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REAL-VALUED SET FUNCTIONS. IIO
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HARVEL WRIGHT AND W. S. SNYDER

Abstract. Let/be a real-valued function defined and finite on sets from a family

& of bounded measurable subsets of Euclidean n-space such that if Te&, the

measure of T is equal to the measure of the closure of T. An earlier paper [Trans.

Amer. Math. Soc. 145 (1969), 439-454] considered the questions of finiteness and

boundedness of the upper and lower regular dérivâtes of/and of the existence of a

unique finite derivative. The present paper is an extension of the earlier paper and

considers the summability of the dérivâtes. Necessary and sufficient conditions are

given for each of the upper and lower dérivâtes to be summable on a measurable set

of finite measure. A characterization of the integral of the upper derívate is given in

terms of the sums of the values of the function over finite collections of mutually

disjoint sets from the family.

Introduction. This work represents a continuation of a recent paper (hereinafter

referred to as Paper I) published in the Transactions [6]. Consider a family !F of

measurable subsets of Euclidean n-space and a real-valued function/that is defined

and finite on sets from F'. Paper I considered the question of finiteness and

boundedness of the upper and lower dérivâtes (see Definition 2 below) of/and

of the existence of a unique, finite derivative. The present paper extends the results

of Paper I and considers the summability of the dérivâtes. §1 contains definitions

and some comments on notation and §2 contains some preliminary results to be

used later. §3 gives a necessary and sufficient condition that each of the upper

derívate and lower derívate of a nonnegative function be summable on a measurable

set of finite measure. §4 removes the restriction that the function be nonnegative

and §5 characterizes the integral of the upper derívate (or lower derívate) in terms

of the sums of the values of the function over finite collections of mutually disjoint

sets from the family F.

1. Definitions and basic concepts. As in Paper I, this work will be restricted to

Euclidean «-space Rn and Lebesgue measure. The functions considered will be ar-

bitrary real- and finite-valued set functions. The family F of sets on which the

function is defined will be quite general and will not be required to be additive. The
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only restriction to be placed on the family #" is that if F is a set in J5", then T is

measurable and the measure, |F|, of Fis equal to the measure of the closure, T, of

T, i.e. |F| = |F|.

Definition 1. The parameter of regularity, r(F), of a bounded, measurable set

Fis defined as l.u.b. |F|/|7| where J denotes a cube containing T.

Definition 2. Let a represent a real number such that 0 < a < 1, let x be a point

in Rn, and suppose that ¡F contains at least one regular a sequence of sets that closes

down on x- The upper i?F, a) derívate off at the point x lS defined to be

D°ifia,x) = limsup/(F)/|F| = lim [l.u.b./(F)/|F|]
A-»0

and the lower i¿F, a) derívate off at x is defined to be

D0if,a,x) = liminf/(F)/|F| = lim [g.l.b./(F)/|F|]
A-«0

where the lim sup and the lim inf are taken as diam (F) -> 0 for sets T such that

xeT,T e¡F, and r(F)>a, and the l.u.b. and g.l.b. are taken over sets F such that

x e F, F e &, r(F) > a, and diam (F) < A.

Definition 3. The upper i¿F, 0) derívate of/at the point * is defined to be

D°if, x) = lima^o+ D°if a, x) = l.u.b.0<a<1 D°if a, x) and the lower LW, 0) derívate

off at x is defined to be D0if, *) = lima^0 h D0if, a, *) = g.l.b.0<a<i L>oif, a, *)•

The reader is referred to Paper I for further amplification of these definitions as

well as some of their properties and implications. Paper I also contains a discussion

of the Vitali covering theorem, which will be used extensively in the proofs that

follow.

Script letters ë and Jf will be used to denote finite collections of mutually

disjoint sets from the family J5". A dot (•) placed over a script letter will denote the

point set obtained by the union of the sets in the collection, e.g. ë=UTegT.

Diam ië) = maxTeg [diam (F)] and r(«f) s minre<f r(F). For any other function/

defined on sets Fin ë,fië) = ~2TefffiT). Sa will denote the domain of definition of

the dérivâtes above. The collection J^ is defined to be the collection of all sets

Te Jrwithr(F)>a.

The notation will be the same as that in Paper I and in the interest of brevity no

further discussion will be given here.

2. Preliminary results. It is well known (see, for instance, Goffman [1, pp. 219—

222]) that

Remark 1. If g(x) is a measurable function of x that is summable on a measur-

able set E of finite measure, then (s gix) dx is a set function that is completely

additive and absolutely continuous on the class of measurable subsets S of E.

Remark 2. Theorem 10 of Paper I immediately guarantees the differentiability

of the indefinite integral/(F) = J"TnEg(*) dx of a function gix) that is summable on

a measurable set E.
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Furthermore, it can be shown (see, for instance, Lebesgue [3, p. 399] and Saks

[5, p. 118]) that

Remark 3. If f(S)=jsg(x) dx where S is a measurable set and where g(x) is

summable on s, then 0 <a < 1 implies that D(f a, x¿)=g(x0) at almost all points

of the space.

Lemma 1. Let G be an open set containing a measurable set E of finite measure,

let n and k be arbitrary positive integers, and suppose \E—Sa\=0. If D°(f, a, x) is

summable on E, then the collection F'={T\ TeFa, T<^G, diam(T)<l/n and

\f(T) — frnE D°(f a, x) dx\ < \T\/k} covers E in the sense of Vitali. A similar state-

ment holds if D°(f a, x) is replaced by D0(f, a, x).

Proof. Let n and k be arbitrary positive integers. Let g(x) = D°(f a, x) at each

point xeE for which D°(f a, x) exists and is finite and let g(x)=0 elsewhere.

Since D°(f a, x) is summable over E, g(x) is summable by Remark 3,

D(jT g(x) dx, a, x0)=g(x0) almost everywhere. Let E' be the subset of E on which

D°(f a, x) exists, is finite, and the above equality holds. Then \E—E'\=0 and it

suffices to show that F' covers E' in the sense of Vitali. Let x0 be an arbitrary point

in £". By Remark 1 of Paper I there exists a regular a sequence {Tt} closing down

on x0 such that lim^ œ f(Ti)/\Ti\ = D°(f a, x0). Consequently, there exists an integer

jx > l/n such that />/ implies Ftc G, diam (F¡) < l/n, and \f(Tt)l\Ti\ -D°(f a, x0)\

<l/2k. But

Di     g(x) dx, a, x0 j = Dy\        D°(f a, x) dx, a,X0\ = D°(f, a, x0)

and, therefore, for any regular a sequence closing down on x0 (in particular for the

one just mentioned) there is an integer j2 such that i>j2 implies T^G, diam (F¡)

<l/n, and

STtnBD°(f,a,x)dx 1
-m-D\fia,X0)   <Tk.

Hence, for i> max (/i,/2)

f(Tj)   ¡TinED°(f,a,x)dx

m        \n

S   f-^-D°(fa,xa)

Thus at almost all points xeE, there is a regular a sequence with the required

properties closing down on x and the lemma is proved for D°(f a, x). A similar

argument holds for D0(f, a, x).

The next lemma is similar to a result obtained by R. C. Young [7, p. 187].

+
)TinEr>(f,<*,X)dx

\Ti\
-D°(f,a,xQ)
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Lemma 2. Let E be a measurable set of finite measure, let \E—Sa\ =0, and suppose

D°if a, x) is summable on E. Then for arbitrary positive numbers e, r¡, and £, there is

a collection ë with r{ê)>a, diam («?)<£, \E V é\ <r¡ and \f(ë)-jE D°(f, a, x) dx\

<e. A similar statement holds if D°if a, x) is replaced by D0if, a, x).

Proof. Since, by Remark 1, Js D°(f, a, x) dx is a set function that is absolutely

continuous on the class of measurable subsets of E, let 8 be a number such that

if A is any measurable subset of E with \A | < 8, then \jA D°(f, a, x) dx\ < e/2. Let G

be an open set such that E<=.G and \G—E\ <min (8/2, r?/2). Let k be an integer

such that |G|/rc<e/2 and let « be an integer such that l/n<£. By Lemma 1, the

collection &'={T\ Te&a, T^G, diam (F)<1/«, and \fiT)-jTnE Z)°(/> a, x)dx\

< \T\/k} covers E in the sense of Vitali. By the Vitali covering theorem let ë be a

finite collection from &' such that \E-i\ < min (8/2, r¡/2). Since <#<=G, (FV ë)

c(F-^)u(G-F) and, therefore, \E V ë\ ^ \E-é\ + \G-E\ <min (8, v). Now

since

/(F)-(*      D°ifa,x)dx
JrnE

for each Te ë, it follows that

fië)-^D°ifia,x)dx

-[      D°ifa,x)dx +   f      D°ifa,x)dx-[ D°ifa,x)dx
J&nE jénE JE

f D°ifa,x)dxáY+ e     e
< ~ + ~ = e.

2    2

A similar argument holds when F>°(/, a, x) is replaced by D0if, a, x) and the theorem

is proved.

Lemma 3. Let E be a measurable set of finite measure, let \E—Sa\=0, and

suppose D°if a, x) is summable over E. Then jE D °(/ a,x)dx^a for any number a

which satisfies the following condition: for an arbitrary e>0, there exist numbers

£>0 «3«<i ?7>0 with the property that for any ë with \¿ — E\ <r¡, r(#)>a, and

diam ië)<i, there exists a subcollection ë' of ë such that \¿ — ¿'\ <e and fie') <a.

Proof. Suppose the contrary that there exists a number a and a number 0>O

such that JE D°if, a,x)dx>a + 8 and such that a satisfies the condition stated in

the lemma. For each positive integer n, let F„={* | * e E and \D°(f, a, x)\ <«}.

Then limn_0O |F„| = |F| and Fn<=Fn+1 for each «. Let N be an integer such that

|£íí D°if, a, x)dx>a+8. Let e = 8/4N. Let r¡ and £ satisfy the condition for these

values of a and e. Let D°Nif, «, *) = F»°(/, a, x) if D°(f, a,x)<N and D%(f, a, x)=0

if D°if,a,x)^N. By Lemma  1  of Paper I, the family ^N={T\Te^a and
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\f(T)\ <N\T\} covers EN in the sense of Vitali. Now by Lemma 2, let Shea finite

collection of sets from FN with the property that \EN V ¿\ <min (17, e), r(S)>a,

diam (S) < Ç, and \f(£)-jSll D°(f a, x)dx\< 8/2. Thus

f(ê) > I     D°(f, a, x) dx-? > a+8-Q- = a+j

Now \á-E\<\á-EN\<7], r(£)>a, diam(<f)<£ and, therefore S satisfies the

condition stated in the lemma. But if S ' is a subcollection of S such that \S-é'\ <e

thenf(£-é")^N\é-é'\<Ne<Nd/4N=8¡4 and since f(S- ê')=f(g)-f(ê') it
follows that

/OH =f(S)-f(ê-S') >f(<$)-8/4 > a+8/2-8/4 > a.

But this contradicts the hypothesis that a satisfies the condition stated in the lemma

and, consequently, the lemma is proved.

3. Summability of the dérivâtes of nonnegative functions. This section contains

theorems giving conditions which are necessary and sufficient for the upper derívate

and also for the lower derivate of a nonnegative function to be summable on a

measurable set of finite measure.

Theorem 1. Let f be nonnegative, let E be a measurable set with finite measure,

and assume \E—Sa\=0. A necessary and sufficient condition that D°(fa,x) be

summable over E is that there is a number a>0 such that for every e>0, there exist

numbers £>0 and r¡>0 with the property that for any ê with \S — E\ <r¡, r($)>a,

and diam (<£')<£, there exists a subcollection S" of ê such that \¿ — ¿'\<e and

f(i')^a.

Proof. To prove necessity, assume D°(fi a, x) is summable over E. Thus assume

lE D°(f, a, x) dx = b. The proof will be completed by showing that

Remark 4. If D°(f a, x) is summable on a measurable set E of finite measure,

then any value for a which is greater than jE D°(f, a, x) dx will satisfy the condition

of the theorem.

Proof. Let 8 be an arbitrary positive number and let a=b + 8. Suppose that the

condition does not hold for this value of a. Let e be a positive number such that no

values of £ and r¡ exist which satisfy the condition. For each positive integer n,

let D°(f a, x) — D°(f a, x) if D°(f a, x)<n and equal 0 otherwise and let

En = {x | x e E and D°(f, a, x) = D°(f a, x)}. Since D°(f a, x) is summable on E,

it is finite almost everywhere on E and, therefore, there is an integer N such that

\E—EN\ <e/4. For each integer m, let E$={x | x e EN and for any set T such that

xeT, diam(T)<l/m, and r(T)>a, it is true that f(T) <N\T\}. It follows That

E^^Eff + 1 for each integer m, and limm^„o F™=FW. Let m0 be an integer such that

[5, p. 47] |£^o|e> 1^1 -£/4. Let M be an integer such that A/>max (m0, 4/e). For

each integer m>M, let l = rj = l/m. Since the condition is assumed not to hold for
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these values of a and e, there is a collection ëm such that \Sm — E\ <l¡m,riem)>a,

and diam (<fm) < l/m, but such that if S'm is a subcollection of ëm for which \ém — ë'm\

<e, then fië'm)>a = b+ 8. Now delete all sets Teëm that do not intersect £> to

obtain the collection ë'm. For each integer m, \ëm — ë'm \ <e. To see this, observe that

ëm-ê'm^iëm-E) u iE-¿'m). If a point of ¿m was deleted, then it was not in F>

so that iëm-é'm)<=-iém-E) u (£-£>). Let ,4 = «?m-E and let B=(¿m-¿'J-A.

Then fic(£-£™o) and BnE^=0. But (fi u £#<>)<=£ and it follows that

|fi|^|F|-|£^o|e. Thus

|fi| ^ (|£|-|£w|) + (|£w|-|^o|.) < e/4 + £/4 = e/2

and hence

iyB-<| ^ |^ra-£| + |fi| < l/iw + e/2 < E/4 + £/2 < e.

Now each set F in S'm intersects E^o and, therefore, if m > m0 it follows from the

definition of E%° that /(F)<JV*|r|. For each integer m>M, define the point

function gmix) by gmM^ÍF^lFl if xeê'm, and gm(*)=0 otherwise. Then for

each m>M, 0^gmix)<N. Using the function gmix), the number fiëm) can be

expressed as

f(K)  =   ! ..   *«(*) ¿* =   Í.. *»(*) dx+ f gm(*) J*

=£    f., gm(*)<&+iV|rf;-£|.
Ji?mní;

But since (<#;-£)c(^m-F) then |<-F| ^ |<#m-F| <l/w. Thus

/OC) S I*.      gm(*) dx + N/m   for any m > M.
J8'mr,E

Hence

gm(*)¿* ^fié'J-N/m > a-N¡m = b + 8-N/m.
jiISmr,E

Since gm(x) = 0 for x not in ¿'m, it follows that

gm(x) dx =      gmix) dx.
JsmnE Je

Now gmix) is bounded on the set E with | £ | < + oo by the integrable function having

the constant value N and, therefore [5, p. 29]

lim sup gmix) dx 1 lim sup     gm(x) dx = lim sup   .      gm(*) dx ^ b + 8.
JE m m Je m JSmr.E

But by the definition of D°if a, x), lim supm gm(x) ^ Z)°(/ a, x) so that

f D°if a, x)dxZ f lim sup gm(x) dx ^ b + 8
JE JE m
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which is a contradiction that jB D°(f, a, x) dx=b and completes the proof of

Remark 4 as well as the necessity of the theorem.

To prove sufficiency, assume the condition holds. Suppose §E D°(f, a , x) dx

= +QO. The proof will be completed by showing that this supposition leads to a

contradiction. Since/is nonnegative, then either (1) there exists a subset E«, of E

with \EX | > 0 and D°(f a, x) = + oo for x e Em or else (2) D°(f, a, x) is finite almost

everywhere on E. These two cases will be considered separately.

Case 1. Suppose D°(f, a, x) = + oo at each point xeEm where |FW|>0 and

suppose that a is a number which satisfies the condition. Let e = \Ea0\/4 and let r¡

and £ satisfy the condition for this value of e. Let G be an open set containing Ex

and such that \G-Em\ <r¡. By Lemma 1 the family F'={T\ Te J^, diam (T) <£,

T<=G and/(F)>(2a/|Fco|)|r|} covers £„ in the sense of Vitali. By the Vitali

covering theorem, there exists a collection S of sets from IF' such that \EX— ¿\

<\Ex\/4 = e. Now \é-E\û\G-Em\<r!, and \¿\^\Em r\¿\^\Ex\-]£„,-¿\

ä3|£'(JO|/4 = 3e. Hence if S' is a subcollection of S such that \é—é'\<e, then

\Í'\^\é\-\é-é'\>2e = \Ea,\/2 and, consequently, f(<g")>(2a/\E„\) ■ \S'\ >a

which contradicts the hypothesis that the condition holds.

Case 2. Suppose D°(fi a, x) is finite almost everywhere on E. For each integer n,

let En = {x | x e E and D°(f a, x) <«}. Then En<^En+i for each n and lim,,.,,,, |Fn|

= \E\. Let a satisfy the condition of the theorem and let 8 be an arbitrary positive

number. Since D°(f a, x) is assumed not to be summable on E, there exists an

integer N such that |Bk D°(f, a, x)dx>a+8. It follows from Lemma 3 that this is a

contradiction and therefore the theorem is proved.

Corollary 1. Iff is nonnegative and absolutely continuous, then the condition

of Theorem 1 is satisfied and D°(fi a, x) is summable on E.

Proof. Since/is absolutely continuous, there is a S > 0 such that if S has \¿\ < 8,

then/(<f)<l. If a = 2(\E\ + 8)/8, then this value of a satisfies the condition of

Theorem 1. To see this, let e > 0 be arbitrary. Let r¡ = 8 and let £ be any number

such that diam(F)<£ implies |F| <8/2. Now let S be any collection such that

\é—E\<r¡ and diam(«f)<:£. Group the sets in the finite collection S into sub-

collections Si with the property that 8/2 < \¿\ < 8 for each value of /' except possibly

the last value which may have 0<|<#¡|<8. Since \¿\-\E\-¿\¿-E\<8, then

\i\ < \E\ + 8 and it follows that there are at most (|£| + 8)/0.5S = 2(|F| + 8)/8 values

of /'. But by the absolute continuity of / /(<£j) < 1 for each /' and thus f(S)

<(2(\E\ + 8)/8)-\ =a. Thus by Theorem 1, D°(f a, x) is summable on E.

Theorem 2. Let f be nonnegative and suppose there is a number ß with 0 <ß < 1

such that Q<a<ß implies \E—Sa\=Q. A necessary and sufficient condition that

D°(fi x) be summable on E is that the a in Theorem 1 can be taken independent of a.

Proof. To prove necessity, assume D°(f x) is summable on E. Since D°(f, a, x)

is a nonincreasing function of a, D°(f a, x)^ D°(f x) for any a where 0<<x</i
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and, therefore, D°if,a,x) is summable on E. Let 0>O be arbitrary and let

a=j£ D°if, x) dx+ 8. Then by Remark 4, this value of a will satisfy the condition

for any ce and hence a can be chosen independent of a.

To prove sufficiency, suppose a can be chosen independent of a. By Lemma 3,

Jjg. D°if a, x)dx^a for every a such that 0 < a <ß and for any a which satisfies the

condition. Then it follows [5, p. 28] that

f  D°if, x)dx= f lim D°if a, x) dx = lim f  D°if, a, x) dx S a.
J E JE a->0 a — 0 J E

Thus D°if, x) is summable over E.

Theorem 3. Let f be nonnegative, let E be measurable with |F|<+oo, and

assume \E—Sa\=0. Then a necessary and sufficient condition that D0if,a,x) be

summable on E is that there exists a number a with the property that for each integer

n, there is an ën such that \ên V F| < 1/«, r(<fn)>a, diam (<f„) < 1/« andfiën)^a.

Proof. To prove sufficiency, assume that the condition holds. It may be clearly

assumed that E<=:Sa. For each positive integer «, let £ = ■>? = 1/«. Now the condition

assures the existence of a collection <?n such that r(<?„) > a, diam iën) < \/n, \Sn V E\

<l\n, and/(<?„)áa. Let fi=lim supn ¿n. It follows that |fi| = |F|. To see this

suppose the contrary, i.e., suppose there is a set A^iE—B) such that \A\ >0. Let

N be an integer such that N>2/\A \. Then for each «> N, \A-ën\^\E-én\<l/n

<\¡N. But \A n<|^ |^| -\A-én\>2¡N- l/N=l/N and it follows that [5, p. 8]

|lim supn (én n A)\ > l/N. Thus lim supn (<# n A) = B n A is not empty which

contradicts A^iE-B). Hence |fi| = |F|. Now consider the point function gn(x)

defined by g„(*)=/(F)/|F| if x e ën and gn(x)=0 otherwise. Since gnix) is measur-

able for each «, it follows that lim inf„ g„(x) is also a measurable function. Now

f gnix)dx = í    . gnix)dx á f   gnix)dx =  2 f-WT-\T\ =/(A) ^ a
Je jEr,œn Jsn Ts$n \1 I

and it follows that   [5, p. 29] jE lim infng„(x) Jxálim infn J£gn(x) dx^a.  But

Doif, a, x) ^ lim infn g„(x)  for each xe B and  thus  ¡E D0if, a, x) ¿ a and the

sufficiency is proved.

To prove necessity, assume D0(f, a, x) is summable on E. Let J"B F>0(/ a, x) dx

=b. Let 0>O be arbitrary and let a = b +6. Let « be an arbitrary positive integer.

By Lemma 2, let <?„ be a collection such that riën)>a, diam («#„)< 1/«, \ên V E\

<1/«,  and   \fien)-¡EDoif,a,x)dx\<8l2.   Then  fiën) <¡E D0if, a, x) dx + 8/2

=a—8 + 8/2<a and the necessity is proved.

4. Summability of the dérivâtes of arbitrary functions. The above theorems

regarding the summability of D°if a, x) and D0if, a, x) have been restricted to

nonnegative functions. For an arbitrary function, Theorems 1(g) and 1(h) of

Paper I can be used in connection with the above theorems for nonnegative func-

tions as stated in
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Theorem 4. For an arbitrary function f, D°(f a, x) will be summable on E if and

only if each of D°(f + , a, x) and D0(f~, a, x) is summable on Eand D0(f a, x) will

be summable on E if and only if each of D0(f+, a, x) and D°(f~, a, x) is summable

on E.

Proof. By Theorem 1(f) of Paper I, D°(f a, x) = D°(f+, a, x)-D0(f~, a, x) and

at most one of the terms on the right can be nonzero. Let E+ ={x\ xe E and

D°(f+, a, x)>0}, let E- ={x | x e E and D0(f~, a, x)>0}, and let E° = {x \ x e E

and D°(f+, a, x) = D0(f~, a, x)=0}. Then E=E+ u E~ u E° and these three sets

are pairwise disjoint. Now JB D°(f, a, x)=jB+ D°(f+,a, x) dx—\E- D0(f~, a, x) dx

because

f    D°(f+, a, x)dx= f    D°(f a, x) dx
JE* JE +

and

—       D0(f~, a, x) dx =        D°(f a, x) dx
Je- Je-

and, therefore, it follows that D°(f, a, x) is summable on E if and only if each of

D°(f+, a, x) and D0(f~, a, x) is summable on E. A similar argument holds for the

lower derívate.

A necessary and sufficient condition that all of the dérivâtes of an arbitrary

function be summable can now be stated as an immediate consequence of

Theorem 1.

Theorem 5. Let f be an arbitrary real-valued set function, let E be a measurable

set with finite measure and assume \E— Sa\ =0. A necessary and sufficient condition

that both D°(f a, x) and D0(f a, x) be summable on E is that there is a number a > 0

such that for every e > 0, there exist numbers £ > 0 and r¡>0 with the property that for

any S with \¿ — E\<r¡, r(S)>a, and diam(<f)<£, there exists a subcollection

ê' of S such that \¿-<E'\<eand \f\(S')^a.

This theorem simply states the condition that the upper derívate of the non-

negative function l/l be summable on E and is essentially a restatement of

Theorem 1 for the nonnegative function |/|.

5. Characterization of the integral. In view of Lemma 3 and Remark 4, the

value of the integral of D°(f a, x) can be seen to be the infimum of values of a

which satisfy the condition of Theorem 1. It is therefore possible to specify the

value of the integral explicitly in terms of the values of the function /on sets in

finite collections of sets from F. This value is stated in

Theorem 6. Let f be nonnegative and assume that \E—Sa\ =0. If D°(f a, x) is

summable on E, then

(1) lim (lim [sup{inff(S')}]\ = f D°(fa,x)dx,
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where the supremum is taken over collections ë such that \¿ V E\ <l/n, rië)>a,

and diam («?) < 1/«, and where the infimum is taken over subcollections ë' of ë for

which \ê-ê'\<\/k.

Proof. Let \E D°if a, x) dx = b. First it will be shown that the expression on the

left of the equation (1) is ^b. To see this, let «9>0 be arbitrary and let a=b + 8.

Since D°if a, x) is summable on E, then by Remark 4 this value of a satisfies the

condition of Theorem 1. Let k0 be an arbitrary positive integer and let e be a positive

number such that £<l/k0. Let £>0 and r¡>0 satisfy the condition of Theorem 1

for this value of e. Let «>max (l/£, l/r¡). Now let ë be any collection such that

\ê V F | < 1/«, rië)>a, and diam («?)< 1/«. The condition of Theorem 1 guarantees

that there exists a subcollection ë' of«? such that \é-é'\ <e< l/k0 and fie') ^ a.

Therefore, inffie') ^ a where the infimum is taken over all subcollections ë' of ë

for which \ë-ë'\<e. But this is true for an arbitrary ë subject to \¿ V E\ < 1/«,

rië)>a, and therefore, sup{inf/(«#')} = û where the supremum is taken over all

collections ë for which \¿ V E \ < 1 /«, r(«?) > a, and therefore lim„^ œ [sup {inffie')}]

5¡ a. Now ko was an arbitrary positive integer so that limfc_ „ (limn_ „ [sup {inffie')}])

i£ a = b + 8. Thus the expression on the left of equation ( 1 ) is g b + 8 for an arbitrary

6>0 and, therefore, is S¿>.

Next it will be shown that the expression is ^b. Suppose the contrary, i.e.,

suppose there exists a number 0>O such that the expression = b-8. From the

definition of limit, there is an integer k0 such that for k > k0, lim,,.,,*, [sup {inf/(«f' )}]

<b — 38/4 and, for this value of k0, there is an integer «0 such that «>«0 implies

sup{inf/(i?')}<Z>-0/2. Let a = b-8/2 and e=l/k0. Let T,<l/nQ and £<l/«„.

Consequently, for any collection «? such that \ê V E\ <r¡, /-(«f)>a, and diam (<?)

<l, there is a subcollection ë' of ë for which \ë-é'\ <e andfië')^b-8/2<b.

Therefore, by Lemma 3, J"B D°if a,x)dx^a = b-8/2. But this is a contradiction

which arises from the supposition that the expression is <b and the theorem is

proved.

It is of interest to compare Theorem 6 with results obtained by Hartnett and

Kruse [2] who studied the case of a nonnegative function A defined on a family of

subsets of a metric space. The case of Euclidean space and Lebesgue measure

satisfies their condition. They define an upper measure m° [2, p. 189], determined

by the function A, by using open coverings directed by refinement. There is the

provision in Theorem 6 of this paper for the deletion of sets on which the function

A is very large, provided the total area of the sets deleted is sufficiently small.

However, Hartnett and Kruse have no provision for such deletion and, conse-

quently, it is possible for a single point to have positive upper measure. This leads

to difficulty, as pointed out by Pauc [4], who gave a counterexample to Theorem 12

of Hartnett and Kruse [2, p. 199].

The provision for deleting a small amount of area from ë avoids the above
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difficulty and eliminates the necessity of placing restrictions on the function under

consideration.

The last result to be included in this paper is a condition that the value of a

function on a set T in ¡F be the integral of its derivative over T.

Lemma 4. Let G be an open set such that \G — Sa\ =0. Iff satisfies the condition

that for an arbitrary e>0 there is a A>0 such that (¿ U ¿f)cG and \S V 3&\ < A

imply that \f(S)—f(^)\ <e, then f is absolutely continuous on G.

Proof. Let £>0 be given. Let A satisfy the condition (É u J?)<^G and \¿ V 3&\

< A imply that \f(S)-f(3F)\ < e/2. Let T0 be any set in F for which |F0| < A/2 and

|/(F0)| <e/2. To see that such a set T0 exists, let T0 and Tx be disjoint sets such that

| F01 < A/4. Let S0 be the collection consisting of the two sets T0 and Tx and let Sx

be the collection whose only element is the set Tx. Then since \S0 V ¿x\ = \S0 — Sx\

= | F0| < A, it follows from the hypothesis that \f(S0) -f(Sx)\ < e/2. But \f(S0) -f(Sx)\

= |/(F0)| <e/2 and, therefore, the existence of a set F0 satisfying the condition that

17*o| < A/2 and |/(F0)| < e/2 is established. Now let Jt be the collection whose only

element is the set T0 and let S be any collection such that <"?<= G and \¿\ < A/2. Then

|ifV,3f|^|<#| + |,#|<A and, by the hypothesis, \f(S)-f(MT)\<e/2. Therefore,

\f(S) | - I/O*") | ̂  \f(i) -f(Jt) | < e/2 and hence \f(S) \<e/2+ \f(tf) \<e/2 + e/2 = ,.
Since S was arbitrary,/is absolutely continuous.

Theorem 7. Let f be nonnegative, let G be an open set, and assume |G —5a|=0.

A necessary and sufficient condition that D(f a, x) exists on G n Sa, is summable on

G, and F<= G implies f(T) = $T D(f a, x) dx is that for an arbitrary e > 0, there exists

a A >0 such that \i V 3#\ < A implies |/(<f)-/pf)| < e.

To prove sufficiency assume the condition holds. Then the condition of Theorem

10 of Paper I is satisfied and hence D(f a, x) exists and is finite almost everywhere

on G. Also, by Lemma 4, / is absolutely continuous on G and, therefore, by

Corollary 1, D(fa,x) is summable on G. Define g(T) = \T D(f a, x) dx. Let T0

be an arbitrary set in F such that T0<=G. It suffices to show that/(F0)=^(F0). Let

e > 0 be arbitrary. Let A satisfy the condition that \¿ V 3#\ < A implies \f(S) -f(JP)\

<e/2. By Lemma 2, there exists a collection S such that |F0 V S\ < A and

f(S)-\     D(fia,x)dx
JT0

= \f(S)-g(T0)\<e/2.

Then

l/(F0)-g(F0)| è \f(T0)Tf(S)\ + \f(S)-g(T0)\ < £/2 + £/2 = e.

For any set T0 e F such that T0<=G, it has been shown that \f(T0)-g(T0)\ <e for

an arbitrary positive number e and, consequently, f(T0)=g(T0).

To prove necessity, assume D(f a, x) exists on G n Sa, is summable on G, and

FCG implies /(F)=Jr D(/, a, x) </x. By Remark l, fis additive and absolutely

continuous on G and hence the condition follows.
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