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THE ADDITION THEOREM FOR THE ENTROPY

OF TRANSFORMATIONS OF G-SPACES(1)

BY

R. K. THOMAS

Abstract. For a measure-preserving transformation T which is a skew-product of

a measure-preserving transformation S and a topological group endomorphism a,

it is shown that the entropy h satisfies the following "addition theorem":

h(T) = h(S) + h(o).

Introduction. In a previous paper [4], conditions were given for a certain type

of transformation of a G-space (G being a compact separable group) to have

completely positive entropy. It is useful to be able to calculate the actual numerical

value of the entropy ; the purpose of the present paper is to extend previously known

formulae to cover this type of transformation.

As in [4], the notation of Rohlin's survey article [3] is used : the entropy of a

measure-preserving transformation / of a Lebesgue space (M, SS, p.) is denoted by

h(T) ; //(£) denotes the entropy of the (measurable) partition f of M and H(£/r])

denotes the mean conditional entropy of | with respect to r¡.

Throughout this paper, the basic measure space (M, 38, p.) will be a direct

product of a Lebesgue space (X, (é>, v) and a compact separable group G with Borel

sets and Haar measure m (this also being a Lebesgue space) ; all the measures are

normalized, i.e. p.(M) = v(X) = m(G) = l. The measure-preserving transformation

Z will act as follows :

Z(x, g) = (Sx, cr(g)<p(x)),

where S is a measure-preserving transformation of X, a is a group endomorphism

of G and <p: Af->- G is some measurable map; throughout this paper, such a trans-

formation will be described as a skew-product of 5 and a (the map <p not being

specified).

It will be proved that

(1) h(T) = h(S)+h(a).

For the case where M is itself a compact separable group, Z is a group endo-

morphism and G is a Z-invariant (ZG<=G) closed normal subgroup (a=the

restriction of Zto G), this result was proved by Juzvinskiï in [2] as an essential step
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in his proof that an ergodic endomorphism of a compact separable group has

completely positive entropy—the result generalized by the present author in [4];

(1) was not needed there but it is a very useful result in its own right.

The present paper leans heavily on Juzvinskii's work which is adapted, where

possible, to fit the broader context; the "proof by steps" technique (also used by

Rohlin in [6]) and a number of theorems are taken from it—acknowledgement is

given in each instance. The essential step in the generalization is §2.5 (a compact

Lie group is rigid). This also leads to a simplification in the proof as does a new

treatment of Bernoulli endomorphisms (§3). Following Juzvinskii, (1) will be called

"The Addition Theorem".

Note that more restrictive conditions are given here for / than were given in [4]

(skew-product as opposed to a-commuting with G-action) ; this is necessary for the

elimination of trivial group action (if this were allowed, a and consequently h(o)

could be practically anything for a given system) and does not seriously limit

applications.

My thanks are due to Dr. W. Parry for supervising this work.

1. Preliminaries.

1.1. Standard results from entropy theory, (i) If ?x á f a SS • •"• is a sequence of

/-invariant (Z"1^^^) partitions of M such that \/n f„=e, then h(TÍL)^h(TÍ2)

¿ • y and limn^eo /z(Z{n)=«(Z), where Tin is the factor-transformation induced by Z

in the Lebesgue space M/|n consisting of elements of fn [3, §9.6]. (e always denotes

the partition of the space being considered into distinct points.)

(ii) For any two partitions f and r¡ with finite entropy (in particular, if the parti-

tions are finite),

|/7(i)-//0,)| ^ H(Hv) + H(r,l£)       [3, §6.5].

(iii) For any three partitions (, r, and £, /z(f v r¡¡Q S H((IQ + H(-q/l) [3, §5.6],

//(Í/t, v{)â Bim       [3, §5.10].

(iv) «(/") = ««(/) [3, §9.3].

(v) In [1 ], Abramov and Rohlin proved that the entropy of any skew-product

transformation is given by

(2) «(Z) = hiS) + hsir),

where Z and S are as above, t = {tx} is a collection of measure-preserving trans-

formations of the second factor—for the purposes of this paper,

Txig) = °ig)<pix)

and «s(t) is a quantity known as the "mixed entropy" of t.

If f j ^ £2 ̂  ■ • • is an increasing sequence of finite partitions of the second factor
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(G in this case) such that Vn in = £, then

(3) hs(r) = lim  lim i f H(ex,m) dv,
m-»oo   fc-KJO  Ä- JX

where fê>m-V?-o t;1>tï*.»>tljc£m.

(3) should be compared with the following formula for h(a) to be used later:

(4) h(a)= iim ta-faflKBf;
m-*oo fc-a oo Zv

where f„ = Vf^o1 CT_ifm and the sequence {£„} is as before. (4) follows from [3, §9.5

and §7.3].

Clearly, formula (3) will be very important in the proof of the addition theorem—

all that remains is to prove that hs(r) = h(a). Alas, this is not as easy as it might at

first appear. In the case where Z is a direct product (i.e. <p(x) = e for all x in X),

hs(o)=h(o) by [1, §2.4].

1.2. Subgroups of G. Let H be a completely a-invariant (oH=H) closed sub-

group of G. 1(H) denotes the partition of M each element of which is the direct

product of a point from X with a right coset of H; aH denotes the restriction of a

to H; aGIH denotes the transformation induced by a on the right coset space G/H

and Tt(H) denotes the factor-transformation induced by Z on Mj£,(H), 1(H) being

invariant under Z.

There exists a Borel cross-section </< which takes almost every coset Hg to a single

point ib(g) e Hg; ¡/>(G) is a Borel subset Y<^ G. Measure theoretically, G is the direct

product of Y and H ( Y having the measure induced by m and H having its own

normalized Haar measure), f-ois isomorphic to and will be identified with aG/H.

Thus a becomes the skew-product of aG/Ji and aH. Similarly, as M is the direct

product of (X <g) Y) and H, T can also be regarded as being a skew-product of

ZC(if) and a„.

In order to deal with situations in which a is not onto (when a subgroup is

properly mapped into itself), Juzvinskil in [2] defined h(o) by putting h(o) = h(oG.),

where G' = (~]nanG. It turns out that /¡(S) = /z(ZC(G0) and so one could say that

h(T)=h(S) + h(a) if one knew that /z(Z) = /z(ZC(G.)) + /z(aG0. All this goes over to

generalization but it is felt that its value is limited—it does not make much sense to

consider the entropy of a non-measure-preserving transformation. As it is sufficient

to consider only the entropy of endomorphisms restricted to completely invariant

subgroups, only skew-products of a measure-preserving transformation and a

group endomorphism mapping a group onto itself will be considered.

1.3. Proof by steps. Let H be a closed completely-invariant normal subgroup of

G. Clearly, ZWH) is a skew-product of S and <jgih.

Suppose that the addition theorem has been proved for endomorphisms of the
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types of aGII] and oH or, as will be stated in the future, that one has the addition

theorem for aGIH and for aH (no limitations on S), then

AfTcw)) = h(S)+h(oGIH),

h(T) = «(ZC(f/)) + «(aH)

and

hia) = hioGlH)+hi<jH).

Hence,

«(Z) = h(S) + h(oGIH) + h(oH) = h(S) + h(a).

So, the addition theorem for a can be proved by finding a suitable completely

a-invariant closed normal subgroup H and then proving it for the two "steps"

o-QiH and aH.

This principle can clearly be extended to a finite number of steps : suppose that

G contains a sequence G = G03G1=>G2^ ■ ■ • =>Gn = e of completely a-invariant

closed subgroups with Gi+1 normal in G¡; the addition theorem for o can be proved

by proving it for all the steps aG¡IG. + 1. The next subsection shows that the number

of steps can be infinite.

1.4. Taking limits. Suppose that G contains a sequence G = G0=)G1=,G2=> •• •

of a-invariant (oGn<=Gn) closed subgroups such that f]n Gn=e and that

(5) «(ZC(Gn)) = h(S) + h(aGIGn)   for all«.

By §Ll,(i),

h(T) = lim «(ZC(Gn))   and   h(a) = lim «(aG/GJ.
n-+oo n-»oo

Hence,

«(Z) = hiS)+hia).

So (5) implies the addition theorem for a.

2. Rigid groups.

2.1. Notation. Suppose that £={Aa} is a partition of a measurable set B<=G.

For any g in G, ig will denote the partition of Bg into {Aag}.

For a measurable set C^G, Ç—C will denote the partition of B—C into

Ua-c)}.
2.2. Definition. The group G is said to be rigid if there exist an increasing

sequence Siéêa^ • • ■ of finite partitions of G and a real number Q such that

Vn fn = « and Hieng/Cn)f¿Q for all «.

2.3. Theorem. Z«e addition theorem holds for an endomorphism a of a rigid

group G.

Proof (adapted from J uzvinskií [2, §7.4] ). By § 1.1, (v), it is sufficient to prove that

«s(t)=«((t). As

Z(x, g) = (Sx, oig)<pix)) = (Sx, rxig))       (r = {rx}),
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Z" can be expressed in the form :

Z"(X, g) = (S"X, on(g)<pn(x)) = (SnX, rn¡x(g)) (Tn = {t.J).

Now h(Tn) = h(Sn) + hS"(Tn) (applying the formula for the entropy of a skew-

product, §1.1, (v)) and so nh(T) = nh(S) + hs*(Tn) (applying §1.1, (iv)). Hence,

(6) hsn(rn) = nhs(r)

(comparing the previous formula with (2)). Tnx(g) = on(g)<pn(x) and so r^.l-q

= a~n(rj- [<pn(x)]_1) for any partition -r¡ of G. Applying formulae (3) and (4) of 1.1,

(v),

\hs«(Tn)-h(o«)\ = lim Hm -H f (#(&!)-#(£■"))*
m-»oo te-»oo "• | JX

Ú lim  lim I f  Ax% dv,
m-+oo  fc-aoo  K J.X

where

A»-- = H(£x;l)-H(em'n),

k-l

&.1 =  V T»Í-f¿;L.r-l'-iJn   ({£m} as in Definition 2.2)
( = 0

=  V^^m-bníS'-1*)]-1.WAX)]-1)
i = 0

k-l

- V °-ni(èm-fn,i(x))   (simplifying notation),
¡ = o

i = 0

Using 1.1, (ii),

A£;"m ^ //(V °-ni(êm-fnAx))lV o-niÙ+H(k\/ °-nitm/V »-«"(í-•/».«(*)))>
\i = 0 /   i = 0 / \( = 0 /   i=0 /

which can be expanded by 1.1, (iii), to give

A£-,nm ^   X [//(a-"i(^-/„.iW)/a-"'ím) + //(a-"iíf>-nÍ(fm-/n.(W))]
i = 0

= Y [^(^•/n.iW/U + //(fm-[/.,iW]-1/ím)]
i = 0

^ 2kQ   by the definition of a rigid group.

Hence, it follows that

\hs«(rn)-h(o*)\ ^ 2Q.

This combined with (6) and §1.1, (iv), gives

\hs(T)-h(a)\ ^ 2Qjn   for all n.

So hs(r) must equal h (or).
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2.4. Totally disconnected groups. A search for rigid groups is begun now. It is

easy to prove that a compact separable totally disconnected group G is rigid :

Proof (Juzvinskii [2, §7.2]). G, being totally disconnected, contains a sequence

G=G0=>Gi=>G2=> •• • of open normal subgroups such that (\n Gn = e. Let $n be

the partition of G into cosets of Gn; then ¿;ng= fn for all g in G and all n. Therefore,

H($ng/Çn) = 0 for all g and all « and so & Sis á • • • satisfies all the requirements of

Definition 2.2 with g = 0.

2.5. Lie groups. A compact Lie group also turns out to be rigid but this is more

difficult to prove. It is, however, a crucial result. First some simple observations.

Note. The maximum number of disjoint p-dimensional (open) balls of radius r

that can intersect a single p-ball of radius R depends only onp and the ratio r/R=s.

This number will be denoted by I(p, s).

Definition. A sequence £t£ |2á • • " of finite partitions of the group G such

that Vn £n = e will be said to satisfy the "bounded intersection condition" if the

number of elements of £ng which intersect a single element of £„ (in sets of positive

measure) is bounded above by some number A for all g in G and all «.

Lemma. The existence of a sequence of partitions {£n} satisfying the bounded

intersection condition implies that G is rigid.

Proof. For a finite partition f={A¡} of G and g in G, the definition of conditional

entropy gives

i

where

H(èg, Ad- -l      m(AÙ      log      m(AÙ

is the entropy of the partition of A¡ into the collection of sets {A,g n At}t,

H(ig, A¡) S log m¡,  where  m¡  is  the  number  of elements  of the  partition

{Ajg n Ai}j (sets of measure zero not being counted) [3, §4.7]. It follows that

H(£gl£) á log m, where m = maXj m¡.

Hence for the sequence {£„} satisfying the conditions of the definition, Hiing/in)

^ log A for all n and all g in G and so the conditions of Definition 2.2 are satisfied

with Q = logN.

Theorem. Any compact Lie group G admits a sequence fiáífa^ • •• of finite

partitions such that Vn in = e and the bounded intersection condition is satisfied.

Proof. First it is assumed that G is connected. G has a Riemannian structure

which is invariant under both left and right translation [5, p. 188] and the resulting

metric dhas the following property ([5, Chapter I, Propositions 9.9 and 9.10]):
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There exists an e > 0 such that, for A and B in the tangent plane TGe at the iden-

tity and \\A\\ <e and \\B\\ <e, Ns is a normal neighborhood of e and

\\A-B\\ld(a,b)^\    as(a,b)^(e,e),

where a = Expe A, ¿ = Expe B and Ne is the spherical neighborhood of e of radius e

(w.r.t. d).

8 is chosen now sufficiently small (smaller than s¡4\/p, where p is the dimension

of G) for \<(A — B)¡d(a, b)<2 for a and b in Ni6Jp.

A (open) cube C of edge 8 with one corner at 0 (Expe 0 = e) is constructed in ZGe.

Cn will denote the partition of C into (n \)p equal (open) cubes Cnl, Cn2,... each of

edge 8/m! (a set of measure zero has been discarded). Let D = Expe C and Dn

= Exp„ C„ (i.e. Dn is the partition of D into {Expe Cni}).

As G is compact, a finite number of translations of D (D, Da1, Da2,..., Dam.l

say) cover G. The partition £„ is formed by taking the elements of Dn, Dna^ — D,

Dna2 — (D\J Daj),..., Dnam_1 — (D u /Ja, u- -u Z)am_2); in other words, m

copies of Dn are fitted together so that there is no overlapping (notation as in

§2.1). Clearly, {Çn} is an increasing sequence of finite partitions satisfying \/n èn = e\

it remains to show that {fn} satisfies the bounded intersection condition.

The intersection of Dng with Dn for any g in G is considered: if this intersection

is nonempty, Dng<^Ni6jp and then En(g) = Expe"1 Dng can be considered:

Each element of Cn contains a ball of diameter 8¡n ! and is contained in a ball of

diameter 8^/p¡n\. Hence, each element of Dn contains a ball of diameter 8¡n\2

and is contained in a ball of diameter 28\/p/nl. As dis invariant under translation,

the elements of Dng have the same property and so if En(g) is defined, then each

element of En(g) contains a ball of diameter o/n!4 and is contained in a ball of

4Sv>/"!-
It follows that not more than

^'¿/^H''W,)
elements of En(g) can intersect a single element of Cn and hence that not more

than I(p, l/4V/>) elements of Dng can intersect a single element of Dn.

As en is constructed from m copies of Dn, not more than ml(p, 1 ¡4\/p) elements

of ing can intersect a single element of fn for all g in G and all n. Thus {£„} satisfies

the bounded intersection condition.

The extension of the proof to a finite number of connected components is

trivial.

2.6. Abelian groups of finite dimension. Finite-dimensional tori were covered by

the last section; the following theorem also includes a wider class of abelian groups.

Theorem (JuzvinskiI [2, §7.3]). A compact connected abelian group G of finite

dimension p is rigid.
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Proof (adapted from 12]). G contains a sequence G = G0=>G1:=>G2=> ■ ■ ■ of closed

subgroups such that (~)m Gm = e and G/Gm is isomorphic to some /-dimensional

torus A for all m. Let Pm: G -> A be the map obtained by composing the projection

of G onto G/Gm with the isomorphism of G/Gm onto A.

Using the notation of the proof of the last theorem, Expe is an isometry for

the torus A and D is taken to be the whole of A (represented as a yj-cube). So

the partitions {/„ 17)„} are finite and satisfy

HiiP^Dn)g/P^Dn) = HiDnPmg/Dn) Í log lip, 1/4 Vp)

(see the proof of lemma in §2.5; "A"=7(p, l¡4y/p) from the proof of the last

theorem).

An increasing sequence of integers «(1) = 1, «(2)=2, «(3), «(4),... is constructed

inductively so that {Çm=P _17)n(m)} is an increasing sequence; it is assumed that all

the «(r)'s have been chosen for r-¿k. PkPk~+y is an endomorphism of A onto A and

so has a kernel of finite order s; the inverse map Pn+yPiT1 takes a single cube from

Dnm to the union of s disjoint identical cuboids. It is easy to see that Dsnik)

^Pzc+iA^TW) fr°m which it follows that Pk+\Dsnm'e:Pk1DMk). So n(k+l) is

put equal to snik).

The sequence {fm} so constructed satisfies all the conditions of Definition 2.2

and so G is rigid.

3. Bernoulli group automorphisms and endomorphisms. In the last section, the

addition theorem was proved for endomorphisms of totally disconnected groups,

Lie groups and finite-dimensional abelian groups. In order to be able to use the

theory of the structure of compact groups to tie these results together to give the

addition theorem for an endomorphism of an arbitrary compact group G, it is

necessary to prove the addition theorem for one more class of endomorphisms,

namely Bernoulli group automorphisms and endomorphisms.

3.1. Definitions. Let G be a direct product of a two-way (one-way) infinite

sequence of copies of some compact group G0 known as the group of states ; an

element g can be represented as a sequence {gj-«, i{g¡}o)- A Bernoulli group

automorphism (endomorphism) takes the sequence {g,}-«, i{g¡}o) to the sequence

W-oo ({«,}?), where «j=gi+1.

In some cases G will be rigid (if G0 is finite for example) but the following

theorem covers all possibilities.

3.2. Theorem. When a is a Bernoulli group endomorphism of the group G, T is

isomorphic to the direct product of S and a.

Proof. Z(x, g)=(Sx, a(g)<p(x)); in this case, <p(x) is a sequence {^¡(x)}?. Let

F: M -> M be the invertible measure-preserving transformation given by Z(x, g)

=ix,g-fix)), where /={/}? is some measurable function from Xto G.

F-1TF(x,g) = (Sx,a(g)a(/(x)Mx)[/(Sx)]-1)
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and so if

(7) a(/(x)Mx)[/(5x)]-1 = e

for all x in X, then S <g> o=F~1TF, i.e. Z is isomorphic to S <g> a.

(7) is equivalent to the set of equations

(8) fi^(x)9i(x) = fi(Sx).

The equations (8) are satisfied by

/o(x) = e;

fi(x) = bo«]-1;

/a(*) = [«Po^ViWl-1;

/(x) = [9tÁSt-1x)9l(Si-axy--qH.1(xílC-\

As the /¡'s are all products of measurable functions, the measurability require-

ments for /and F are satisfied and so the map F, given by these solutions of (8),

gives an isomorphism between Z and S ® a.

Corollary. For a a Bernoulli group automorphism or endomorphism of the

group G,h(T) = h(S) + h(o).

Proof. When a is a Bernoulli group endomorphism, Z is isomorphic to a direct

product and so has the same entropy [3, §16.3]:

h(T) = h(S <g> a) = h(S)+h(c)       (§1.1, (v)).

For a Bernoulli group automorphism, let Gn be the closed normal subgroup of

G consisting of all sequences {gi}-„ for which gk = e for k^ — n, n = 0, I,....

(~)n Gn = e and aG/Gn is a Bernoulli group endomorphism. So h(Tt(Gn)) = h(S) + h(aGIGn)

for all n and taking limits (§1.4) gives h(T) = h(S)+h(a).

4. Completion of proof. The proof is completed now in the manner of Rohlin

[6] and Juzvinskii [2] ; it must be shown that an arbitrary compact group G breaks

down into sequences of factor groups on which endomorphisms of the types dealt

with in §§2 and 3 are induced. The "proof by steps" procedure of §1.3 can then be

applied. Throughout this section, C will denote the connected component of the

identity of G and Z will denote the centre of C; both C and Z are completely

invariant under any endomorphism a of G.

4.1. Totally disconnected groups. The first step is easy: GjC is totally discon-

nected (addition theorem for aG/c given by §§2.3 and 2.4).

4.2. Connected groups with trivial centres. The next step will be ac/z ; this will

require two results of Juzvinskii [2] which are reproduced in [4, Appendix B]. The

first is that CjZ has a trivial centre and the second is the following:

Lemma. An endomorphism p of a compact separable connected group H whose

centre is trivial is the direct product of a Bernoulli group automorphism plt a Bernoulli
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group endomorphism p2 and p3 which is a direct product of automorphisms of semi-

simple Lie groups.

The addition theorem has been proved for Bernoulli group automorphisms and

endomorphisms (§3.2) and for endomorphisms of Lie groups (§§2.3 and 2.5). So

the (infinite if necessary) proof by steps procedure gives the addition theorem for p

as in the lemma. So the aclz step is permissible. This leaves Z.

4.3. Abelian groups. The endomorphism induced on Z factored by its connected

component of the identity can be dealt with as in §4.1 and so it remains to prove the

addition theorem for an endomorphism a of a connected abelian group G. The

character group of G will be denoted by Y.

First of all it is assumed that Y is finitely generated with respect to a, i.e. every

element of Y is of the form

YlPl(") + Y2Pai") + ■ ■ ■ + YnPni°),

where ylt y2)..., yn are fixed elements of Y and py,p2,.. .,pn are polynomials

with integer coefficients. (Note that the adjoint of a is denoted by the same symbol

but written on the right.)

There are two possible cases :

(i) For every yt, there exists a polynomial qt such that yiqlio)=0. In this case, Y

is of finite rank. So G is finite dimensional and the addition theorem for a is given

by §2.6.

(ii) For some yh ytq(a) ¥= 0 for all possible polynomials q. Let T, be the subgroup

generated by y¡, let Í2 be the smallest subgroup containing r( which is invariant

under a and let H be the annihilator of O. The condition given implies that

r(<7a n Y,a" = e for a^b and so £2 is the direct sum (finite numbers of nonzero

terms) of Y¡, Y¡a, Y¡a2,..., each of which is isomorphic to the integers. Its dual

G/H is the direct sum (unrestricted) of a one-way infinite sequence of circles and

aGlH is a Bernoulli group endomorphism with the circle as a group of states.

/¡(<TG/i/) = oo [3, §9.10], and so the addition theorem for aa¡H (§3.2) gives

A(Zt(if)) = hiS)+hiaGIH) = oo.

By 1.1, (i), «(Z)^«(ZC(w) = oo, h(a)^hiaGIH)=oo. Hence, «(Z)=«(S)+/z(a).

This proof is a much modified version of [2, §8.4].

The restriction on Y is removed now.

Lemma (Rohlin [6, §4.3], reproduced in [4, Appendix C.3]). If a is an endo-

morphism of a compact separable abelian group G, then G contains a sequence

G = G0^>Gy=>G2=> • ■ • of a-invariant closed subgroups such that (\~n Gn = e and the

dual group of G/Gn is finitely generated with respect to aGIGnfor all n.

This lemma and the preceding work give «(ZC(Gn))=/j(S) + «((jG/Gii) for all « and

on taking limits (§1.4), this becomes «(Z) = rt(S) + «((T).

This completes the proof of the addition theorem.
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5. Applications.

5.1. Group endomorphisms. If a is an endomorphism of a compact group G onto

itself and H is a completely invariant closed subgroup, then a can be written as a

suitable skew-product (see §1.2) and so /z(a) = /z(aG/íí) + /z(aH). For H normal, this is

the result of Juzvinskii [2], mentioned in the introduction. The addition theorem can

be applied in a similar fashion to affine transformations.

5.2. Nilmanifolds. The addition theorem is used by W. Parry [7] to calculate

the entropy of an automorphism of a nilmanifold. Suppose that T' is a group

automorphism of a connected and simply connected nilpotent Lie group N (lower

central series N=N0=>N1=>N2=> ■ • ■ =>Nk.1^>Nk = e) which takes a uniform dis-

crete subgroup D onto itself; the (left) coset space N/D is a compact manifold

known as a nilmanifold. 7" induces a measure-preserving transformation on

N/D known as an "automorphism".

Let Zr be the transformation induced on NjNrD and let ar be the transformation

induced on Nr-1D¡NrD. Tr can be regarded as a skew-product of Tr-i and ar

for r= 1, 2,..., k, and so applying the addition theorem for each r, it follows that

h(T) =h(o1)+h(o2)+---+h(<Jr).

ar is an automorphism of a torus and so

A(ar)=   2   logM
|AJ>1

(see [4] for references), the A¡'s being the eigenvalues of ar. Hence the entropy of Z

can be expressed in the form

ä(z)= y log m,
l«¡T>i

where the zt¡'s are the eigenvalues of the differential of Z at the identity coset of N/D.
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