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NONCOMMUTATIVE JORDAN RINGS

BY

KEVIN McCRIMMON

Abstract. Heretofore most investigations of noncommutative Jordan algebras

have been restricted to algebras over fields of characteristic ^2 in order to make use

of the passage from a noncommutative Jordan algebra 91 to the commutative Jordan

algebra 91+ with multiplication x-y = i(xy+yx).

We have recently shown that from an arbitrary noncommutative Jordan algebra

91 one can construct a quadratic Jordan algebra 91+ with a multiplication Uxy

= x(xy+yx) — x2y = (xy+yx)x—yx2, and that these quadratic Jordan algebras have

a theory analogous to that of commutative Jordan algebras.

In this paper we make use of this passage from 91 to 91+ to derive a general structure

theory for noncommutative Jordan rings. We define a Jacobson radical and show it

coincides with the nil radical for rings with descending chain condition on inner

ideals; semisimple rings with d.c.c. are shown to be direct sums of simple rings, and

the simple rings to be essentially the familiar ones.

In addition we obtain results, which seem to be new even in characteristic ^ 2, con-

cerning algebras without finiteness conditions. We show that an arbitrary simple

noncommutative Jordan ring containing two nonzero idempotents whose sum is not 1

is either commutative or quasiassociative.

1. Axioms and basic results. Throughout this paper 91 will denote a noncom-

mutative Jordan algebra over a unital, commutative, associative ring of scalars i>;

we obtain Jordan rings by taking <b = Z, the ring of integers, and the usual linear

algebras by taking O to be a field. Unless otherwise stated, <ï> will be completely

arbitrary, and we impose no finiteness conditions on 9t.

We recall the definition [9, p. 472], [11, p. 141]. A noncommutative Jordan algebra

91 is a space together with a bilinear product xy such that the flexible law

(1) [x, y,x] = 0       ([x, y, z] = (xy)z-x(yz))

and the Jordan identity

(2) [x2, y,x] = 0

hold strictly, i.e. they remain valid in any scalar extension 9tn = 9I <8>« ß. This will

automatically be the case if these identities hold in 9Í and <J> is a field with at least

three elements (as in most previous investigations), and in general it merely amounts

to assuming in addition the linearized version

(2)' [x2, y, z] + [x o z, y, x] = 0       (x ° y = xy+yx).
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These conditions are equivalent to assuming that for any x the left and right

multiplications Lx, Rx, Lx^, Rx* all commute (and that this continues to hold in all

extensions). We write this as

(3) [Ex, Fx] = [Ej, Fx] = 0       (E,F = L, R).

These results are well known when }e$ [1, p. 574], and carry over in general

using the operator form [Lx, Rx] = 0 and [L^, Rx] = 0 of (1) and (2) together with

the linearization

(1)' [x,y,z] + [z,y,x]=0.

From any noncommutative Jordan algebra 91 we can construct a quadratic

Jordan algebra 91+ with operations

(4) x2 = xx,        Uxy = x(xy+yx) — x2y = {xy+yx)x—yx2

[7, p. 276]. Thus the {/-operators of 9t+ are formed from the multiplications in 91 by

(5) Ux = LXVX-LX* = RXVX-R¿       (Vx = Lx + Rx).

A basic property of these operators is that by (3) Ux commutes with Lx, Rx, Lxs,

Rx2. (For a detailed exposition of quadratic Jordan algebras, see [13].)

We can polarize the cubic composition to obtain a trilinear composition

{xyz} = Ux¡zy,       Ux¡z = Ux+Z-Ux-Us

and from this another operator

Vx,vz = {x y z).

Further useful formulas involving the [/-operators are

(6) x(Uyx) = (Uxy)y, y ° Uxy = x ° Uyx,

(7) [R„ Ux] = LXVZ,X- VXiZLx, [Lz, Ux) = RKVX,X- VX¡ZRX,

(8) UX¡Xy     =    RyUX+UXLy, UyX>X    =    Ly UX +   UX Ry.

To prove (6),

(Uxy)y = {x(xoy)-x2y}y = RyRx>yX-(x2y)y

= {Rx yRy - [Rx, Ryz]}x- (x^)j (linearizing (3))

= (xy)(x o y) — (xy2)x+x2y2 — (x2y)y

= - [*2, h y] -xy2x+ [x, y, x o y] + x{y(x ° y)}

= + [x ° y, y, x] + [x, y, x ° y ] + x{y(x o y) -y2x}   (by (2)')

= x(UyX) (by (1)').
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The second part follows by interchanging x and y and adding. For (7),

{[R*,Ux]+VXtSLx-LxVzJy

= (Uxy)z~ Ux(yz)+{x z xy}-x{z x y}

= (x o xy — x2y )z — (x(x ° yz) — x2( yz)) + x(xy ° z) + xy(x » z)

— (x o xy)z—x(y(x ° z)+z(x ° y) — (y ° z)x)

= - [x2, y, z] + [x, y, x o z]+x{-x ° yz + xy ° z-z(x ° y) + (y ° z)x)

= [xo z, y, x] + [x, y,x o z] + x{-x(yz) + (xy)z-z(yx) + (zy)x)

= x{[x, y, z] + [z, y, x]} = 0

and dually, while for (8)

Ux,xyz = {x z xy} = Vx>zLxy

= {LxVz_x-[Rz,Ux]}y (by (7))

= x{z x y}-(Uxy)z+ Ux(yz)

= (Uxz)y+ Ux(yz) (linearizing (6))

= {RyUx+UxLy}z

and dually.

We define the powers xn recursively from the left by

-y*X       __        Y -V-Tl +  1       ̂ ^        -y-yTX
-\       —   Aj .A- —   vV^V    •

Note that the quadratic Jordan powers (x1=x, x2 = x2, xn + 2= Uxxn) coincide with

the noncommutative powers; clearly xn has the same meaning in both, for n= 1, 2,

while, for n = 3, Uxx = x(xx + xx) — x2x = 2xx2 — x2x = xx2 = x3 by (1), and if true

for n + 2 then, for rc + 3, Uxxn + 1=UxLxxn=LxUxxn=Lxxn + 2 = xn + 3. Throughout

the paper we will see examples of this close relation between properties of 9t and

properties of 91+.

As a generalization of (3) we have

All Lx", Rx" belong to the commutative algebra of linear operators

generated by Lx, Rx, Ux.

This is clear for «=1,2 by (5), while for n + 2 we have Lx"+2y = RyUxxn

={UXV,X- UxLy}xn (by (8)) ={xy xn x}-UxRx»y so that Lx»+*= VX^LX- UXRX«

is generated by Lx, Rx, Ux by induction (note VXfX"=Vx*+i in any quadratic

Jordan algebra).

Any noncommutative Jordan algebra is strictly power-associative in the sense

that

(10) xnxm = xn + m

holds in 91 and any extension of 91 [9, p. 473]. This follows for n= 1 by definition,

and by induction xn + 1xm = Rx™Lxxn=LxRx™xn (using (9)) =Lxxn+m = xn+m + 1.
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If \ e Q*>, R. D. Schäfer proved [9, p. 473] that a flexible algebra was a noncom-

mutative Jordan algebra if and only if it was "Jordan admissible" in the sense

that 91+ was a commutative Jordan algebra. Unfortunately, this result does not

extend to arbitrary O. Of course, any noncommutative Jordan algebra 91 is flexible

and "Jordan admissible" in the sense that 91+ (with the {/-operators defined as in

(4)) is a quadratic Jordan algebra. However, flexibility and Jordan-admissibility

are not enough to guarantee (2); an example is 9t = 3r/® where g is the free non-

associative algebra and ñ the ideal generated by all xy+yx and all monomials of

degree 2:5 (cf. the axioms of [7, p. 271]). Of course 2x2 = xx + xx = 0, so if \s O

the Jordan identity would be trivial, but for O of characteristic 2 the identity (2)

fails even though the algebra is flexible (even commutative) and Jordan-admissible.

2. Units and inverses. A unit element 1 satisfies the usual conditions \x = x\=x.

If 1 is a unit for 9t it is also one for 9t + since Ux\ =x(xl + lx) — x2l=x2 and UxX

= \{\x + x\)—\x = x [7, p. 273]. Conversely, if 1 is a unit for 9l+ then ^=27,

{/! = /, and 12=1, plus I=U1=L1V1-L12 = R1V1-R12, imply I=L1 = R1 and thus

1 is a unit for 91. We may adjoin a unit to any noncommutative Jordan algebra 91

in the usual manner to obtain a unital noncommutative Jordan algebra 9t' = <J>1 +91;

we have a similar process for quadratic Jordan algebras, and {91'}+ ={9t + }'.

An element x of a unital noncommutative Jordan algebra 91 is invertible with

inverse y if

xy = yx = 1,       x2y = yx2 = x.

Then x and y are also inverses in 9C+ (i.e. Uyx=y, Uyx2=\) since Uyx2

=y(yx2 + x2y)-y2x2=y(x2y)-[y,y,x2]=yx+[x,y,xy+yx] (by (2)', (1)') =yx

= 1 and UyX=UyLyX2=LyUyx2=Lyl=y. Conversely, if x and y are inverses in

91+ (so that Ux is necessarily invertible) they are inverses in 91 because Uxy = x,

Uxy2=\ imply UxExy = ExUxy = Exx = x2= Ux\, UxE^y = E^Uxy = Ex^x = xi

= Uxx for E=L, R by (9), so cancelling Ux yields xy=yx= 1, x2y=yx2 = x. Thus

the notions of invertibility in 91 and 91+ coincide.

Writing x"1 for the (unique) inverse of x, we claim

(11) Lx-i = UX^RX,       Rx-i= UX^LX.

For example, UxLx-iy=UxRyx-1={UyXtX-LyUx}x-1 (by (8)) ={yxxx~1}

—y{Uxx~1} = 2yx—yx=yx = Rxy since {z x x~r) = 2z in any quadratic Jordan

algebra (e.g. see [14]).

From this we also see that if we define negative powers by x~n = (x~1)n then from

(9), (5), (11) we obtain

All Lx", Rx" belong to the commutative algebra of linear operators

generated by Lx, Rx, Ux, U'1.

These results improve on those of [6, pp. 943-944]. From this we could extend (10)

to include negative powers.
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3. Idempotents and Peirce decompositions. An idempotent in 9t is an element

e with e2 = e. Two idempotents e,f are orthogonal if e/=/e = 0. In this case Uef

= e(ef+fe) — e2f=0, e °f=ef+fe = 0, Ufe = 0 so e,/are orthogonal in 91+ . Con-

versely, if Uef=e o/= Ufe = 0 in 91+ then ef=e2f={LeVe- Ue}f=0,fe = Q, and e,/

are orthogonal in 91. Thus the notions of idempotence and orthogonality coincide

in9í and9t + .

An idempotent e determines a Peirce decomposition 9Í+ = 9ii © 9t1/2 © 9t0 of

9i+ into a direct sum of subspaces. Here Ue = I, Ve = 2I on lñ1; Ue = 0, Ve = I on

äti/aj Ue= Fe = 0on9l0. We claim Le = Re = il on 9i4 for i = 1, 0 (in general we cannot

say anything about the action of Le on 9t1/2) ; ex = xe = ix for x e 9t¡. This follows

since H=Ue=LeVe—Le=Le(Ve — I) = (2i—l)Le on 9Í¡, and similarly for Re.

Peirce Decomposition Theorem. If e is an idempotent in a noncommutative

Jordan algebra 9Í then 91 is the direct sum 9t = 9ti © 9i1/2 © 9t0 of subspaces

9tx = {x | ex = xe = x},   9t1/2 = {x \ ex + xe = x},   9t0 = {x | ex = xe = 0}.

These coincide with the Peirce spaces 9^= C/e9t, 9t1/2= £/e>1_e9í, 9Í0= i/1_e9t o/9t + .

Peirce Relations Theorem. The Peirce spaces multiply according to

(PR1) 91^91, (/ = 0,1),

(PR 2) 9íi9í1/2 + 9í1/29íi^9í1/2 (i = 0, 1),

(PR 3) x e 9i1/2 => x2 e 9ÍJ +9l0,

(PR 4) 9í19ío = 9í09{1 = 0.

Proof. (PR 3) follows from the corresponding result in 9t+ (or it can be shown

directly). For the others we use the basic commutativity formula

(13) [Ex, Fe] = 0        (E,F = L,R,xe 9ix + 9t0)

which follows from 0 = [Ex, Fez] + [Ee, Fx,e] (linearizing (3)) = [Ex, Fe] + 2/ [Ee, Fx]

= (1 —2i)[Ex, Fe] (linearizing (3) again) when x e 9Í¡.

This shows multiplications by 9t0 or ^ commute with the Peirce projections

built up from Le and Re, hence leave the spaces 91^ invariant, which establishes

(PR 1), (PR 2), and shows 9í19t0c9t1 n 9t0 = 0. Similarly 9109t! = 0, whence (PR 4).

We have the following extremely important formulas [3, p. 189]. They allow us

to recover certain products xy in 91 from the products x o y in 9t+ together with

multiplication by e. If x¡ belong to the Peirce spaces 9Í¡ relative to e,

e(Xj/2 ° Xn) = exi/2 ° Xq = Xi/2Xo,       (^1/2 ° x0)e = x1/2e o x0 =: x,0Xi/2>

(14)
^(•"•1/2 ° Xi) = £Xi¡2 ° Xi = XiXi/2,       \X112 ° Xi)e = Xi/2<? °ïi = X112X1,

Po(xm o eym) = P0(x1/2e o yll2) = P0(xll2yll2),

Pi(exll2 o yll2) = P!(x1/2 o y1/2e) = Pj.ixj.iayua),
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where the P¡ are the Peirce projections on 9Í¡. In particular, we have the following

corollaries:

(14)' 7/"931/2 is a subspace o/9i1/2 satisfying e931/2c931/2j and 93¡ any subspace of

%for i= 1, 0, then

(15)' 7/"931/2 « any subspace of&m, then for i=> 1, 0,

For example, to prove the second part of (14) we write xxxm = [RXin> Ue]xx

= {LeVXll2_e- Ve_Xl 2Le}xj = e{x1/2 e xx}-{e xm x1} = e(x1i2 o xj from the Peirce

relation in 91+ [2, p. 1074] and (7). In (15) we use (8) to see Pi(ex1/2 o yll2)

= {exm yV2 e}=Uexxi2teyll2 = {RXll2Ue+UeLXlJyil2=P1{xll2yll2). The other parts

follow in the same way.

These allow us to improve on (13), namely

(16) [EXl, Fyo] = 0       (E, F = L, R).

This is trivial on %+^ by (PR 4). On 9í1/2, [EXl, Fyo]=[VXiEe, VVoGe] (by (14),

for G the opposite of F) =[VXl, Vyo]EeGe(by (13)) =0 since V^0 and V%1 commute

in any quadratic Jordan algebra.

More esoteric are the formulas

(17) z, ° A/2(*i,2.yi/2) = Pii2{xV2{Zi ° yí¡2)} = Pi,2{(z¡ ° xll2)yll2}       Q = 1.0);

Px{xV2 o fitJfra&uà) = Pí{zi;2 o P1/2(x1/2j1/2)}

= Pi{yil2°Pu2(zi,2Xll2)}       (i= 1,0);

(19) C«,«Ä  = PÁX1I2ÍXU2 ° Ji)} = P;{(ji ° ^1/2)^1/2} 0' =   I-Oí

xïl2yi = Pitemos o yt)},    y¡X2ll2 = Pt{(j¡ o x1/2)x1/2},

*l/2 ° Ji = P¡{x1/2 o (x1/2 o j,,)};

[*¡, y i, Z112] = yfówft) = (*iZi/2).y¡,

[Zl,2, Ji, X¡]   =   -(^¡21/2)^   =   -Ji(Zl/2*¡)-

To prove (17), let xlt2yll2 = a1 + ali2 + a0, yil2x1i2 = b1 + bm + b0(so bU2= -aU2 by

(PR 3)). Then

0 = Pii2{[xii2, y-112., z¡\ + [zj, J1/2, x1/2]}

= Pl/2{(^l/2 Jl/2>¡ - *l/2(j'l/2Zi) + (Z¡ J1/2)x1/2 -Z¡(jl/2X1/2)}

= Pi/2{ai/2Zi -^1/2(^1/2^) + (Zi ° Ji^i^-ÍJi^zO-^i^ + Ziai^}

= -P1/2K/2 ° Zi-Xl/2 ° (>'l/2Z¡) + (Zi ° Jl/2)^l/2}

= ai/2 ° Zi +Pi/2{(Zi ° ^1,2)^1/2} = ai/2 ° z¡ -P1/2{x1/2(z1 o j1/2)}    (by (PR 3))
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so z, oPll2{xll2y1i2) = zi o all2=Pm{x1,2{zi ° yll2)}. This gives the first part of (17);

the second follows by a similar argument (or note z, ° P1¡2(xmyy¡2) =

-z¡ ° A/2(>'i/2^i/2)= -Pii2{yii2ÍZi ° xm)}=Pll2{{zi o x1/2)j1/2}). For (18) we have

0  = Pi{[Zi/2, Xj/2, J1/2J+ [.Vl/2> X1/2, Zl/2j)

= Pi{{Zl¡2Xll2)y\¡2 — Zíi2{X1¡2yíi2) + (j;l/2^1/2)zl/2 ~yil2\Xll2zll2)}

= Pi{\zii2Xii2)yi/2 — z1i2{x1i2yii2) + {x1i2 o _v1/2)z1/2 —(x1/2_v1/2)zi/2

~yil2(Xn2 ° Z1/2)+J1/2(z1/2X1/2)}

= Pii(zU2Xll2) ° Jl/2 — Z1I2 ° (-^1/2^1/2)}

so Piiznz o Pll2(xll2yll2)}=Pi{y1i2 o pll2(zll2xV2)}; permuting cyclically gives (18).

(19)-(20)   follow   from   UXll2y¡ = xm(xm° yd-x^y^^* xll2)xll2-yiX2l2   by

applying Pt and P;, noting UXll2yie'ñj and y(x\í2, x2/2j¡ e 9t¡. (21) follows as in

[3, (12) on p. 189].

The most general decomposition is

General Peirce Decomposition. lfeu ..., en arepairwise orthogonal idempotents

then

© %
t.i=o

where, for i,j, 0#,

51«" = {x I £iX = xe¡ = x},       9ty = {x I e¡x + xe¡ = e,x + xey = x} = 9tyi,

^00 = {x [ e¡x = xe¡ = 0 for all i},

9ti0 = {x I ejX + xßj = x, fyX = xey = Ofor all j # 1} = 9i0i.

This coincides with the Peirce decomposition of %+ relative to the ei: 9ti( = Ue%,

9iy = Ueue¡&, 9Í00 = U\ -e9í, 9íi0 = Uj. -e-ei9t for e = 2 et. jFbr x e 9ty we have etx = xei;

ekx = xek = 0 (k^=i,j). (The last statement follows because e¡x = x — xe¡ = xe, as

ßj + e^ is the unit for 9tij-r-9íü-l-9tj7.)

General Peirce Relations. The Peirce subspaces multiply according to

(GPR 1) 91^91,,,
(GPR 2) 9t(i9t„ + 9ti39tiic9Ii;,

(GPR 3) Sty^c«^

(GPR 4) 9lf2c9íti + 3lw + 9íw,

(GPR 5) x e 9lw => x2 e %,+%,,

where 9tj;9íkl = 0 if there are no shared indices. Furthermore, the general Peirce

spaces may be expressed as

9tfi = Stife),       9tw = 9t1/2(e0 n 9i1/2(e,)
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in terms of the Peirce spaces correspending to the individual idempotents. If J is any

subset of the index set I and ej = ^jeJ e¡ then the Peirce spaces of e¡ are

«i(e/) =   2 %r,       «i/afo) =   2   ®u>

®o(ej) =   2 **•
i.i'tJ

The multiplication rules can be proved as in the case of a single idempotent since

the Fx (x e 9tfcfc) commute with all Peirce projections Ptj and the Fx (x e 9tyk)

commute with the Peirce projections relative to e¡ + ek. Alternatively, the rules can

be deduced from the case of a single idempotent, noting that 9I„ = 9í1(e¡) ;

««=«ifo)<=Sío(e/), St,y=«t1/2(ef)n«1/a(^); 9tyc:9t1/2(ei) n «„(«*), 9l;tec9r0(e,)

^ 2ii/2(<?k); 5iwc^i(ei + ey) for (GPR 1-4) respectively.

The formula (20) can be improved to

xlyjk = Xaixn o jÄ),       jÄxy = {yjk o xiy)xy,

*« ° yac = xtj o (xy o yjk),

since PÄ{xy(xy o yik)} = xti(xij ° _yÄ) by (GPR 3).

4. Ideal-building lemmas. In this section we use the Peirce relations to construct

ideals. The most important construction is

Proposition 1 [3, p. 189]. lj'231/2 is a subspace oj~9l1/2 such that e231/2<=231/2 and

91, ° 931/2c= «b1/2 (/ = l, 0) then 23, =P,{9I1/2 o 531/2} is an ideal in 91,. 23 = $Ba + 231/2 + 230

will be an ideal in 9Í //

(i) 9ll;2o58^231/2,

(ii) P1/a{«1/a®i/a}<=»1/a,

in which case 23 coincides with the ideal in 9i+ generated by 231/2.

Proof. That 23¡ is an ideal in 9ij follows from linearized (20). The condition that

23 be an ideal, 9123 + 2391^93, reduces to (i) and (ii) since 91,23,+ 23,91,^ 23, by the

first part, 21,23, = 23,91, = 0 by orthogonality, 9I¡231/2 + 23i;22í,c581/2 by (14)' and our

assumptions about 231/2, while P¡(9l1/293i;2 + 231/29í1/2) = 23, by (15)' and the defini-

tion of the 58,.

Since the 58, are generated from 231/2 by Jordan products in 9l + , 23 is contained

in the ideal of 21+ generated by 231/2, and if 23 is an ideal in 2Í it is also one in 9Í + .

Lemma 1. If 581/2 = 9I1/2 and 23,=P,(2l1/2 o 9í1/2) then 23 = 231 + 231/2 + 230 is an

ideal in 91 which coincides with the ideal in 91+ generated by 9I1/2.

Lemma 2. // 231/2 = 9I0 ° 9l1/2, 23¡=P,(9l1/2 o 231/2) then 58 = 581 + 581/2 + 580 is an

ideal in 9t.

Proof. Clearly e23i;2<=931/2 since Le commutes with Vs&a by (13), 9t0 ° 931/2<=581/2

is trivial, and 9tj o 931/2c931/2 because V%a commutes with V%1 by (16). To see

that   5B1/2  satisfies  (i)  of Proposition   1,   note  9í1/2 o 230c:581/2 is trivial  and
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«i/a ° ®i=«i« ° ^{«i/a ° («o •> «1/2)} = «i» ° {«1/2 «0 «wd (linearized (19))

= -9l0 o {9t1/2 9t1/2 9i1/2}-r-{9X0 9t1/2 9t1/2} ° 9t1/2 + {9t0 9t1/2 9l1/2} o 9t1/2 (linearizing

(6)) c9I0o9l1/2 (by [2, p. 1074]) =331/2. For (ii) note P1/2(9t1/2931/2)

=A/2{?l1/2(9lo°2ti;2)} = 9lo°P1/2(9t1/29t1/2) (by (17)) c 9t0 o 9t1/2 = 931/2. Thus 93i;2

satisfies the conditions of the proposition.

Lemma 3. For i= 1, 0 the space

& = {z, e St, I z(9I1/2 = 8t1/aZ, = 0} = {zt 6 9ti I zf o 9t1/2 = 0}

is an ideal in 91.

Proof. Certainly z¡9t1/2 = 9l1/2z¡ = 0 implies z¡ ° 9t1/2 = 0, and the converse follows

from (14), so the two definitions of 3¡ agree.

It suffices to show 3¡ is a left ideal. We have 9I1/23i = 0 by definition and 91^ = 0

by orthogonality. For 9íj3¡^3i we use (21): (öizi)9(1/2 = ai(zi9(1/2)-l-z1(9t1/2ai) = 0

and similarly 9t1/2(aizi) = 0.

Now we investigate certain constructions of ideals from outer ideals. An outer

ideal in 9t is a subspace 93 of 9t such that L%93<= 93, and an inner ideal if t/^^ 93.

(These concepts apply to arbitrary quadratic Jordan algebras.)

Sublemma. If 93 is an outer ideal in 9Í with 93 = 93! + 931/2 + 930 relative to an

idempotent e then there exists an outer ideal©=©! +©1/2-|-©0 for ©x = 931; ©i/2=> 931/2,

©0 = 930 such that

(ii) Pf(«1/a o ©1/2)=Pt(9í1/2 o 931/2) (/= 1, 0).

Proof. Set(£¡ = 93i, for/=1,0, and61/2 = 2o° ®i/2,n where 931/2>0 = 931/2, 931/2,„ + 1

=P1/2(9l1/2931/2>n). Clearly ©i/ü3®!^ satisfies (i) by construction, and to establish

(ii) it is enough if P¡(9t1/2 o 931/2>n)cPi(9í1/2 o 931/2) for all n. This is trivial for « = 0,

and if true for n then

Pi(9ii,2 » ®i/a,»+i) = Pi(Sti/a » Pi/a(Sti/a®i/a.n))

= P.(»i,a.» » Pv&v&vù)        (by (18))

<= Pf(®i,a.» ° «1/2) c P,(Sti,a ° ®i/a)

by the induction hypothesis.

It remains to verify that ©is still outer. We have £/«©<= Uyßi + t/«©1/2c:93 + £/<h©1/2

so we need only show i/siS1/2cK1/2. We have t/sa0©1/2 = U%¿íU2 = 0, C/a0,3i1©i/2

= «0 o («i o ©1/2), í/a(l,2,9,i6;1/2 = {9í1/2 ©1/2 9ti}=Pi{9t1/2 o (©1/2 o 9tt)}, and c/3i1/ae1/2

= 9l1/2 o Pj(9t1/2 ° ©i,2) — ©1/2 ° P,(9l2/2) so that all we need are

% " ©1,2 c ©1,2,        Pi{5ii/2 » ©1/2} = Pt{«i,a®i/a} <= »I,

for i= 1, 0. In fact, we need only establish these for 931/2>n in place of ©1/2. For « = 0

these are clear since 93 is outer, while by induction 9Í¡ o 931/2 n +1 = 9Í¡ ° Pi/2(9t1/2931/2>n)

=Pi;2{(9t( o St1/a)»1/a>B} (by (17)) cPi/a(«1/a®1/a>B) = ®1,a.B + 1 and P¿Mim o 931/2>n + 1)
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=P,(9í1/2cP1/2(9I1/2231/2,n))=Pi(231/2,n°P1,2(9t1/29I1/2)) (by (18)) ^P,(231/2,n o 9t1/2)

^P,(9I1/2 o 931/2).

In the next lemma we will need to know that an outer ideal 23 can be enlarged

slightly so that e23<=23. More generally,

Sublemma. If 23 is an outer ideal in 9t so is <£ = 2ô> Lx 23 for any x, and x©<=(£.

Proof. Clearly xS<=(£ by construction. To show (£ is outer, it suffices to show

n

UaLxS& c  2 ¿"23
m = 0

for all n and all a e 9Í'. This is true for « = 0 since 23 is outer, {/a23<=58;

assuming the result for n, UaLx+1<8={UaLx}Lx%={Uax,a-RxUa}Lx® (by (8))

={Uax,a-VxUa+LxUa}Lx®^Znm = QLx®+LxZl = 0Lx® (by induction, noting

vx= Ux<1) <=2£U L™23. This completes the induction.

Corollary. If 18 is an outer ideal in 91, 23 = 531 + 231/2 + 580 relative to an idem-

potent e, then there exists an outer /äfea/S = ß1+ß1/2+(£o with ©1 = 231, ©1/2=>231/2,

©o = 230 such that eEcg.

Proof. (£ = 2S° L?23 = 23! + 2oœ ̂231/2 + 230.

Now we are ready to construct an ideal out of an outer ideal 23; we shrink the

components 23! and 230 but expand the component 231/2.

Lemma 4. 7/"23 is an outer ideal in 91, 23 = 231 + 581/2 + 580 relative to e, then there

is an ideal ,D = 5)1 + 2)1/2 + 5)0 in 91 with

Proof. Given any outer ideal 23 let £(23)=>23 be the outer ideal invariant under

Le constructed in the above corollary, F(23)=>23 the outer ideal with Pi/2(9t1/23;i/2)

c3i/2 constructed in the first sublemma. We set 230 = 23, 232n + l = £(232n), 232n+2

= P'(232n + 1). Then the 23„ form an increasing sequence of outer ideals, and

(£ = 2ö° 23,! is an outer ideal containing 23. Since at each stage 23n = 231 + 231/2>n + 230

(the constructions £and .Fonly increase the ^-component) we see © = S1+S1/2 + ©0

for ©! = »!, <£1/a=>S1/a, e0 = a3o- We have £((S)c©, F(g)cg since £(232n) = 582n + 1,

£(^a,+i)=»a»+1,F(i8^+j)=©aBta,^an+3) = ®a»+a.Thuse^

<=S1/2, and (since © is outer) both 9Í, ° Ei/2,= ®i/2 and 9t1/2 ° P,(9l1/2 o Œ1/2)c9l1/2 o g,

<=G1/2 hold. By Proposition 1 we see <D = 1)1 + ®1/2 + T)0 is an ideal for ®,=

^(^1/2°®!«)=®, = ®. and $1/2 = e1/2=>231/2.

We can draw certain conclusions about simple algebras from these constructions.

The major result guarantees that if 91 is well behaved and contains an idempotent

then 91+ is well behaved.

Theorem 1. A simple noncommutative Jordan algebra 91 with idempotent e#0, 1

has no proper outer ideals. In particular, 9Í+ is simple.
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Proof. The last remark follows since a proper ideal in 9Í+ isa proper outer (and

inner) ideal in 9Í.

Suppose 93 #91 is outer, 93 = 931 + 931/2 + 930 its Peirce decomposition relative to

e. By Lemma 4 there exists an ideal 2) = 1)1 + <£)1/2 + ®o in $1 with ®,cg3t and

®i/2=»®i/2- Now 931 + 930<9i1 + 9to or else e e 93j implies 9t1/2 = e o 9I1/2<=93 and

93 = 91, contradicting our choice of 93. Thus <D1+<D0<5ii + 9to too, so ®#9l, and

by simplicity 25 = 0. But then ®i;2c^i/2 = 0, consequently 93, ° 9l1/2c931/2 = 0

implies ®¡c3i in the notation of Lemma 3. We saw in that lemma that the 3¡ are

ideals in 9t, and 3ic2Ii<2i if e#l, while 3oc2Io<2l if e#0, so again simplicity

forces 3i = 0. Then 93, = 0 and 93=0. Thus 93 = 0 and 93 = 91 are the only outer

ideals.

Note that no finiteness restrictions were imposed on 9t. We next derive a similar

theorem about simplicity of 91+ in which we make no assumptions about idem-

potents, but instead place a finiteness and nondegeneracy condition on the algebra.

In any quadratic Jordan algebra S we define the derived series by ,3(1) = 3> 3<n + 1)

= {/3<«)9(,l). 3 is solvable if 9<n) = 0 for some n. If 93 is an ideal so are all 93<n>

(generally, if 93 and © are ideals so is [/»©).

Lemma 5. If%$, ©, 1) are ideals in a noncommutative Jordan algebra 9t then f/sg©

ani/{93©2>} are also ideals. 7/93 is an ideal in 9t+ then 9í93(n> + 93('1>9í<z93(n-1), so

that On ®(n) is an ideal in 91.

Proof. C/sb© is a left ideal since by (8) LxUs^=-U$RJS.+ US8tX^<=U^S.

because 93 is a left and © a right ideal, and similarly t/<8© is a right ideal. The same

argument works for {93 © 2)}: Lx{93 © <2>}=LXU¡6,<S><§.= - Uv&Rx<S.+ UxSa,?ß +

C/8,^c{® © ®} since 93, <£> are left and © right ideals.

If 93 is only an ideal in 9t+ we use (8) and induction to obtain

9t93<n + 1> = LaC/s8<n>93(n) = - U&»>Rsn&M + c%8<"W»93<n>

c £%«>®<n-1)+cV.-l>,<8<»>93<n>

c C/sgcn - i,33<n -1) = 93<n)

for n^ 1 (for « = 0 we agree 93(0) = 9I). Similarly 93(" + 1>9Ic93<»>, so © = H 93(n) has

9l©+©9Ic:n (9I93<" + 1>-|-93<" + 1>9i)cf) 93<»>=6 so that © is an ideal in 91,

Theorem 2. If 9Í is a simple noncommutative Jordan algebra such that 9t+ has

the descending chain condition on ideals (in particular, if it has d.c.c. on inner ideals)

but contains no solvable ideals, then 91+ is simple.

Proof. If 93 were a proper ideal in 91+ then the 93<n> would form a decreasing

sequence of ideals, hence 93<w = 93<w + " = • • • from some point on by the d.c.c.

Thus © = Pl 93<n) = 93(W) is an ideal in 9Í. It cannot be all of 9t since it is contained in

93, yet it cannot be zero because 93 #0 is not solvable. But it cannot be a proper

ideal in the simple algebra 91 either, a contradiction.

We shall need one further result concerning Peirce spaces. An algebra is semi-

prime if it contains no (nonzero) trivial elements, an element z being trivial if Uz = 0.
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Lemma 6. 7/" 31. is semiprime then any x1/2 e 9t1/2 such that Pi(x1/2 ° 9l1/2) = 0 or

X\\2 ° 9I0 = 0 is zero. In particular, 9t0 = 0 implies e is the unit for 91, 91 = 91!.

Proof. If Pi(x1/2 c 9t1/2) = 0 (or x1/2 o 9I0=0), then í/,1/29I0=P1{x1/2 o (x1/2 °9Í0)}

= 0 by (19) (or =Pi{x1/2(x1/2 ° 9I0)} = 0). Then any z0 e U^^ would have í/Zo9í

= l/20^o<- Ux¡iZUíh1UXiI2'H0 = 0, so z0 would be trivial; by semiprimeness z0 = 0

and we have C7^1/29I1=0 too. Thus P0(x2i2)= UXll2e = 0, implying x2,2 = z1 6 91^ A

similar argument shows í/2l9í= í/ai9tx= UXll2UXll2'ü1 = 0 so zi = 0 and xfl2 = 0.

Then £/Xl/29í1/2 = x1/2 ° P1(xll2 ° 9í1/2)-9l1/2 o p0(xf/2) = 0 (or =x1/2 ° P0(x1/2 o 9í1/2)

-2ti,2 °Pi(x?/2) = 0). This shows that i/*1/29X = 0 and x1/2 = 0.

4. Interconnected ¡dempotents.    Two orthogonal idempotents elt e2 in a quad-

ratic Jordan algebra 3 are interconnected if {/3123ii=922 and t/312322=S11. More

generally, a Peirce decomposition S = 20guSn-i 3« relative to orthogonal idem-

potents ex,..., e„_! is interconnected if

(F) £/3¡J3„ = 3„ (/*/),

(IF) x,0°3oo = 0^x,0=0(/^0),

(IIP) x00 » 3¡o = 0 => x00 = 0 (i#0).

The latter are nondegeneracy conditions: if e0 exists (i.e. if 3 is unital), (IF) is

automatic, and (IIP) holds if $ has no extreme radical (so always when -j e <P).

In the particular case where 3 = 9l+ for a noncommutative Jordan algebra 91 we

see 9I„ is spanned by the {/Xy.y„=P„(x„ ° x„j„) (by (19)) ^£„(91,, ° 91,,), and also

2toi<=9t0, ° 9t„ (since e, exists for ;'#0) = 3I0i ° t/sij03i00 = - 9Í00 ° ¡/3ti02io>

+ {9t0i 9i,0 9I00} » 9l,o (linearizing (6)) C9I00 ° 9t,0. This leads us to say that a Peirce

decomposition 91 = 2oÊi,jSn-i 2Í„ {oí length n) of a noncommutative Jordan algebra

91 is interconnected if

(I) P„{31„ o 91,,} = 2I„ (iïj),

(22) (II) xi0 o 9t00 = 0 => x,o = 0 (i * 0),

^   ' (III) x00 c 9i,0 = 0 ^> x00 = 0 (i ¿ 0),

(IV) 9t,0 o 9t00 = 9t,0 (i * 0).

We have seen that a Peirce decomposition which is interconnected in 91+ is inter-

connected in 9(. The converse is also true. If a decomposition is interconnected in

91 we establish (F) by Ok,«,,-*«{*«(«¥ ° %,)} (by (19)) =P,,(9i„ 9t„) (using (IV)

if7-=0) =Pil(%i o 9Í„) (by (15)') =9t„ (by (I)).

Note once more than (II) and (IV) are superfluous if e0 exists, i.e. 9t is unital.

Moreover, (IV) is also superfluous if n ä 3 ; this will follow from the general result

that (I) implies

(F) 3t„°9i„£ = 9l„c(7J,M)

since then 9t,o ° 9t00 = 9t,o ° 2Lf0 (by (I), where j^i, 0 exists if «^3) =(9ti0 o 9(,0) o 3lyo

(by (20)') =9I„ o 9t,o (if (F) holds) =9t,0 (by (F) again). To establish (F), we may

assume &#0 (a similar argument applies if'/#0) so that 9(,fc<=9l,fc o 9IM. = 9l,JC ° &%

(by (I)) =(9t,fc o 9Í„) o 9(,fc (by (20)') c«,, ° 9í,fc.
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It is more work to show that (III) is superfluous in the unital case. We claim

more, namely

x„ ° 9tw = 0 => x„9t = Six,, = 0.

We have *«Stf,=8l,%=0 by (20), so by (I), xii9t„ = 9l„xii = 0. By (14) we have

xii9t,y = 9tyxij = 0. For k^ij, we have x„ ° %k = x„ ° (91 w ° %k) (by (I'))

= (Xü o Sly) o St/fc (by (16)) =0, so by (14) again xu%k = %kxu = 0. By Peirce ortho-

gonality these are enough to show that x¡¡ annihilates St. If e„ exists, this gives

x¡¡ = 0. More generally

(III') xi} o 9tÄ = 0 => x,i=0 (k*i,j).

We have just seen this for /=j#0, while for i=j=Q it follows from (III). If i^j

note xy9l2fc = 9t2kXy = 0 by (20)', so by (I) xw9t„ = Stwxi3• = 0 ; if e¡ exists this implies

x,y = 0 directly, otherwise fory'=0 we use (II).

In the presence of interConnectivity we can improve on the Peirce relation

(GPR 4).
(V)    StfjCSIii + SLjyifw^.

This is a consequence of (IIP) because Stifc °Pi/9tw)=Pty{(St,fc ° Sl,,)St„} (by (17))

cPiJ(9tik2liy)cPiy(9ty,) = 0.

It is also useful to know that when e, exists, (I) is equivalent to

(I*)   *,£/»„(«„ o SI«)

because, by Proposition 1, P(i(9ty ° 9ifi) it an ideal in 9l„, and therefore if it

contains e¡ it contains all of 9t¡¡.

We remark that an interconnected algebra remains interconnected under any

free scalar extension O of <I> (in particular, if Q is an extension of a field 0). Indeed,

conditions (I) and (IV) are inherited by 9In for an arbitrary extension Q, and if ß

is free over O with basis {ojJ then Sln = ©<«>a9l inherits (II), (III) also: if xi0

= 2 «»aXîo (x?o e 9t) has x,0 ° 9t00 = 0 then 2 "><* Wo ° 9i00) = 0 implies xf0 ° 9t00 = 0

for all a, hence by (II) in 9Í all xf0 = 0 and x,0 = 0. (Similarly for (III).)

Further, if 9Í is a unital interconnected algebra and Wl a unital bimodule (in the

sense of [3, p. 191]) then the split null extension © = 9t © Tt is also interconnected.

More generally, if @ is any unital algebra containing an interconnected algebra 9t

as a unital subalgebra then © inherits interConnectivity from 9t. ((II), (III), (IV) are

automatic and (I) equivalent to (I*) in the unital case, and © inherits (I*) since

e, e P(1(SI« o St,,) implies et e P„(@y o @„).)

As with the Jordan case, interConnectivity is preserved if certain of the idem-

potents are "lumped together": if eu ..., en_x afford an interconnected decom-

position so do e'x, ...,*¿,>_i where ej = 2t6/«) e, for any decomposition

I={\, 2,..., n-l} = /(l) u- • -u I{m-\) into disjoint sets. Indeed, (II), (III), (IV)

are clear since 9tóo = 2íoo, 2lói = 2ie/ü) 2to¡. while for (I) we observe

Pii(«ft ° %k) = 2 Pr^rt ° %t) = 2 Pn(«n ° ®rt) +   2 ^«rt ° «*)
r.se/y),ie/(/c) r r*s

= 2«rr + 2®» (by(I),(V))
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The importance of interConnectivity derives from the

Theorem 3. Any Peirce decomposition of an arbitrary simple noncommutative

Jordan algebra is interconnected.

Proof. Let &=2osws»-i %i t>e a Peirce decomposition relative to ely..., en_x.

We may assume «ä2 or else 9t = 9t00 is vacuously interconnected.

We first tackle (I). By Lemma l we know 23 = 231 + 231/2 + 230=P1(9lf/2) + 9I1,2

+P0(9t?,2) is an ideal for any idempotent e; if e^ 1, 0 then 23^0 since otherwise

3t1/2 = 0, 31 = 31! ©3t0, and by simplicity 31 = 31! or 3t = 3t0, consequently e=\ or

e = 0. Thus 23 = 31 for any e# 1, 0. Taking e = e, (j^O) we have 3í1/2 = 2í,m 2I„ so

3tii=P„(58)=P„(580)=P„(9if/2)=Pi,(9I„o3t„) by the Peirce relations. Similarly if

j = 0 we take e = ex+ ■ ■ ■ +*;_, so St1/a = 2 9t,0 and 9t„=P„(23)=P„(23i)=P„(9if/2)

=Pu(%o ° 2i,o)- Thus 9t„=P„(9t„ o 9Í„) in all cases.

Next we attack (IV). By Theorem 1 we know 31 has no proper outer ideals

(always assuming n ^ 2); this guarantees Rad 3Í+ =0 (Rad 31+ is an outer ideal but

contains no idempotents, so it cannot be all of 9Í) and therefore 31 contains no

trivial elements [4, pp. 676-677]. By Lemma 6, this in turn guarantees 9t0^0. By

Lemma 2, 23 = 2^ + 231/2 + 230 is an ideal for 231/2 = 2l0 ° SI1/2. Now 231/2#0 or else

2lo = 8o (in the notation of Lemma 3), whereas e $ 3o implies the ideal 8o is not

91 and hence by simplicity must be zero, leading to 3C0 = 0 which we just saw was

impossible. Thus 23 ̂  0; by simplicity 23 = 91, hence 9I0 ° 3t1/2 = 231/2 = 3t1/2. Applying

this to e = e1+ ■ ■ ■ +en_1 we obtain 2 2tio = 3t1/2 = 3t0 ° 3í1/2 = 2 9í0o ° 2t0i so that

9í,o = 9too°2í(o-

Next we turn to (II). If x,0 ° 9l00 = 0 then xj0 is trivial by Lemma 6, so x,0 = 0.

Finally, we come to (III). Now x00 ° 3t,0 = 0 implies x00 ° 3t,0 = x00 ° (3t,o ° 3i„)

(by (I')) =(x00 °3i,o)o3t„ (by (16)) =0 for any j^i, 0 so x00 e 8o relative to

e = e1+ ■ ■ ■ +en_i (as in Lemma 3): x00°3t1/2 = 0. Since ,8o 7^21 ¡s an ideal we

must have 3o = 0, therefore x00 = 0.

Again note that this result is completely general, no finiteness condition being

imposed.

We now come to some basic structural properties of interconnected algebras.

We say 31 is n-interconnected if it has some interconnected Peirce decomposition

of length n. We will see that «-interconnected algebras for n^3 are well behaved.

Theorem 4. 7/31 is n-interconnected for «2:3 then there is an element y in the

centroid Y such that

eiX„e, = y(x„)       (x„ e 3I„, i / f).

Proof. The first step is to define y. If 3Í = 2 2Í„ is the «-interconnected Peirce

decomposition, we define a linear map on 9l„ for iftj by

7/(x„) = e,x„e, = e,x„e,

(recall e,x = xe,). We claim that for i,j, k+ (and e0 being interpreted as an element

of the unital extension 9Í')
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(i) T(xtiyjk) = T(x^yjk = xyT(yik) = (e^^y^),

(ii)' 7,(x„yy) = x¡ir(^ü).

For (i), T(xliyik)=Le¡Rei(xijyik) = LeiReiRyjk(xij) = Ry¡kLeiRet(xij) (by (13))

= T(xi})yjk, similarly T(xijyjk)=LekRek(xijyjk) = xijT(yjk), and finally T(xuyjk)

=LeiLek(xljyjk)=LeiLx¡¿ek(yjk) = ei{xtj(ekyjk)} = (eixij)(ekyjk). The same trick works

for (ii)', T(xllyij)=LejRej(xiiylj) = xHT(yij).

Our next step is to extend T to the Peirce spaces 9t„. Here we use interconnec-

tivity: St,, is spanned by the Pü(x2) for /#_/, and we set

7W4)) = PÁie^í)2}.

We must first show this is well defined: for i,j, &/,

(in particular Pu{2 •*?/} = 0 => P«{2 (e>^w)2} = 0). Now because of interconnectivity

(IIP), au ° zik = bu ° zik for all zijc e Sltfc implies au = ¿¡¡, so we want to show

P«{Z (e^i;)2} ° zifc=P„{2 (etyik)2} ° ztk agree for all zik, and since Sttfc = Sty ° 9tifc by

(F) we need only consider zik = wij°vjk. Here au<> zik=Pü{^i(eixi¡)2} ° zik

= I fax»)2 ° zik = 2 (e¡xi;) o {(<?,*„) o zifc} (by (20)') = 2 (e<*w) ° {(x«*/) ° z„J

= 2(e^i,)°{(xw°zik)eJ} (by (13)) =2T{xtj ° (xtj o zik)} (by (i)) = 7X2 x?, ° z<k)

= T(zik ° P„(2 xf,)) and bu ° zifc = ¿>¡¡ ° (wu ° pÄ) = (¿>„ o w¡í) o py¿ (by ( 16))

= T(wy c p„(2 >4)) o Vjk (by the same argument as before) = T({wu ° P„(2 >&)} ° e/fc)

(by (i)) = T({wu o Pä} o PJ2 yfk)) = T(z„ o Piir¿ y2k)).

We have actually shown T(xu o zik) = T(xu) o zik for any x„=Pii(2 Xi2) in 31,,;

from this we obtain

(ii)" r(x„jlJ)=r(x„)jü

since T(xii)yij = ei{T(xií) ° yíj} = eí{T(xii o y^^Tie^Xa ° ya)) (by (ii)', or since Let

commutes with T=Le.Re) =T(xiiyij) using (14). Since T is linear and preserves

Peirce spaces, the only other formulas necessary in addition to (i)-(n) to show T

belongs to the centroid T(xy) = T(x)y = xT(y) are

(iii) Tixtfyt,) = T(xv)yti = xtí7¡^,
(iv) r(x„ v„) = T(xit)yu = xHT(yu).

For (iii), T{Pii{zljo wi,))=Pii{eizija eiWi,} (linearizing the definition of T)

=Pii{zij o etWije¿ (by (15)) =Pü{zu o T{wu)} so T(Pti{xiJyij}) = T(Pu{eixij o ytj}) (by

(15)) =Pii{eixü o T(yu)} (by the foregoing) =Pii{xii7Yjiy)} (by (15) again). (Note

that by interconnectivity (V) we do not have to worry about Py(xyjy).) For

(iv) with, yu=Pii(y2i) by interconnectivity (I) we have T(xiiyii) = T(xiiyfi) =

T(Pü{(.xüoytj)yii}) (by (20)) =PH{T(.xH ¡» yM (by (iii)) =Pit{(T(xuy o yjyit) (by

(ii)) =T(xii)yfj (by (20) again) =T(xu)ytt and dually.

Thus Tis an element y of the centroid r(9t). We call y the indicator of 9t (relative

to the given interconnected Peirce decomposition).

Though the indicator always exists, to draw conclusions about the structure of

an algebra from y we need to make some technical assumptions about y being " well
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behaved" (compare [3, p. 190]). Note that since Le¡Rei = yI and Le¡ + Re. = I we

have L\— Let + yl=0 on any 9l„. If y has the form y = A(l —A), this implies

{Le¡ — \I}{Le— (1 — A)/} = 0. If we were working in a vector space over a field this

would say 9i„ is the sum of " eigenspaces " 9I„ = 9l$] + 3lt,1"A:i where

31ft1 = {x„ e St„ | e,x„ = Ax,,} = %\~^

(at least if A# 1 —A; if A=^, corresponding to y — \, we would only know(Lei — \I~)2

= 0, whereas 9í„ = 9í$/2] would mean Le¡—^I=0 on 9t„). We say the indicator is

regular if there is a free extension Q of O such that in 9Î = 91 (g)r Q. we have

(R)   ty-f^+fß-«
where A 6 O satisfies A(l — A) = y and, if y^i, 2A— 1 is invertible.

At first glance these seem like severe restrictions on y. Let us see that they are

satisfied in most cases of interest. We first need a

Lemma 7 [3, pp. 194-195]. // 93 = 2 23,, where 58„ = 3t,[,X] + S[^-w (i^j) and

23,í=P¡í(23¡, o 3t„) (/Vy) then 23 is an ideal in the n-interconnected algebra 21 (n?t3).

Proof. We first show 23„ is well defined. If i,j,k^=, we have P„(23„ o 3t„)

=P„(23„o(3í;7co3íM)) (by interConnectivity (F)) »PA'SW^^A'W

so P,,(23„ o 9í„)=P¡¡(23,)c o 9lite) all have a common value 23„. Here we have used

33» ° 21,¡cc=58„c since E%jlt commute with Le—\I and hence leave Ker(Le— XI)

invariant.

By (14) we have 9iifc23„ + 23„9lifcc23fc, for k^j, and by (15)' 9t„23„ + 23„9Í„

<=58„ + 58„ (again by interconnectivity (V) we do not have to worry about

P„(3i„58„)). Proposition 1 then guarantees 9I„5Sii + 23,i2C„c=58„. The only remaining

thing to check is that SC^ + ÍS,^,,^,,. By (14)' it will suffice if 2C„ o 93„c58„.

Since «2î3 we have 9t„ ° 23„ = 9t„ ° PH(%k ° 23,fc) (for k±i,f) =9t„ o (9t,te o 58,fc)

= (2l„ o 9Í„) o 23,fc + (3t„ o 23¡fc) o 3tlfc (using linearized (20)') <=%k o 23,fc + 23,fc o 3ljk

<=23„.

Corollary. If 31 is simple and n-interconnected for «S: 3 then for any AeT

either all 3l[A] = 31» " A] = 0 or else all 31 jAI + 3I# "AI = 3t„.

This shows us first of all that the indicator of a simple algebra 31 is always

regular. Indeed, 3Í is a vector space over the field r(3t) in this situation, and if we

take any field extension Q. in which A(l — A)=y has a root, necessarily 2A— 1 will

be invertible if \±\ (y^i)- We remarked that (R) holds automatically if A^Jr,

while if A=^ then (Le.-^/)2 = 0 shows 3l[,1,21^0, so by the corollary (applied to the

central simple algebra 31) we know 3l„ = 3i^,2].

It also shows us that (R) is equivalent to

(R)' e, eP„{S„ o 58,,} (SS^t^ + tS,1-«)

for unital algebras, because this condition guarantees 1 = 2 e¡ belongs to the ideal

58 and therefore 23 = 9t. If 9Í is a unital subalgebra of a unital algebra @ then @

will inherit (R)' from 3C. In particular, if 9JÎ is a unital bimodule for 91 then (R)' on
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9t implies (R)' on the split null extension @ = 91 © 9)1. In general there need be no

relation between the centroids r(9t) and r(@), since Tt need only be a O-module,

but if we assume 91 is central, r(9i) = <D, then © is necessarily a T-module ; if Q is

the free extension of T required by regularity of 31 then 2 = T(@) <g)r D is a suitable

free extension of r((£). Thus if 31 is central, (£ inherits not only (R) but regularity

from 31.

Now we investigate what sort of information the indicator gives us about an

algebra.

Lemma 8 [3, p. 191]. If 3t is n-interconnected for «2:3 with regular indicator

y = \ then 3t is commutative.

Proof. We must prove [x, y] =0 for x, y in the Peirce spaces. If x £ 3t„ we can

find k^i,j by our hypothesis «2:3, so, relative to e = ek, x belongs to 3t0.

If y e 31 ! then [x0, yx] = 0 by Peirce orthogonality.

If y e 2I1/2 then [x0, ^i/2] = ^oJ'i/2-J'i/2^o = (^o ° Ji/2>-e(j1/2 ° x0) = [x0 o ym, e]

by (14), so it is enough if [e, 9t1/2]=0. If we are assuming y = i is regular we have

Le = Re = iI on 9I1/2, so [e, 9I1/2] = 0.

Since 9t0 is spanned by P0(9i2/2) by interconnectivity, it suffices to consider

yo=Po(yli2) in proving [x0,yo] = 0. But then [xQ, y0] = [x0, y\i2] = [x0, y1¡2] o yll2

(using (1)') and this vanishes by the previous case.

Thus [x, j]=0 in all cases.

When y = 0 we have no need of regularity.

Lemma 9 [3, p. 191]. Ifñ is n-interconnected for «2:3 with indicator y = 0 then

3t is associative.

Proof. We must prove [x, 31, y] = 0 for all x, y in the various Peirce spaces. If

x e 3I„ we can find k^i,j so (relative to e = ek) we may again assume x e 9l0. (As

usual, if k = 0 we interpret this suitably—that x e 31 ! relative to e = e1+ • ■ ■ +en_i.)

We consider the three cases ye%u je3t1/2, je3t0. Note that e3í1/2e=y9í1/2=0

by definition of y.

If y e 9Í! then [x0, 9t, yi] = [RVl, LÄ0]9i = 0 by (16).

If y e 2l1/2 then [x0, 3t, yll2] = [x0, 3t, e o yll2] = - [e, 3t, x0 ° yll2] - [y1/2, 91, x0 ° e]

(by linearized (2)') = — [e, 3Í, x0 o yll2]<^[e, 3t, 3t1/2] so we need only prove

[e,%yll2] = 0. Now [e,9t0,^1/2]=-e(9t0>'1/2)=-e(9t0oj1/2)e (by (14)) =0 and

similarly [e,9Í!, j1/2] = 9í1j1/2-e(9í1j1/2) = (9t1j1/2)e = e(3l1 oj1/2)e = 0. Also,

[e, 2í1/2, ym] = (e3t1/2)j1/2-e(3I1/2y1/2)

= PMe^m) ° Ji/2}+Po{(e9t1/2)e o y1¡2)-P&K^ o yU2} (by (15);

note again by (V) we can forget about Pi/2(9l2/2)) =P0{e9I1/2e ° ji/2} -Pi{e9I1/2e ° yll2}

= 0. Thus [e,9Lj1/2] = 0.
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If y e 3t0 then [x0, St1( y0] = 0 by Peirce orthogonality, and

[*o, 2ti/2, Jo] = (xo5ti/2)jo-Xo(?íi/2>'o) = (*o ° Wii2e)yo-x0(eWm °yo)

= e(x0 o 9í1/2e) o y0-x0 ° (<?9l1/2 ° j0)e

= (x0 » e9t1/2e) o y0-x0 o (e9t1/2e o j0) = 0       by (14).

For [x0, 9t0, Jo] we use the interconnectivity; as 9t0=P0(9tf/2) it is enough to take

y0=P0(yïi2)- But [x0, 9t0, Po(yïi2)] = [x0, 9I0, J?/2] (by (16)) = - [yll2, 9t0, x0 ° yll2]

(by (2)'), so we need only show [y1/2, 9t0, z1/2]=0. Here

[Ji/a, 5to» *i/a] = (ji/a3io>i/2-Ji/a(2to^i/2)

= ^{(ji/zSio) ° zme-eym ° (9t0z1/2)}

+7>o{(j'i/23ío)e ° z1/2-j1/2 o e(9t0z1/2)}

= A{(eji/2 ° 9t0) » z1/2e-ej1/2 o (9I0 o z1/2e)}

+-P0WJ1/2 ° 9to)e ° Z1/2-J1/2 ° e(9t0 ° z1/2)e}

= 0       by (14), (15),

and the relation P1{(¿/i/2 ° ¿>0) ° Ci/2} = {ûi/2 Z>0 c1/2}=P1{a1i2 ° (è0 ° c1/2)} which holds

in any quadratic Jordan algebra. Thus [x0, 9Í, y0] = 0. This completes the proof of

associativity.

For any ¡i e 4> we can define a new algebra structure on 9t, the ¡L-mutation

9Í*"', by

x -uy = f¿xy+(l-ti)yx.

The mutation of a noncommutative Jordan algebra is again such, and mutation is

transitive in the sense that

(23) {sro<>}«> = grtoow       (/lxQA = 2^A-/x-A+l)

[3, p. 192]. An algebra of the form 9t = 1>w> for 1) associative is called a í/j/íí quasi-

associative algebra, and an algebra is quasiassociative if it is a form of a split quasi-

associative algebra: 9tn = 'î><À) (A e O) for some free extension O of O. The following

lemma describes how mutation affects the indicator.

Lemma 10. If 9t ¿5 an n-interconnected algebra with indicator y then for any

fi e <J> the mutation 9t(w) z's also n-inter connected with indicator y(") = (4y— 1)¡j.2

-(Ay- l)/x + y = 0- l)2y + /x(l -/x).

Proof. 9t(,i) has the same interconnected Peirce decomposition as 9t does relative

to the idempotents e, since 9t<M) + = 91+. On 9tiy for iftj we have Üg = /xLCi + (1 - ¡j.)Re¡

= ^Le +(1 -í,)(/-Le¡) = (2M- l)Le, + (l -/.)/ so

y<«> = L<f{/-Z.^} = {(l-/x)/+(2M-l)Lei}{M/-(2M-l)Lei}

= ^l-H.)I+(2t,-l)2Le-(2t,-l)2L2i

= Ml-M)7+(2^-l)2y = (4y-l)/x2-(4y-l)/x + y.
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From these results we obtain

Theorem A. If % is an n-interconnected algebra, « 2:3, with regular indicator,

then 3Í is either a commutative Jordan algebra of characteristic ^ 2 or else a quasi-

associative algebra.

Proof. If the indicator is y=J then clearly F has characteristic ,¿2, and if y is

regular by Lemma 8 91 must be commutative.

If y#i then by regularity there is a free extension Í1 of T and AeO,

(i = A/(2A— 1) 6 O with A(l —A) = y, so by Lemma 10 the mutation 9i$) has indicator

y<«) = (2M-l)2y + /x(l-/x) = y(2A-l)-2 + A(A-l)(2A-l)-2 = 0. But then St}f) = ®

is associative by Lemma 9, and because /nQA=l we have 2In = 2ln) = 2tnOA)

= {9X|jf)}(M = 'Sw by (23). This means 9In is split quasiassociative and 31 plain

quasiassociative over its centroid.

We noted that the indicator was regular in the case of simple algebras. Thus

Theorems 3 and 4 lead to one of the main results of this paper :

Theorem 5. A simple noncommutative Jordan algebra with two nonzero ortho-

gonal idempotents whose sum is not 1 is either a commutative Jordan algebra over a

field of characteristic ^ 2 or a quasiassociative algebra.

We stress once more that in this result we do not assume the existence of a unit

element, we impose no finiteness restrictions, and we allow an arbitrary ring of

scalars—the theorem is completely general. Moreover, the result extends to unital

bimodules since we remarked that regularity extends from unital central algebras

to the split null extension.

Theorem 6. Let 5DÎ be a unital bimodule for a central n-interconnected unital

noncommutative Jordan algebra 3t (« 2:3) with regular indicator. Then either 97Î is a

commutative Jordan bimodule for the commutative Jordan algebra 3t or 9K is a

quasiassociative bimodule for the quasiassociative algebra 31.

Here 5DÎ is a split quasiassociative bimodule for 31 = 1>m if 9JÎ = 3ÎW) for 9Î an asso-

ciative bimodule for 2), and is a quasiassociative bimodule if it becomes split under

some free extension. In particular,

Theorem 7. Let 9JÎ be a unital bimodule for a central simple unital noncom-

mutative Jordan algebra 91 which has three nonzero supplementary orthogonal idem-

potents. Then either 9JJ is a commutative Jordan bimodule for the commutative Jordan

algebra SI or 9JÍ is a quasiassociative bimodule for the quasiassociative algebra 31.

5. Connected idempotents. We consider now a more restrictive kind of connec-

tivity between idempotents, one which does not hold in all simple algebras but

does hold for those with certain finiteness conditions.

Two orthogonal idempotents eu e2 are connected if there is an element u12 in the

Peirce space 9t12 which is invertible in the Peirce subalgebra 9t11 + 9I12 + 9l22. Since

m12 is invertible if and only if u22 = u11 + u22 is (w„ e 9i„), we see u12 is invertible if
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and only if the w„ are invertible in 9t„. We say eu e2 are strongly connected ifthere

is u12 e 9t12 with wf2 = e1 + e2. These notions coincide with those for the quadratic

Jordan algebra 9t + . The difference between connectivity and interconnectivity is

that whereas in connectivity we have e{=Pll(xij ° ytí) (using (20) with x1/2 = m12,

Ji = «¡7*), in interconnectivity e, e P„(9ty o 9tw) is only a sum of such elements

Pu(X{j ° yu). A family {e,} of orthogonal idempotents is connected or strongly

connected if each pair e¡, e¡ is. We say St is n-connected (or strongly n-connected)

if there exists a connected (or strongly connected) family ex,.. .,en of supple-

mentary orthogonal idempotents.

From the Jordan theory [2, p. 1077] we know that for any «-connected quadratic

Jordan algebra $, n ̂  3, we have an epimorphism of S onto a Jordan algebra

$(®n, "35o, y) of matrices in ®n symmetric with respect to the involution X -* X*

= y~1Xty and having diagonal entries in 1>0; here ® is alternative with involution

(associative if «^4), ®0 an ample subspace (i.e. subspace of symmetric elements

in the nucleus containing 1 and such that 81D08cj)0 for all 8e®), and

y = diag {y1;..., yn} is a diagonal matrix where the y, e ®0 are invertible. (For a

strongly connected algebra we can take y = 1.) The kernel of this homomorphism

is the extreme radical ® = 2 ®u, where ñu ° 3y = 0.

If we define matrices in £>(£>„, ®0! y) by

a[ii] = ayteH (a 6 ®0)

a[(/] = aYfiu + ayfiji = âfjï]       (a e ®, /' ̂  /)

in terms of the matrix units eM in ©n then the Peirce decomposition relative to the

diagonal idempotents ei = y¿~1[ii] = eii is

5i„ = ®0[»],       «y = ®[(/] = »[/f]       (' 5* /)•

Multiplication obeys the following rules:

(a) a[ii] ° b[ij] = ayib\ij], b\ij] o a[jj] = byja[ij],

(b) a\ij]ob[jk] = ay¡b\ik],

(c) a[ij]2 = ayjä[ii] + äyia[jj], a[ij] ° b[ij] = t(ayjb)[ii] + t(äylb)[jj] for r(a) = û + â.

With connectivity replacing interconnectivity, we can improve on Theorem 4 as

follows :

Coordinatization Theorem. If 9t is an n-connected noncommutative Jordan

algebra, n ê 3, then 9t is isomorphic to either

(I)   a commutative Jordan algebra £>CE>„, y) of characteristic ^2,

(II)   an algebra i>(®„, y)(A> wAere A^£ vwïA A + Ä= 1 belongs to the

center of% and (2A-1)[®, 1), ®] =0,

w/zere % is associative if « ̂  4 anrf /or « ̂  3 is alternative with involution whose

symmetric elements lie in the nucleus.

Proof. [8, p. 3]. The e, are still connected in 9i + , so we know we have an epi-

morphism of 3 = 91+ onto i»(®n» ®o> y) as above. Since St is connected it is inter-
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connected and unital, so by interConnectivity (IIP) the relation íf„ ° 9Í„ = 0 for the

extreme radical Si shows 5Î„ = 0, Sî = 0, and the epimorphism is actually an iso-

morphism. We identify 9i+ with ¿p(35n, 350, y).

Since e,9í„c:9¡[iy we can define linear transformations L„ on 35 by

L„(a)[y] = Let{a\ij]} = Rei{a\ij}}-

Since Lei commutes with Vy¡k, for yik = yT1b[jk] we see by (b) that

Lij(fl)b = L{k(ab)

and similarly since ek commutes with Lx¡¡ for xij = ayf1[ij] that

Lik(ab) = aLjJJb).

Setting b = e shows Ltj=Lik, and a = e shows Lik=Ljk, so all L„ have a common

value L. Since L(ab)=L(à)b = aL(b), L(a) = Xa = aX for X=L(e) in the center of 35:

(*) «I = My].

Since e[ij] = É>,{e[y']} + e,{e [//']} = e,{e[//]} + e,{e[/7]} = \e\ij] + Aê[/ï] = {Ae + eX}[ij] =

(X + X)[ij] we see A+A = e.

Already this allows us to dispense with 350: we claim 150 is just the set §(35) of

all symmetric elements of 35, since any 8 = 8 has 8 = (A + Ä)S = A8 + SÄ = AS + Ä8"

= í(AS), a trace, and 350 contains all traces.

By Peirce orthogonality, multiplication in 91 will be completely determined by

the following multiplication table:

(i) a[ii]b[ij] = Xayib[ij], b[ij]a[ii] = Xay¡b[ij],

(ii) a[ij]b[jk] = XayfiVk],
(iii) a[ij]b[ij] = t(Xayjb)[ii] + t(Xäyib)[jj],

(iv) a[ii]ß[ii] = t(Xayfi)[ii],

for i,j, A:# and a, ß e 350, a, b, e 35.

For (i) we apply (a), (14), and (*); similarly (ii) follows from (b), (14), and (*).

By interconnectivity (V) there is no //'-component in a[ij]b[ij], so (iii) follows from

(c), (15), and (*). Finally, for (iv) we use connectivity in the form

a[ii]ß[ii] = *[ii]{Uyi-iiwßUj]}

= -ßUjliUrrhiiAüü + iUauii.ßunYr^ÜVYr^y]   (linearizing (6)),

and the 9I„ component of this expression is

PuMn] o iß\jj] o yrnumrim = PiÁ^whr'm
= t(Xaytß)[U]    by (iii).

If y = \ then 91 = §(35n, y) is just the usual commutative Jordan algebra as in (I).

If y¥=i then the formulas (i)-(iv) are those of multiplication in the mutation

§(35n, y)(A), so 9t = £(3>„, y)w. For a, b, c e 35 we have X[a, b, c] = [Xa, b, c]

= — [Xä, b,c]= — X[ä, b, c] = X[a, b, c] because all a + à e 350 belong to the nucleus.
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Thus (A- X)[a, b, c] = 0, and since A-A = A-(l - A) = 2A-1 we see (2A- 1)[35, 35, 35]
= 0.

This theorem has an analogue for « = 2. It is no longer true that an arbitrary

2-connected algebra 9t will have 91+ =£>(3>2, 350, y), but for those that do we have

Theorem 8. IfVLisa noncommutative Jordan algebra such that 91+ = £>(352, 350, y)

for 35 a unital associative algebra with involution, 350 an ample subspace which gener-

ates 35, then necessarily 350 = §(35) and 9t = £>(352, y)(W for some X in the center of

35 with A + A=l.

Proof. We assume 91+ has the form £>(352, 350, y). Then the Peirce decomposition

of 91 and 9l+ relative to the e, is 9t11 = 350[ll], 9t12 = 35[12], 9t22 = 350[22] as before.

Because of Peirce orthogonality we need only establish the formulas (i), (iii), (iv)

as in the previous theorem.

As before we define a linear transformation L on 35 by

L(«)[12] = Le>[12]}.

Since Lei commutes with Vku by (13), formula (a) shows

L(ab) = aL(b), L(ba) = L(b)a.

Thus L commutes with right and left multiplications by a e 350. Since we have no

spaces 9t23 around to enable us to show L commutes with all left and right multi-

plications, we have to introduce our assumption that 350 generates 35 in order to

conclude L belongs to the centroid, L(a) = Xa = aX for X=L(e) in the center of 35.

The spaces 9t23, etc. also gave us easily that A + A= 1 ; to obtain this in our present

situation we observe y2[H]=Pn(e[12]2)=P11{e1(e[12]) ° e[12]} = /(Ay2)[ll] by (c)

and (15), thus y2 = Ay2 + Ay2 = (A+A)y2 and A + A=l as desired. From this we get

Le2{a[21]} = Aa[21] and thus attain symmetry. Formulas (i), (iii), (iv) follow exactly

as in the previous theorem except for one point: we do not know offhand that

2ti2cz2t11 + 9i22. Here again we make use of the fact that 350 generates 35: 35 is

spanned by the elements of the form a = a1y1a2y1- ■ -anyu b = ß1y1- ■ ̂ myx for

q=„ ßi e 350. Thereforea[12] = Vailliy ■ ■ Va¡illlie[l2] and b[l2]=VSllliy ■ ■ Vßmlllle[l2]

by (a), so that by (17)

P12{412]è[12]} = Vailliy ■ ■ Vanlll]Veiiliy ■ ■ Vßmlll}P12{e[l2]e[12]}.

But P12{e[12]e[12]} = 0 by (GPR 5), so all P12{a[12]Z>[12]} = 0 as desired.

Note also that A + A=l again implies 350 = £>(35).

This result is due to K. C. Smith [12] in characteristic #2, as is the next theorem.

Recall that the radical of a quadratic form Q on 23 is the set

Rad Q = {v | Q(v) = Q(v, 23) = 0},

while the bilinear radical is 23j- = {î; | Q(v, 23) = 0}. The defect of Q is the dimension

of 23"7Rad Q. The defect is always zero in characteristic ^2 since Q{p)=\Q{v, v).
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Theorem 9. If'Si is a noncommutative Jordan algebra such that 91+ has the form

Sp (0 = fí1e1 + £í2e2 + 93 of a split quadratic Jordan algebra determined by a

quadratic form Q on a faithful Q-module 93, where the Ü, are subspaces of O con-

taining 1 such that each Q, generates O and that Ö(93)Q,<=Q3., then necessarily

Cix = Q2 = O and multiplication in 91 is given by

(cüe,)(/xe,) = eu/ne,,       (^et)v = Sfav),

vw = Q(Sxv, w)e1 + vxw+ Q(S2v, w)e2,

where S, : f8 -> ^ß are Çl-linear transformations on 93 and v x w a bilinear product on

93 satisfying

Q(Siv,v)= Q(v),       S1 + S2 = I,

Q(v x w, v) = 0, f x y = 0.

Necessarily Q has defect zero.

Proof. 9Í and 91+ have the same Peirce decomposition 9t„ = Q,ei, 9t12 = 93 relative

to eu e2. Define 5, to be the restriction of Lei to 93 (as in the past two theorems),

SiV = etv. Clearly S1 + S2=Lei+Le2=L1=I. By (14), we have (u)el)v = ei{(wiei) ° v}

= e,{tu,i)}, (cüiei)v = Sí(wiv). We know (œei)(fj.ei) = vei for some v in £1. Then

vv = (ve¡) o v = {(cue,)0¿e¡)} ° v = {^L^J^e,) = {- V^^+L^^+Ly^}^

= — £üS,y(íxy) + 5'i(üj(jLt!;)) + 5'í((<üíi-l-/xüj)!;) = SX^/lii/) + Sfacov)

= (Si + ^Xcü/*!;) = (ü,fi)v

so that {v —cu/x}y = 0. Since 93 is faithful by assumption, v = a>(i:

(üje,)(/xe,) = (oj/x)e,.

This implies Q,0,c: £}, is a subalgebra, and since Q-, generates O we get Qx = 02 = D.

For i« e Q! = û we have e,{(coe,) o t)} = (coe,) ° (e,z;) by (13), consequently S¡(wv)

= cu^X^)» and 5, is Q-linear.

From (15), Pii(vw)=Pii{(eiv) o w}=Q(eiv, w)eh so if we set v x w=P12(vw) we get

vw = QiSiV, w)e1 + vx w+ Q(S2v, w)e2.

As Pu(vv) = Q(v)et and P12(z;i;) = 0 we know

Q(SiV, v) = Q(v),       vxv = 0.

Moreover, v(v ° w) = v ° vw implies Q(v, w)v = Q(Syv, w)v+ Q(v, v x w)l + Q(S2v, w)v

and hence

Q(v, dxi») = 0.

The product cxw is Q-bilinear since (cov)xw=P12{[(wei) ° v]w} = (ojet) ° P12(vw)

(by (17)) =w(vxw),

(wv) X w = w(v x w) — v x (ww).
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Finally, the condition Q(v) = Q(S¡v, v) shows that the radical and bilinear radical

of Q coincide, so necessarily Q has defect zero.

We denote the algebras constructed in this manner from Q, S¡, x by

91 = 91(0, S, x).

6. Radicals. Since we have a notion of invertibility we have a notion of quasi-

invertibility : an element z in St is quasi-invertible (q.i.) if 1—z is invertible in SI

(or SI' if 91 does not have a unit). This is equivalent to the existence of y e 91 with

(l-z)(l-.y) = (l->0(l-z)=l, (l-z)2(l-j) = (l-j)(l-z)2=l-z, hence to the

intrinsic conditions

z+y = zy = yz       z2 + z+y = z2y = yz2   (or [z, z, y] = 0).

Since invertibility in 91 coincides with that in 91+ , the same is true of quasi-

invertibility. We use this to derive results for noncommutative Jordan algebras

from those for quadratic Jordan algebras [4], A subspace is q.i. if all its elements

are q.i. The sum of an arbitrary family of q.i. ideals is again a q.i. ideal, so there

exists a maximal q.i. ideal called the Jacobson radical 7?(Sl) of the algebra 91. An

algebra is semisimple if it has no radical, 7?(SI) = 0. If 23 is a q.i. ideal such that

91/23 is q.i. then 91 itself is q.i. In particular, SI/7?(9l) contains no q.i. ideals.

Theorem 10. For any noncommutative Jordan algebra 91 there exists a unique

maximal q.i. ideal 7?(9l), the Jacobson radical, which contains all q.i. ideals. The

quotient 9l/7?(9l) is semisimple, 7?(91/7?(9t)) = 0.

Since 7?(9I) is also an ideal in 31+ , and its elements are still q.i. in St + , we see

7?(9I) is contained in the radical 7?(9t+). Since any subspace of 7?(St+) is q.i. we

have the following:

Theorem 11. The Jacobson radical 7?(SI) of the noncommutative Jordan algebra

31 is the maximal ideal o/9l which is contained in the Jacobson radical 7v(9t+) of the

quadratic Jordan algebra 91+ .

Examples of algebras satisfying 7?(9I)<7?(3(+) are the nodal algebras. However,

these degree 1 algebras are about the only such examples, for we have

Theorem 12. 7/31 is n-interconnected for «2:2 then 7?(SC) = 7i(SI+); in particular,

7?(3l) contains all trivial elements and 3I/7?(3I) is semiprime.

Proof. The last remark follows from the fact [4, p. 676] that 7?(3t+) contains all

trivial elements of 31+ .

If Si is «-interconnected for « 2: 2 we may lump idempotents together and assume

31 is 2-interconnected, 3l = 3t1 + 9t1/2 + 9I0 relative to e^l,0. 7?(3t+) is a q.i. sub-

space containing 7?(3t), so it will be sufficient if 7?(3t+) itslef is an ideal in St. As an

outer ideal, 3ft = 7?(3t+) has Peirce decomposition 5R = 9^ + 5R1/2 + 5R0-

We claim

(i) emll2<=ÍRll2,

(ii) P1/2(3l1/29i1/2)c5R1/2.
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To prove an element z belongs to 9Î it suffices to show £/29tc3i, since then z is

trivial in the semisimple algebra 9t+ =9t+/9î, implying z = 0. This will be the case

for an element z1/2 e 9t1/2 if P,{z1/2 o St1/2}<=gft, (/= l, 0) arguing as in Lemma 6. In

particular, since P¿é8tm ° 9t1/2}=P,{9í1/2 o 9t1/2e} (by (15)) <=P0tm oSi^cgt,

we have (i), and since

P»{Sti,2 » Pua^Wftwa)} = PiWm ° ̂ «(«lA/a)} c 7>,{3í1/2 o 9t1/2} c Sft,

(by (18)) we have (ii).

These are enough to make 9? an ideal. We have 9t,9(l1/2 + 3f{1/29ti<=9l1/2 and

8*f«ti/a + 9ti/aS*i<= «I/a by (14)' and (i), 9l1;2fft1/2 + 9t1/29t1/2c:9t by (15)' and (ii), and

91,9^ = 9^-91, = 0 by orthogonality. It is only for the remaining relation

Stj^j + atiSii^at, that we need interconnectivity: Sl¡ is spanned by elements PX*i/2X

and we apply (20) and (15)'.

Remark. The same argument shows that the nil radicals ( = maximal nil ideals)

of 91 and 9t+ coincide, JV(Sl) = iV(Sl+), for an «-interconnected algebra («^2).

Indeed, similar results hold for any radical property P such that a P-semisimple

algebra contains no trivial elements.

Proposition 2. 7/ze7?(91) is von Neumann regular, z=Uzw for some w, then

z = 0.

Proof, z is regular in Pv(9t+) [4, Theorem 2, p. 673].

The radical i?(9t) always contains the nil radical JV(SI) since #(91) is an ideal

contained in 7V(9l+)<=7?(9i+).

Theorem 13. If 91 has descending chain condition on inner ideals then 7?(9I)

= iV(Sl).

Proof. P(Sl)c:Ä(Si+) = AXSt+), where the latter is nil, so R(W)c:N{%) [4, Theorem

13, p. 678].

Theorem 14. // $ is afield and z e 7?(Sl) is algebraic then z is nilpotent.

Proof, z e 7?(St+) is algebraic [4, Theorem 3, p. 674].

Amitsur's Theorem. If<£> is afield of cardinality |<t| >2 + dim4 St then Pv(St) is

nil.

Proof. P(Si+) is nil by [4, Theorem 4, p. 674].

7. Structure theory. We now impose a finiteness restriction on the algebras we

consider—the descending chain condition (d.c.c.) or minimal condition on inner

ideals. The Peirce spaces 9^ and 9t0 relative to an idempotent e are inner ideals,

and it is mainly with such inner ideals that we shall be concerned.

Improving on the methods of [3, pp. 193-194] we may state the

First Structure Theorem. Any semisimple noncommutative Jordan algebra

with d.c.c. on inner ideals has a unit and is a direct sum of a finite number of ideals

which are themselves simple unital algebras with d.c.c.



26 KEVIN McCRIMMON [July

Proof. Let © be a minimal ideal in 31 (such exists by the chain condition). Since

5 is not nil (nor is (£+) by semisimplicity, ©+ =©+/7?(®+) is a nonzero semisimple

quadratic Jordan algebra with d.c.c. and thus [2, p. 1079] contains a unit ê^O.

Since 7?((£+) is nil in the presence of the d.c.c. [4, p. 678], we can lift to a principal

idempotent e#0 for (£ (if x e S has x = ë then we can find such an e in the com-

mutative associative algebra <I>[x] by the usual methods). Now by Lemma 1,

23 = 231 + 231/2 + 930 is an ideal in 31 for 581/2 = St1/2 (relative to the idempotent e),

and 58cS since 58 is generated by St1/2 = e o St1/2<=(£ o 3Ic<£. Indeed, since 9t1/2

= Ei/2c7?((£+) by the assumption that ë is the unit for (£ + , we actually have

23<=7?(©+). But then 58 is a nil ideal in the semisimple algebra 91, so 23 = 0. This

shows 3t1/2 = 231/2=©1/2 = 0, so that 31 = 31! © 3t0 is a direct sum of ideals. Since

St1 = e3í!<=<£, by minimality of S we must have © = 31! and Si = e ©(£'. Thus each

minimal ideal has a unit and is a direct summand. Since ideals or inner ideals in

6 = 3t! or £' = 3I0 are ideals or inner ideals in St, (£' is again semisimple with d.c.c.

on inner ideals and © is simple, unital, with d.c.c. Repeating the procedure to K',

and noting that the process must eventually terminate since it produces a decreasing

sequence of ideals, we see 31 is a finite direct sum of simple ideals (£, having units

e, and d.c.c. In particular, SI itself has unit 1 =2 e¡-

Right away we can say the simple summands are either of degree 1, 2, or «2:3

(the degree being the maximal number of orthogonal idempotents in the algebra,

rather than in extensions of the algebra), and by the general Theorem 5 those of

degree «2:3 are commutative or quasiassociative. Furthermore, by Theorem 12

those summands of degree 2:2 are semiprime. In the presence of the d.c.c. we can

describe these degree 2: 2 algebras in more detail. However, we cannot apply our

Coordinatization Theorems or our knowledge of the structure of SI+ immedi-

ately—in the quadratic Jordan case we can only conclude that an isotope 3t + <u) of

3t+ has a capacity, not 31+ itself, and it is not clear that 3I + (U) still carries a suitable

noncommutative structure. (This passage to an isotope only comes up in character-

istic 2.) What we shall do is go back through the process leading up to the classifi-

cation of quadratic Jordan algebras and show that for those semiprime algebras

of the special form 31+ the passage to an isotope is unnecessary, that we already

have a rich supply of good idempotents in 31.

An idempotent e is completely primitive if the Peirce space Sti(e) is a division

algebra. The result on which everything hinges is the

Minimal Inner Ideal Theorem. A minimal inner ideal 23 in a noncommutative

Jordan algebra SI is one of the following three types:

I. 23=í>z/or z trivial;

II. 58= Ub%for allb^Q in 58 but 232= C/s58=0;

III. 23= VreSt for some completely primitive idempotent e.

In type II there exists an idempotent e# 1,0 in 31 {though not in 23).

Proof. From the quadratic Jordan case [2, p. 1078] we know any minimal 23 in
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3 = 9t+ is one of I—III. For a general 3 the type II case need not lead to an idem-

potent e^ 1, 0, though such e exists in an isotope of 3; we want to show if 3 = 9t +

has the additional noncommutative structure there must exist an e#l,0 in 3

itself.

Suppose 9Í does not contain e+ 1, 0. Again by the Jordan theory there is a non-

zero b e 93 and a d e 9Í with

b* = d2 = 0,       b ° d = 1,       Ubd = b,       Udb = d

(so St is necessarily unital), and the characteristic is 2.

The prototype for this situation is 3 = í)2 , b = e12, d—e21. If we are in the quasi-

associative algebra St = <I>2À) then x = b •\d=Xe11 + (l—X)e22 has x2 — x = z=— <p\

for <p=A(l — A). In this case e = b — z-K d+x = Q, x}h) is an idempotent ^1, 0.

This leads us to define in general

e = b — zd+x,       x = bd,       z = x2 — x,

and hope e turns out to be the desired idempotent. We first need some information

about x. Fiomb=Lbl=LbVbd= VbLbd we get b = b ° x, and similarly for d=Rdl, so

b ° x = b,       d ° x = d.

Whenever a ° x = a we get 0 = [L¿, Ea] + [Lx.a, Ex] = [Lx*, Ea] + [La, Ex] = [Lxz, Ea]

— [Lx, Ea] = [Lz, Ea] from (3), Lz commutes with Eaif a° x = a (E—L, R, V). This

applies to a=b, d by the above, and also to a = zd since x ° zd= VxLzd=LzVxd

(remember z = x2 —x, so use (9)) =Lzd=zd. The commutativity of Lz with Vx and

Vb gives b ° zd=z(b o d) and x o zd=z(x ° d), while commutativity with Rzi and

La gives

(zd)2 = [z, d, zd] + z{d(zd)} = -\LZ, Rzd]d+z{LdLzd} = 0 + z{LzLdd} = 0.

Thus

b o zd = z,       x o zd = zd,       (zd)2 = 0.

We compute

e2 = b2 + (zd)2 + x2-b o (zd)-x o (zd) + b o x

= 0 + Q + (x + z)-z-zd+b

= b — zd+x = e

so e is idempotent. We have

e o d = b o d—z(d ° d) + x o d       (Lz commutes with Vd)

= \+d

so e^0 because d-£ - 1 and e^ 1 because d^ 1. Thus we have our desired e^ 1, 0.

Lemma 11. If the semiprime noncommutative Jordan algebra St has the d.c.c. on

inner ideals then any idempotent in St is a sum of primitive idempotents, and any

primitive idempotent is completely primitive.
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Proof. That any idempotent is a sum of primitive idempotents in the presence

of the d.c.c. is true in any quadratic Jordan algebra, hence in SI+ and in 31. If e is

primitive then Si^e) has no idempotents except e= 1 and 0, and if 91 is semiprime

with d.c.c. so is St^e). Thus there can be no minimal inner ideals of type I or II in

Sl^e), and there exists a unique minimal inner ideal of type III, namely f/e9í = 9t1(e)

itself with e completely primitive.

We have already seen that any semisimple noncommutative Jordan algebra has

a unit; we now give an alternate proof of this for the less general case of semiprime

algebras. We say an algebra has capacity « if it has a unit which is the sum of n

orthogonal completely primitive idempotents.

Theorem 15. A semiprime noncommutative Jordan algebra with descending chain

condition on inner ideals has a capacity.

Proof. By Lemma 11 we need only show 91 has a unit. Choose a maximal e

(i.e. a minimal 9I0(e)); 9I0(e) inherits semiprimeness and the d.c.c, so by the

Minimal Inner Ideal Theorem if it is nonzero it contains an idempotent /#0

contradicting the maximality of e: 9I0(e+/) < 3I0(e) since/e 9I0(e),/^ 9t0(e+/). We

must therefore have 3C0 = 0, and, by Lemma 6, 91 = 91! has unit e.

Now we are ready to state the

Second Structure Theorem. A simple noncommutative Jordan algebra with

descending chain condition on inner ideals is isomorphic to one of the following:

I. a degree 1 algebra in which every element is either invertible or nilpotent;

II. a split algebra 3t(ß> S, x ) determined by a nondegenerate quadratic form Q

of defect 0 on a vector space 58, S: 23 —> 58 a linear transformation such that

Q(Sv, v)=Q(v), and a bilinear product on 23 such that vxv = 0 and Q(v x w, v) = 0;

III. a commutative Jordan matrix algebra ¡p(35„, y) of characteristic ^=2 for «2:2,

35 either (i) a direct sum 35 = A © A0 of anti-isomorphic associative division algebras

with exchange involution, (ii) an associative division algebra 35 = A with involution,

(iii) 35 = 02 a split quaternion algebra over its center {only for n 2:3), or (iv) 35 =(£ a

Cay ley algebra (only for « = 3);

IV. a quasiassociative algebra §(35„, y)m where «2:2, 35 = A©A°or35 = A for

A an associative division algebra, and A^-J a central element o/35 with A + A=l.

Proof. First assume SI has degree 2:2. By Theorem 12, SI is semiprime, so by

Theorem 15, SI+ has a capacity «2:2; since 31+ is simple by Theorem 1, we know

[2, p. 1079] it must be either

(i) a split algebra Sp (Q, £2l5 02) of a nondegenerate quadratic form Q on a

vector space 23 over a field Ü, where the subspaces £2, contain 1 and g(23)i2, and

where the Ü, generate O;

(ii) a Jordan matrix algebra £(352, 350, y) where 35 = A © A0 or 35 = A for A

an associative division algebra, and where 350 generates 35 ;



1971] NONCOMMUTATIVE JORDAN RINGS 29

(iii) a Jordan matrix algebra í>(35„, 350, y) for « 2:3 where either (1) 35 = A © A0

for A an associative division algebra, (2) 35 = A an associative division algebra,

(3) 35 = £22 a split quaternion algebra, (4) 35= S a Cayley algebra (only for « = 3).

If 31+ =Sp (g, £2i, D2) has capacity 2 then, by Theorem 9, SI = SI(g, S, x) as

in case II. If 91+ =§(352, 350, y) has capacity 2 as in (ii) then by Theorem 8 we have

either case III or IV with « = 2. If 9t+ =§(35n, 350, y) has capacity «2:3 as in (iii)

then by the Coordinatization Theorem we have either III or IV (note that in (iii)

the composition algebras (3) and (4) cannot lead to quasiassociative algebras

£>(35n, y)W) since Í22 and © do not contain A^ in their center with A + A=l; the

centers are fixed under the involution).

Now consider the degree 1 case. Here 91 has no idempotents except e= 1, 0. That

all elements are invertible or nilpotent as in I then follows by applying the following

general proposition (due to D. Morgan) to ^ = 9t+ :

Proposition 3. If $¡ is a quadratic Jordan algebra with d.c.c. on inner ideals

which contains no idempotents e^ 1, 0 then every element in $ is either invertible or

nilpotent.

Proof. Suppose x e 3 is not nilpotent. By the d.c.c. the chain of inner ideals

C^S3 Ux^=> ■ ■ • => £/*»3= £V+18= • ■ ■ breaks off at some stage. If we setj> = xn + 1

then y2 is regular, y2=Uy*a, since y2 = x2n + 2 = Ux«x2 e UxnQ=Ux¡¡n +<$. Now any

time y2= Uy*a the element e= UyUay2 is idempotent because

e2 = UyUaUy*Uay2 = UyUaUy*Ua(Uy*á) = UyUa(Umy*)a)a

= UyUaUy*a = UyUay2 = e.

In our case yi = xin + i is not zero since x is not nilpotent, and whenever yi^0 the

above e is also nonzero: the formula (Uzw)2=UzUwz2 [2, p. 1073] shows Uye

= Uy2Uay2 = (Uy*a)2 = (y2)2=yi. Since e#0 the only other idempotent it could be

is e= 1. Since 1 =e e Uy^^ Ux%, we see x is invertible.

Further insight into quadratic Jordan algebras of degree 1 is given by

Proposition 4. $ is a semisimple quadratic Jordan algebra with d.c.c. on inner

ideals which contains no idempotents e # 0, 1 if and only if $ is either (i) a Jordan

division algebra, or (ii) an isotope Sp (Q)(v) of a split algebra Q^ + Q0e2 + 23 of a

quadratic form on 23 of defect 2:1, Q(v, 23) = 0.

Proof. By the Structure Theory [2], $ is a direct sum of ideals which are unital

simple algebras with d.c.c. Since 3 has only one nonzero idempotent, it has only

one simple component, and S itself is simple. Since it is semisimple it has no inner

ideals of type I, and none of type III unless it is a division algebra. Otherwise all

its minimal inner ideals must be of type II ; in particular, $ has characteristic 2

and some isotope $j(u) is simple and strongly connected of capacity 2. By Osborn's

Theorem [2], such a strongly connected algebra of capacity 2 is isomorphic to one

of the following :
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(i) A^ for A an associative division algebra;

(ii) §(A2, A0) for A an associative division algebra with nontrivial involution,

A0 an ample subspace;

(iii) a split algebra Sp (Q) = Q.Qe1 + Q.0e2 + %$ determined by a quadratic form

ßon 93.

The original algebra 3 = {3(u)}(u"2) is thus an isotope of an algebra of the form

(i)-(iii). Any isotope of A¡ is isomorphic to A¿", hence has nontrivial idempotents.

§(A2, A0) is isomorphic to the algebra of all linear transformations x on a 2-

dimensional vector space 93 over A which are selfadjoint relative to a nondegenerate

nonalternate Hermitian bilinear form (v, w} on ^ß (<x(i>), w> = (v, x(h>)>) which

take quadratic values (,x(v), v} in A0. Any isotope of such an algebra has the same

form (relative to a new Hermitian bilinear form <t>, w}' which is nonalternate

unless A is a field of characteristic 2 with identity involution); since a nonalternate

form can be diagonalized we can find nontrivial idempotents. The only remaining

possibility is 3 = Sp (Q)(v). If Q(a1e1 + a2e2 + v) = a1a2+ Q(v) then the operations in

Sp (2) are given by Uxy=Q(x,y*)x— Q(x)y* (y* = T(y)l—y), so the square in

Sp (Q)w is x2iv)= Uxv= Q(x, v*)x- Q(x)v*. We will show that if Sp (0W has no

proper idempotents then v e^8 and Q(v, 93) = 0 so v is in the bilinear radical of Q ;

since the radical of Q is zero if Sp (Q) is simple, this will show the defect of Q

is £1, If x^O but o(x) = 0 then x/0, l(t0 so x cannot be idempotent in 9 by

hypothesis: x2(v)=Q(x, v*)x^x. This implies Q(x*,v)=Q(x,v*) = 0 whenever

ß(x) = 0. Taking x = eu x=e2, we see v e%$ = (Q0e1 + Q0e2)i; for any we 93 we

take x = e1-Q(w)e2 + w, so g(x) = 0, hence 0= Q(x, v)= Q(w, v), and Q(v, 93) = 0

as claimed.

Conversely, one can easily verify that the 2 possibilities actually do furnish

degree 1 algebras.

8. Degree 1 algebras. We close with a few remarks about central simple

algebras of degree 1, those having no idempotents except e= 1 and e = 0.

Suppose 91 has degree 1 and has the d.c.c. By the Minimal Inner Ideal Theorem,

a degree 1 algebra has no inner ideals of type II, and it has inner ideals of type III

if and only if it is a division algebra.

Thus a degree 1 algebra with d.c.c. has a capacity if and only if it is a division

algebra. Conversely, any division algebra has capacity 1 and trivially has the d.c.c.

since there are no proper inner ideals. Thus the d.c.c. does not serve as a finiteness

restriction, and there is little we can say about arbitrary noncommutative (or even

quadratic) Jordan division algebras.

Suppose now that 9t has no capacity. Then all its minimal inner ideals must be

trivial of type I. We claim any scalar extension of such a central simple algebra is

again of the same type. Indeed, if St has trivial elements so does any extension 3tß

(if {/29t = 0 then also UßLn = 0 and z stays trivial in 9tn). By Theorems 1, 12 this

implies the central simple algebra SIn has no idempotents e± 1, 0, so 9tn remains of

degree 1 without capacity.
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If in addition we assume 31 is finite dimensional over its center <I> and take £2 to

be the algebraic closure of <J>, we claim 3In is a nodal algebra in the sense that every

element has the form a=al +z for some a e Q. and some nilpotent z, but the nil-

potent elements do not form an ideal. Indeed, since 9In contains no idempotents

e^LO the minimum polynomial of ae3In cannot have distinct roots: /xa(t)

= (t—a)k. Then z = a-al is nilpotent, zfc = 0. Nilpotent elements exist since 3in

is not a division algebra, yet not all elements are nilpotent, so the nilpotent elements

cannot form an ideal in the simple algebra 9ln.

An algebra is almost nil if it has the form 9t = 01+9,î for 3Î a nil subspace

(necessarily an ideal in 31+). An almost nil algebra is nodal if 9Î does not form an

ideal in SI. It is known that nodal algebras exist only for characteristic p ^ 0, and

for p t¿ 2 they are necessarily almost nil and their structure is more or less known

[IL P. 144].
In characteristic 2 it is known that a nodal quadratic Jordan algebra need not

be almost nil. However, we conjecture that even in characteristic 2 a nodal non-

commutative Jordan algebra (with d.c.c.) is almost nil. (We have already seen a

situation—the Minimal Inner Ideal Theorem—where the extra structure in the

noncommutative case gave us a stronger result than in the quadratic case.)

For almost nil algebras we have

Theorem 16. 7/9l = <ï>l+9î is a simple noncommutative Jordan algebra over a

field <J> of characteristic 2, for 9Î a nil subspace, then 31 is commutative and has

multiplication

zw = A(z, w)l +z x w       (z, r> e 9<l)

where X is an alternate bilinear form and x an alternate bilinear product on 9Î,

A(z, z) = 0       z x z = 0.

Conversely, any algebra SI = G>1 + 9Î built up in this manner from an alternate algebra

(9Î, x), zxz = 0, and an alternate form A, A(z, z) = 0, is a noncommutative Jordan

algebra; it will be nodal if and only if A/0, and simple if and only if Rad X contains

no ideals q/"(9î, x).

Proof. By Lemma 5 we know {SI Si SI} = {9Î 9Î 9Î} + 9Î o SR + 29Î + 201 is an ideal

in 3I = 4>1 +9Î. We have UmW and 9Î2 contained in 9Î, since if Uzw or z2 were not in

9Î it would be invertible, implying z e 9Hs invertible, whereas z is nilpotent. Since

9Î is a subspace we can linearize to get {9Î 9Ï 9Î} and 9Î ° 9Î contained in 9Î. Thus

in characteristic 2, {St 31 91}<=9î<91. By simplicity {91 91 91} = 0. In particular,

91 ° 91 = 0, and xy+yx = x ° y = 0 means xy=yx, therefore that 91 is commutative.

In a commutative algebra of characteristic 2,

[x2, y, z] = [x2, y, z] + [x ° z, y, x] = 0

(using the commutativity and formula (2)'), so that Lx* commutes with all LZ=RZ.

This means x2 lies in the center of 91. Thus x is nilpotent if and only if x2 = 0, and

3t={z|z2=0}. If we let

zw = X(z, w)l+zxw
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for A(z, w) e O and zx weift when z, w belong to 9Î then z2 = 0 shows

A(z, z) = 0       z x z = 0.

Conversely, if St is constructed from A and x in this way then z2 = 0 for all z

in 9Î, so a2 = (al+z)2 = a2l+z2 = a2l trivially implies [a2, b, a] = 0 for all a, b in

the algebra. Also A(z, w) = — X(w, z) = X(w, z), wxz=—zxw = zxw are both

symmetric, which shows St is commutative and therefore trivially flexible : [a, b, a]

= 0. Thus St is a noncommutative Jordan algebra. An ideal 93 is proper if and only

if none of its elements are invertible, i.e. 93c$ß. A subspace 93 ̂ Sî is an ideal if and

only if^^cSB, i.e.

A(93, 9Î) = 0       93 x m ç 93,

which means that 93 is an ideal of 9Î contained in Rad A.

We denote algebras built up from A and x like this by

9I(A, x).

Simple algebras 9t(A, x) are easy to come by (and therefore hard to classify). For

example, a nondegenerate form A automatically leads to a simple algebra no matter

what the product x is. Similarly, a simple algebra 9Î with z x z = 0 (for example, a

simple Lie algebra) always leads to a simple algebra 9t as long as A#0 is not

identically zero.

We might add that if a noncommutative Jordan algebra of characteristic 2 is

restricted [10] in the sense that Lxz=Lx then by (1)' RX* = RX too, so St is actually

alternative. It is known that there are no nodal alternative algebras.

Finally, these almost nil algebras show that a noncommutative Jordan algebra

which happens to be commutative (a "commutative" Jordan algebra) is a very

different beast in characteristic 2 from a (quadratic) Jordan algebra.
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