

8.2 Lemma. Suppose r¡ and 5'(2C, X) are as above. Then,

(i) the space Cc is in the closure of 5'(2C, X) under the topology of uniform

convergence,

(ii) the linear map -n is continuous on the space CC + 5'(2C, X),

(iii) the linear map r¡ is continuous on the space 5(2C, X).

Furthermore, for each continuous seminorm p on X, \^\Pp= 1.

The proof of this lemma follows as the proof of Lemma 7.2 by using the above

characterization of linear functions and by observing that in this setting the

function <j>a can be constructed to have compact support.

Theorem 6.2 now follows from Theorem 3.1 except for the uniqueness of K.

However, the uniqueness of K follows from Theorem 2.14 [9, p. 40] in the same

way the uniqueness of K was obtained using Theorem 2 [1, p. 262].

Theorem 6.3 now follows from Theorems 6.2 and 4.7 since C0 is the closure of

Cc in the topology of uniform convergence.

9. Proofs of Theorems 6.5 and 6.6. Theorem 6.5 is first proved for Cc under

the topology of uniform convergence on compact subsets. We remark that this

topology is a weaker topology than that used in 6.2. Also note that the set function

K in Theorems 6.5 and 6.6 is of bounded semivariation on a ring and cannot in

general be extended to a set function of bounded semivariation on the field gener-

ated by the ring.

9.1 Lemma. Suppose 77 and 2C are as in Theorem 6.2. If T is a continuous linear

map from Cc into Y, then there is a unique finitely additive set function K on 2C with

values in L[X, Ya] which is of bounded (p, q") variation with compact q"-support

such that T(f) = \ dKf. Furthermore, ifTis (p, q) related then WKp¡q~= \T\PtQ.
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Proof. Define 5'(2C, X) as in §8 and for each E e 2C construct the net {<f>a}a^uE-,

as in that section. That {(pa}aehŒ) is weakly Cauchy follows from Theorem 4.10.1

in [4, p. 203]. Define t? as in §8. That Lemma 8.2 is true in this setting follows as

indicated in §8 using Theorem 4.10.1 in [4] in place of Theorem 2.14 in [9]. Hence,

it follows from Lemma 3.2 that there is a set function K on 2C with values in

L[X, Ya] which is quasi-Gowurin with respect to the topology of uniform con-

vergence on compact subsets such that, for/e Cc, T(f) = j dKf and such that if

T is (p, q) related, then WKD¡q-=\T\p¡q. This implies given a continuous seminorm

q on Y, there is a compact set Mq and a continuous seminorm p on X such that

q"(2^(Ed](xS) = ^^•«"^P/ŒxeXO-xO

= WKp,q. max {p(xt) : Etn Mq ^ 0}.

Therefore, for each x in X, q"([K(E)](x)) has as support Mq. Hence, Kis of bounded

(p, q") variation with compact ^"-support. The uniqueness of K follows as in §7.

Theorem 6.5 now follows from Theorem 4.7 since C, the space of all continuous

functions, is the completion of Cc, the space of continuous functions of compact

support, both with the topology of uniform convergence on compact subsets. If Y

is a normed space, then Â"has compact support M, which implies all functions in C

are K integrable and that J dK-f=$ dKfM where fu denotes the restriction of /to

M. Also £ j dKf=E\ dKfM. Lemma 4.5 implies E J" dK-fM=\ dKfM from which

Theorem 6.6 follows.

10. Concluding remarks.

10.1 Remark. In order to hypothesize the existence of the -n map in Theorem

3.1, it is necessary that the dual F' of the function space F separate points of F

(which is assured when /"has a locally convex topology). This is sufficient to guaran-

tee that F can he imbedded in F". Under this additional hypothesis we may retain

the view that F<^Fm under the topology of uniform convergence on equicontinuous

subsets of F' when Jfand Tare topological vector spaces. Hence, Theorem 3.1 is

valid in this more general setting.

10.2 Remark. A sufficient condition to obtain the representation theorem of

Theorem 3.1 is that T has a continuous extension to /"+5(2, X). A seemingly

weaker condition is that the r¡ map of Theorem 3.1 exists. It is interesting to note

that the existence of the r¡ map implies the representation theorem which in turn

implies that the composite map Tarj (an extension of T) is continuous. The classical

integral representations for functionals on real function spaces follow from

Theorem 3.1 using this observation and the Hahn-Banach theorem.

10.3 Remark. The set functions in Theorems 6.2, 6.3, 6.5, and 6.6 all can be

constructed to assume values in L[X, Y + ] rather than L[X, Ya] by using the

techniques of the proof in [3] and by changing 2C to be the ring of sets generated
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by the condition that, for each E in 2, xe is the pointwise limit of a sequence of

uniformly bounded continuous functions of uniform compact support.

Addendum. The authors have been interested in obtaining conditions sufficient

to insure that F' separates points of F (Remark 10.1). Motivated by the abstract

(Abstract 672-422, Notices Amer. Math. Soc. 17 (1970), 203) of A. H. Shuchat

which came to the authors' attention after the preceding manuscript was prepared,

we obtain the following results.

Lemma. Suppose F is a topological vector space of functions with topology r from

an arbitrary space 77 into a topological vector space X and T is a continuous linear

operator from F into the topological vector space Y. Suppose further that Y' separates

T[f]. Let FT = F/Ker (T) under the inherited topology. Then F'T separates points in FT.

Remark. If F' separates points in F, then F'T separates points in FT for all T.

Hence, if F<= T and the topology t on F can be extended to the simple functions,

then it is possible to hypothesize the existence of an r¡ map analogous to the one in

Theorem 3.1 from Fr + 5T(2, X) into F|J. Here again, F is the closure under the

uniform topology of the simple functions 5(2, X) over a ring 2 of subsets of 77

and t is a topology not stronger than the topology of uniform convergence, and

5r(2, Z) = 5(2, X)/(Ker(T) n 5(2, X)).

Theorem. Suppose 77, 2, X, Y, F, t, 5(2, X), T, and T are as above. Suppose

further that there is a subspace 5'(2, X) in 5(2, X) such that

(i) F is contained in the r closure o/5'(2, X), and

(ii) there is a linear map -nTfrom Fr + 5r(2, X) into F¡f such that r¡T restricted to

each of ST and FT + 5i(2, X) is continuous.

Then there is a set function KonZ with values in L[X, Ya] which is quasi-Gowurin

with respect to r and such that, for eachfe F, F(/) = J dK-f.

Theorems 6.1, 6.2, 6.3, 6.5, and 6.6 now follow for the case that X and Y are

topological vector spaces and Y' separates points of Y.
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