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FUNCTIONS OF FINITE A-TYPE IN SEVERAL
COMPLEX VARIABLES(Y)
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ROBERT O. KUJALA

Abstract. If A: R* — R* is continuous and increasing then a meromorphic func-
tion fon C¥* is said to be of finite A-type if there are positive constants s, 4, B and R
such that Ty(r, s) < AX(Br) for all r> R where T(r, s) is the characteristic of f. It is
shown that if A(Br)/A(r) is bounded for r sufficiently large and B> 1, then every
meromorphic function of finite A-type is the quotient of two entire functions of
finite A-type.

This theorem is the result of a careful and detailed analysis of the relation between
the growth of a function and the growth of its divisors. The central fact developed in
this connection is: A nonnegative divisor v on C* with »(0)=0 is the divisor of an
entire function of finite A-type if and only if there are positive constants 4, B and R

such that
Ny(r) = AX(Br),

1S Je@)z-r| £ xR+ ANBs)s-?,
P s<jzlisr

for all r = s> R, all unit vectors ¢ in C*, and all natural numbers p. Here v|£ represents
the lifting of the divisor v to the plane via the map z+—> z£ and N,, is the valence
function of that divisor.

Analogous facts for functions of zero A-type are also presented.

Introduction. The purpose of this paper is to present a detailed description of a
comprehensive theory of functions of finite A-type in several complex variables
(as announced in Bull. Amer. Math. Soc. 75 (1969), 104-107) which extends the
results of Rubel and Taylor in [5] for one variable and those of Stoll in [6] for
functions of exponential type in several variables. One common motivation for all
of these researches is the desire to extend a theorem proved by Lindel6f in 1905 (see
[4]) which gives necessary and sufficient conditions for the existence of an entire
function on the plane with a prescribed set of zeros and given order and type.

Specifically, §1 contains a discussion of divisors on C* and the concept of the
restriction of a divisor to the complex line through the origin and a vector in C*
ending with Proposition 1.5 which describes the behavior of a general class of
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growth indices for a divisor. §2 presents an application of 1.5 to the valence
function of the restriction of a divisor and concludes with Proposition 2.3 which
states that N,(r; {), the valence function for the restriction of a nonnegative divisor
v on C* to the complex line through { in C¥, is a continuous nonnegative pluri-
subharmonic function of { on C* provided that v(0)=0.

In §3 the essential facts concerning the characteristic of a meromorphic function
on C¥ are presented. The first of the central results of the paper is Theorem 3.9
which states that for each meromorphic function f on C* such that f(0) € C\{0}
there are positive numbers 4, B and C such that

Ty(r; §) = AT(Br)+C

for all r >0 and all unit vectors ¢ in C*. Here T} is the characteristic of fand T;(- ; £)
is the characteristic of f restricted to the complex line through ¢.

In §4 the basic facts concerning functions of finite A-type are presented and the
relationships between finite A-type and the classical concepts of order and type are
developed. In §5 the Rubel and Taylor Fourier coefficients of a meromorphic
function are defined and their basic properties are presented.

In §6 occur the main results of this paper. Theorem 6.1 states that if f'is mero-
morphic and of finite A-type on C* with f(0) € C\{0} then there are positive con-
stants 4, B and R such that N,(r; £) < AX(Br) for r> R and all unit vectors ¢ of C*
where v is the pole-divisor of f. This theorem is proved by an easy application of
Theorem 3.9. Theorem 6.4 states that a necessary and sufficient condition for a
nonnegative divisor v on C* with v(0)=0 to be the divisor of an entire function of
finite A-type is the existence of positive constants 4, B and R such that

Ny(r; &) = AX(Br)
and
1-1) ]ZIS v(r; €)z77| £ ANBr)r=?+ AX(Bs)s~*?
for all r=s> R, all unit vectors ¢ in C* and all natural numbers p. The proof of this
result involves a careful combination of the techniques of Rubel and Taylor with
those of Stoll.

§7 contains applications of the preceding results to show the existence of a large
class of functions A for which every meromorphic function of finite A-type can be
written as the quotient of two entire functions of finite A-type. In §8 consequences
of §7 for the classical cases are derived. §9 summarizes the analogous results which
may be obtained for the theory of functions of zero A-type. Finally, §10 presents a
certain strengthening of the preceding results for some of the classical cases.

1. Divisors. If fis a holomorphic function on an open connected neighborhood
of {, in C¥ and is not identically zero there, then

Q=3 Pa-t)

q=V
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where the series converges uniformly to the function on some neighborhood of ¢,
each P, is either identically zero or a homogeneous polynomial of degree ¢, and
P,#0. The nonnegative integer v, uniquely determined by f and {,, is called the
zero-multiplicity of f at {, and will be denoted by v,({,). A function v: C* — Z is
said to be a divisor if and only if for every {, in C* there are functions g#0 and
h#0 which are holomorphic on an open connected neighborhood U of ¢, such that
v(§)=v,({)—vy({) for all { in U. The set of all divisors on C¥, denoted by D,, is a
Z-module of functions and is partially ordered by the usual partial ordering of
real-valued functions. In particular, we define the set of nonnegative divisors by

D :={veD,:v =0}

Then Dy} is closed under addition.

If vis in D,, then there are defining functions g and 4 for v in an open connected
neighborhood of { in C* such that g and 4 are coprime at { (i.e., the germs of g and
h are coprime in the local ring of germs of holomorphic functions at {). It follows
that the equations v*({):=v,({) and v~ ({):=v,({) define nonnegative divisors v*
and v~ which are uniquely determined by v. Clearly, v=v* —»~.

Let f be a meromorphic function on C*. If f is identically zero, let us define
vP({)=0 for all { in C¥, If f'is not identically zero, then each { in C* has an open
connected neighborhood U on which there are holomorphic functions g#0 and
h#0, coprime at {, such that hif=g on U. The nonnegative integers »}({): =v,({)
and v ({):=v,({) are uniquely determined by f and {. The functions »? and v
are nonnegative divisors on C* and are called, respectively, the zero-divisor and the
pole-divisor of f. We define the divisor of f by

v, i= ) —vp.
Then v, is a divisor with the following elementary properties:

wp* =+ and ()" =,

Vig = Vit

0 _ _ 0
vy =vy and v =},

Vyr = —Vs.

Moreover, v,({) 20 for all  in some open subset U of C* if and only if fis holo-
morphic on U; and v({)=0 for all  in U if and only if f'is holomorphic without
zeros on U.

Since C* is a contractible Stein manifold, the second Cousin problem can be
solved on C* [2, pp. 105, 181], that is, every nonnegative divisor is the divisor of an
entire function. Thus, if v is a divisor, then there are entire functions g and & such
that v,=v* and v,=v" so that v, =v. Therefore, every divisor is the divisor of some
meromorphic function. We also note that for every meromorphic function f there are
entire functions g and h such that hf=g on C* and g and h are coprime at every point
of C*[2, p. 181].
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The support of a divisor v on C¥, denoted by supp v, is defined to be the closure
in C* of v=1(Z\{0}). The support of the divisor of an entire function f is then f~*(0)
so that the support of a nonnegative divisor v is simply »~*(Z\{0}). The support of
an arbitrary divisor v is the union of the supports of v* and »~; therefore, the
support of a divisor on C¥ is either empty or an analytic set of pure dimension k—1
in C*. Clearly, supp v is empty if and only if v is the identically zero divisor.
Otherwise, v is constant on each connectivity component of the set of simple points
of its support.

For each { in C¥, define {*: C — C* by {*(z)=z{. If fis meromorphic on C*¥ and
{*(C) ¢supp vy for some ¢ in C¥, then f o {* is meromorphic on C and is called the
restriction of f to {. We will also write f|{ for fo *. If {*(C) ¢ supp vy, then f|{ is
meromorphic and not identically zero on C. Thus, given a divisor v on C* and { in
C* such that {*(C) ¢ supp v, we may define the restriction of v to {, denoted by v|{,
as follows: Let f be meromorphic on C* with v, =v. Thenv|{: =v;;. For convenience,
we will write v(z; {) instead of v|{(z). Let us introduce the following notation:

D, :={veD,:0¢suppv} and Dj := D,n D;.

Then D, is a submodule of D, and Dj ={ve D : »(0)=0} is closed under
addition. Clearly, if v is in D,, then v|{ is defined for all { in C¥, and the mapping
v > v|{ carries Dy into Dy, Dj into Di, and is Z-linear. It is easily seen that if »
is in D, and { is in C¥, then

(1.1 v(z; wl) = v(zw; {) for all zand win C.

Also, for each vin D;f and { in C¥, v|{2v o {*, but »(z{)=0 for z in C implies that
¥(z; £)=0; therefore,

(1.2) zesupp (v|¢) if and only if z{ € supp v.
LeMMA 1.3. For each v in D, and compact subset K of C,

{teC¥: *(K)Nnsuppv = &}
is an open subset of C*.

Proof. Since K is compact there is > 0 such that |z| <r for all zin K. If the set in
question is empty, it is open. So suppose {§(K) N supp v= @ for some {, in C*.
Since ¥ is continuous, {§(K) is a compact subset of C* which does not meet the
closed set supp v. Therefore, there is s>0 such that s<|{—{’| for all { in £3(K)
and all ¢’ insupp v. If { isin C* with |{—{o| <s/2r then foreachzin K, |{5(z) — {*(2)|
=|zlo—2L|=|z|-|Lo—| <r(s/2r)=s/2<s so that [*(z)¢suppv. Thus, |[{—{
< s/2r implies {*(K) Nsuppv=@. Q.E.D.

LeMMA 1.4. Letvin Dif, a in C and r >0 be given. Suppose U is an open connected
neighborhood of {, in C* such that (a+re*){ ¢ supp v for all {in U and all t in [—m, m].
Then

v(z; ) = | 2 v(z; o) forall Lin U.

Iz—al<r
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Proof. Choose an entire function f with v,=v. By (1.2), the hypothesis implies
that for each { in U and all ¢ in [—m, 7], a+re* ¢ supp | so that [f|{)(a+re*)#0.
Thus, by the argument principle,

R — _1_ * [f1¢) (a+re) 1t
o G0 = 3 ) e e
for all { in U, where the integral can be considered to be the Lebesgue integral.

But, by the chain rule,
L 9
L0 = 7 SCDlema = 3ty 2 (40)

where {=(u,, ..., u,) isin U and wis in C. It follows that the integrand above is a
continuous function of (z, {) on [—m, =] x U so that the integral is continuous in {
on U. But a continuous integer-valued function on a connected set is constant;
therefore, the result follows. Q.E.D.

PROPOSITION 1.5. Suppose that g: R* x [C\{0}] — C is a continuous function
such that g(r, z)=0 if |z|=r in R*. For v in D, define G,: R* x C* — C by
Gl = 2> vz g, 2)

o<|z|=sr
Then G, is continuous on R* x C*,

Proof. Since G,=G,+—G,- it suffices to prove the result for a given v in D;}.
Let (ro, {o) in R* x C* be given. There are two cases to be considered : First, suppose
that z ¢ supp v|{, whenever |z| Zr,. Then, since supp v|{, is a closed set of isolated
points in C, there is 8,>0 such that z¢suppv|{, whenever ze€ K, and
Ko:={z€ C: |z| Sro+8,}. Thus, by (1.2), {&(K,) N supp v= &, so that by (1.3)
there is a neighborhood of U of {, in C* such that {*(K,) N supp v= & for all {
in U. It follows that G,(r, {)=0 whenever 0<r<r,+38, and { is in U; therefore,
G, is continuous on a neighborhood of (o, {;) in R* x C¥, On the other hand,
suppose that

{zesupp "|§o : |Z| é rO} = {als Ay ..y aq}

where a,#a, for u# A. Since 0 ¢ supp v it follows from (1.2) that 0 ¢ supp v|{, so
that there is 8, such that
(i) 0<8;<]a,| for p=1,...,q.

(ii) 28, <|a,—a,| if p#A.

(iii) 8, <ro—|a,| if |a,| <ro.

(iv) »(z; Lo)=0if ro<|z| Sro+98;.
Let £>0 be given. By the continuity of g on R* x [C\{0}], there is 8§, >0 such that
8,< 38, and, for each pu=1,2,...,q, |g(r, 2)—g(ro, a,)| <¢/(34) if |[r—ro| <8, and
|z—a,| < 8; where

A4:= Z w(z; {o) 2 1.

0<|zls2r9
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Moreover, by the uniform continuity of g on compact subsets of R* x [C\{0}] we
may choose the above 8, so small that |g(r, z)—g(r’, z')| <¢/(34) whenever |r—r’|
<8, and |z—z'| < 8, provided that both (r, z) and (r’, z’) are in K where

K:={(t, W eR* x[C\{0}] : |t—ro| < 8y, |ro—|W| | < 83
It follows that
lg(r, 2)| = |&(r, 2)—g(ro, roz/|2|)| < €/(34)
if |r—ro| <85 and |ro—|z| | <8, since g(ry, w)=0 if |w|=r, by hypothesis. Define
K' :={zeC:|z| £ro+8,and |z—a,| 2 §;forp=1,...,q}.

Then K’ is compact and {F(K’) N supp v= @ by (iv). By (1.3) there is 83> 0 such
that {*(K’) N supp v= & whenever |{—{,| < 8;. It then follows from (1.4) that

™ > vz ) = va; L)

12—ayul<dg

whenever |{—{,| <83 and p=1,2, ..., q. But then from (ii) we get
q q
(**) 2 MmD=2 3 vz =2 vasl) sS4
0<|2ISro+ 61 u=1|2—-ayl<dy u=1

whenever |{—{,| < 85 since ro+ 8, < 2r, by (i) and »(z; {,) 2 0 for all z in C. Suppose
(r,{) is in R* x C* with |r—ro| <8, and |{—{o| <85; and let r'=min (r, r,) and
r":=max (r, ry). Then

G = 3 wndsrd=| 5+ 3 [z 06,2

o<|z|=r 0<|2|=Sro r’<|2|sr”
so that
Gv(’ s z)_Gv(r 0> go)
) = 2 MEDI DG e DNE 3 Az Dl 2)

But the absolute value of the second of these terms is less than or equal to

> vz lern )l < 2 Wz D(e/34)

r'<lzI=r” r’<|zl=r”

SEBA) D ) Sef3

0<|2iSrg+0d2
by the choice of 8, and (**). Moreover, the first term in (***) may be written as
q q
> > kD -z L)gle D= D, > v(z; {)g(r, 2)
r=1lz-ayl<dy u=Lilayl=ro |2—ayl<dzil2l>ro

by choice of 8; and (iii). Now, the latter term is also less than /3 in absolute value
by an argument similar to the above and we observe that the former term can
be written as
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Zl Lz’a};q w(z; O g(r, 2)—w(ay; Lo)g(ro, au)]
> HE0E6D- S vz Do o)

; [
u=1Ll|z—ayl<dy z—ayl<

=3 S e Dlsl gl a)]

u=1lz-a,l<dz

by (*), so that its absolute value is also less than &/3 by the initial choice of 8, and
(***) again.

Therefore, we have shown that G, is continuous at (ro, {). Q.E.D.

2. The growth of a divisor. The classical indices of growth for a divisor
v in D, are the counting function n, and the valence function N,, defined by

)= 3 a0, N[ nes 2

2I<r

for r>0 and { in C¥*. Clearly, for each r>0 and { in C¥, n,(r; {) and N,(r; {) are
Z-linear functions of » on D,; and for each v in D} and { in C¥, n,(r; {) and
N,(r; {) are nonnegative increasing functions of r on R*. By [5, 1.3, p. 57],

0 = -0 log
@.1) M) = > vz dlogr

Therefore, as an immediate consequence of (1.5) we have

PROPOSITION 2.2. For each v in Dy, N,(r; {) is a continuous function of (r, {) on
R+ x C*,

Moreover, from (1.1) and (2.1) we get
(2.3 Ny(r; z0) = Ny(rz|; 0)

for vin Dy, r>0, zin C and { in C¥\{0}.
The behavior of N, is further characterized by the following result:

PROPOSITION 2.3. For eachv in Dif and r>0, Ny(r; {) is a continuous nonnegative
Dplurisubharmonic function of { on C¥,

Given v in D;f, we can choose an entire function fon C¥ such that v,=v which
means f(0)#0. But, by Jensen’s Formula and (2.1),

1 n
N3 0) = 3. | log |ftrett)| di—1og |1
for r>0; and log | f| is plurisubharmonic [2, p. 44] so that the proof of Proposition
2.3 is contained in the following lemma:

LeMMA 2.4. If u is plurisubharmonic on C¥, then (1/2x) [* _ u(re*{)dt is pluri-
subharmonic in { on C* for each r>0. '

Proof. By definition [2, p. 44] u plurisubharmonic on C* implies that u is upper
semicontinuous on C¥ so that u(re*{) is upper semicontinuous in ¢ on R for each
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r>0 and { in C*. Thus, if v({):=(1/27) [, u(re*) dt for r>0 and ¢ in C¥, then
v({) is in R U {—o0}.
As a special case, suppose that u is a C® plurisubharmonic function on C*. Then
k _ a2u > 0
DR AUk

for all { and (wy, ..., wy) in C* (loc. cit.). But by the chain rule

2u
it
afq (re l)‘

& u(re®t) = re~tret 9
0z, 0z, 0z,
Now, v is a C* function on C* and

k _ 621) k _ 1 n 02 "
S gy @ = S wieg [ T utet) dr
r2 n k a2u "
= — W e >
for each { and (w;, . . ., w,) in C*. Therefore, v is a C* plurisubharmonic function
on C* (loc. cit.).

In the general case, if u is a plurisubharmonic function on C¥, then u is the limit
of a decreasing sequence u,, 4, ... of C® plurisubharmonic functions on C* [2, p.
45). Thus, {u;(re't) — u,(re*{)},cn is an increasing sequence of nonnegative functions
of t on R converging to u,(re"{)—u(re*() as p approaches co. Therefore, by the
monotone convergence theorem,

2| e —utetydt—> 5 et -utrep) .

Since v,()=(1/27) [, u,(re*¢) dt is in R and v({) is in R U {—o0}, it follows that
v,({) converges to v({) as p approaches oo for { in C*. But v;, v, . . . is a decreasing
sequence of C* plurisubharmonic functions by the above special case. It follows
that v is plurisubharmonic on C* (loc. cit.). Q.E.D.

3. The growth of a meromorphic function. In the following let o, be the posi-
tive element of volume on the sphere Sy(r):={{ e C* : |{|=r}, considered as a
real (2k—1)-dimensional C® manifold, oriented to the exterior of the ball
B (r):={Ce C* : |{|<r}; and let V,(r) denote (2#*r2*-1)/(k—1)!, the volume of
Si(r). In order to define the characteristic of a meromorphic function, we introduce
wy, a positive C® complex exterior differential form of bidegree (k—1, k—1) on
C* defined by

wy(z) =1,

W2y - o0y Zg) 1= =D 1)' [Z sdzy, A dz,,]

k-1

k-1
Z () dzy Ndzy N+~ Ndz,_y N dZ,_,

A dz,,.,.l A dfp.'.l A---A dzk A dfk.
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If f is meromorphic on C* and r>0, let

Ar) := #O)J;w) (1+|f|2)'2%de af A wy

where W,(r) is a normalizing factor having the value #*r?-2/(k—1)!. Then A4,
is a nonnegative, increasing, continuous function on R* [6, p. 406]. The character-
istic of fis given by

T,(r,s):=J; A,(t)% forrzs>0.

Clearly, T;(-, s) is a nonnegative increasing function of class C* on [s, o). More-
over, T;(e*, s) is a convex function of x on [log s, c0). We now list some of the
other basic properties of the characteristic (see [6, pp. 406-407, 409-410]).

PROPOSITION 3.1. If f is meromorphic on C* and a is a complex number, then for
rzs>0

Tyvolr, s) = Ty(r, 5)
and
Tyyr,s) = Ty(r,s) iff#0.

PROPOSITION 3.2. For each pair of functions f and g meromorphic on C* and each

§>0, there are constants A and B in R* such that
Tiio(r,s) < T(r, s)+Ty(r,s)+ A
and
Tio(r, s) £ Ty(r, s)+Ty(r, s)+B forr = s.

PROPOSITION 3.3. If f is meromorphic on C¥, {, is in C*, and g({)=f({+ o) for {

in C¥, then
Ty(r, s) = (1+|%ol/s)* 1T (r +|Lol, 5)

Sforrzs>0.

PROPOSITION 3.4. If fis an entire function on C* and M,(r):=max {|f({)| : |{| =r}
Jor r>0, then for each s> 0 there are constants A and B in R* such that

log* M(r) £ AT,(8er,s)+B
and
Ty(r,s) < log* My (r)+4log2 forr 2 s.
PROPOSITION 3.5. If f is meromorphic on C* and v, is in D,, then Tr)

:=5 A,(t) dt[t and T((r; {):=T;,(r) exist for r20 and { € C*.
Moreover,

1) = a5 [ T 6@ sorrzo
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PROPOSITION 3.6. If f is meromorphic on the plane and v,(0)=0, then

T,(0) = Nr)+35 [ log v/(1+1f(re)[?) di—log +/(1+|7O))

for r=0 where v=v and N,(r)=N,(r; 1).

The contents of Propositions 3.1 and 3.6 are usually referred to as the First Main
Theorem (of Value Distribution Theory). Rubel and Taylor use the characteristic of
Nevanlinna, defined by

TF(r) := N(r)+ ZI—WJ‘: log* |f(re")| dt

for f meromorphic on the plane, r=0 and v=v;° with v/(0)=0 [5, p. 75]. Since
log* x=<log 1/(1+x?) and log (1+x)<log2+log* x for x=0, the First Main
Theorem implies the following relations between T, and T} :

PROPOSITION 3.7. If f is meromorphic on C with v;(0)=0, then
TH(r) < Ty(r)+log +/(1+]£(0)|)
and .
T/(r) < T(r)+log /2 forr 2 0.

The following is an analogue of (2.3):

PROPOSITION 3.8. If f is meromorphic on C* with v, in Dy, then T/(r;z{)
=Ty (r|z|; ) for r20, z in C and { in C*.

Proof. Given f meromorphic on C* with v, in D, a € Cand { € C¥, let g,=f|al.
Then by the chain rule gz(z) =agi(az). But by definition

_1 |ga@)® 1§ -
40l = 2| e Tt 8PP 22 N #

1 lg@® P, .
=) Ut a@Pe 2 “ N E

1 lesw)|?  ©

Cow i <iatr (14 |g1(w)|2)2 2

dw A dw = Ay (|a|r)
so that

T ) = 7o) = [ 4,05 = [ 40l %

lalr dS
- [ 4.©)% = T(alr) = T,(alr 0. QED.

Propositions 3.2, 3.3, 3.4 and 3.8 show that the characteristic of a meromorphic
function is an analogue of the maximum modulus of an entire function. But the
maximum modulus has the useful property that M, (r) < M,(r) for ¢ in S)(1) and
[ entire on C*; we now wish to establish a similar result for the characteristic.



1971] FUNCTIONS OF FINITE A-TYPE 337

THEOREM 3.9. If f is meromorphic on C* with v, in Dy, then there are constants
A, B and C in R* such that T,(r; )< AT,(Br)+ C for r>0 and ¢ in S(1).

The demonstration of this theorem depends upon the following three lemmas,
the first of which is a direct consequence of Proposition 3.5 of [6, pp. 406-407].

LemMA 3.10. If g and h are entire functions such that v, and v, are in Dy, then

To®) S 7 | 108 V(g 17+ 1o~ log V(| s @+ KO

with equality holding whenever g and h are coprime at every point of C*.

LemMA 3.11. If g and h are entire on C¥, then log v/(|g|?+|h|?) is plurisub-
harmonic on C*.

Proof. Since /(| g|2+ |h]?) is continuous and nonnegative on C¥,

log v/(|g]?+|A[*)
is upper semicontinuous on C* to [—00, 0). Given ¢ and 4 in C¥, g%({+z7) and
h*({+2zn) are entire functions of z on C. Therefore, log|g({+2zn)|*> and
log |A({+27)|? are subharmonic functions of z on C; and it follows that
log (| g(£+zn)|2+ |h({ + z7)|?) is subharmonic in z on C [2, 1.6.6 and 1.6.8, p. 18].
Clearly, 4 log (] g|2+ |h|?) is plurisubharmonic on C* by definition. Q.E.D.

LeMMA 3.12. If u is a nonnegative plurisubharmonic function on C* and 0<t<1,
then

1+¢ 1
u@) = (1—1)?- v Vk(" ) Sk uer
whenever || Ztr.
Proof. If u is plurisubharmonic on C¥, then
2k 2 £l2

—|
u@) < Vk(r) St ("7) |‘)7 qzk or(n)

whenever |{| <r [3, pp. 26-28]. But if |{|<tr and |y|=r, then

1S (1 14) [ (e 1) I (1
I,q £|2k = (r_l§|)2k = (l_t)2k—1r2k—1
and the result follows since u is nonnegative. Q.E.D.

Proof of Theorem 3.9. Given f meromorphic on C* with v, in D,, we can choose
entire functions g and A, coprime at every point of C¥, such that hf=g and A(0)=1.
Then u:=log+/(|g|*+|h[?) is plurisubharmonic on C* by (3.11) so that
v(8):=(1/27) [* , u(e*{) dt is a plurisubharmonic function of { on C* by (2.4).
Moreover, since u(z{) is subharmonic in z on C the mean-value property implies
that

v(§) 2 u(0) = u(0) = log v/(1+]g(0)|?)
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which is nonnegative. Thus, we may apply (3.12) with =14 to get

3.92k-2
Vi(2r) Jsyen voar

v(ré) <

for £ in Si(1). But by reversing the order of integration and using the rotational
invariance of o, we get

f Vo = j Uogy,
Si(2r) Si(2r)

(also see [6, 1.2, p. 395]). But, for each ¢ in Si(1), v, and v, are in D, since
v,=v} and v, =vy°. Thus, we may apply (3.10) to f|¢é=(g|é)/(h|€) and to f=g/h to
obtain

3.92k-2
< 8) < <2 — 3.92k-2
T3 ) S o)) S Py | o = 325 HTQr) +u(O)]
for ¢ in S,(1). Therefore, (3.9) is true when A=3-2%-2, B=2 and C=Au(0).
Q.E.D.
We can now demonstrate the following analogue of Liouville’s Theorem:

COROLLARY 3.13. If f is meromorphic on C¥, then the following are equivalent:
(i) f is constant.

(ii) A4,=0o0n R*.

(iii) T,;=0 on R*.

(iv) For each s>0, T,(-, s) is bounded on [s, ).

(V) There is some s> 0 such that Ty(-, s) is bounded on [s, ).

Proof. Clearly, (i) implies (ii), (i) implies (iii), (iii) implies (iv), and (iv) implies
(v). Thus, it suffices to show that (v) implies (i). As a special case suppose that fis
meromorphic and nonconstant on the plane with v/(0)=0. Then there is z, in
C\{0} such that b=f{(z,) is in C\{f(0)}. Let g(z)=1/(f(z)—b) for z in C. Then g is
meromorphic on the plane with v,(0)=0. Now, if 7> |z,| and v=v°, then by (2.1)

N = > wz)log = 2 vzo)log = > 0.
|| EN

0<RIsr
But, by the First Main Theorem,
T,(r) 2 N(r)—log v/(1+]g(0)]>) forr =0
so that T, is unbounded. But from (3.1) for each s>0 and rzs,
Ti(r, s) = To(r, 8) = To(r)—Ty(s)

so that T(-, s) is unbounded on [s, c0).

In the general case, suppose f is meromorphic on C* with T(-, s) bounded for
some s> 0. If supp v, = C¥, then f=0 on C*. If supp v, # C¥, choose {,in C*\supp v;.
Let g(0)=f({— o). Then v, is in D, and T,(-, s) is bounded on [s, c0) by (3.3).
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Therefore, T, is bounded on R* and Ty, is bounded on R* for each £ in Si(1) by
Theorem 3.9. But, from the above special case it follows that g|¢ is constant for
each ¢ in Sj(1). Thus, for each ¢ in C*\{0},

() = [gl1/IEDENIED = [g1(1/1Z)E)0) = g(0)

and, therefore, f({)=g({+ o) =8(0)=f(—{,) for all {in C*. Q.E.D.

The above proof illustrates how the theorem may be used to reduce problems
concerning several variables to questions involving only one variable. Of course,
this example is elementary. A more powerful application will be made in the study
of functions of finite A-type which follows. Meanwhile, we will explore a few more
immediate consequences of this theorem. First we have the following modification:

COROLLARY 3.14. If f is meromorphic on C* with v, in D,, then there are con-
stants A, B and R in R* such that T,(r; §)< AT,(Br) for all r> R and £ in S;(1).

Proof. If fis constant, the result is trivial. In the other case, T} is unbounded by
the preceding corollary so that there is R>0 such that C<Ty(Br) for all r>R
where 4, B and C are the constants of (3.9). Thus, T,(r; ) <(4+1)T;(Br) for r>R
and ¢in Si(1) by (3.9). Q.E.D.

COROLLARY 3.15. If f is meromorphic and nonconstant on C* with v, in Dy, then

i 7

Proof. If fis not constant, then 4,#0 by (3.13) so that 4,(R)>0 for some R>0.
But (d/dx)T/(e¥)=A[e*) for x in R by definition; and T(e*)—Ty(e*)
2 A(e¥)(x—x") for x=x" by the mean-value theorem since A, is increasing.
Replacing x’ by log R and x by log r, we get

Ti(r) 2 T(R)+A,(R)log(r/R) >0 forr > R

and the result follows. Q.E.D.

< 0O

COROLLARY 3.16. Iffis meromorphic on C* with v, in D, then there are constants
A, B and R in R* such that T;.(r)< AT (BM.r) for all r> R and each C-linear
mapping . C? — C* provided M,:= max {|7(¢)| : £ € S,(1)}.

Proof. If f is meromorphic on C* with v, in D, and r: C/ — C* is a C-linear
mapping then fo r is meromorphic on C’ with v, in D,. Let ¢ in S,(1) be given.
If 7(¢)=0, then fo 7|£=£(0) so that T}.(r; £)=0 for all r>0. On the other hand,
if 7(£)#0, then fo 7|£=f|7(¢) so that

Tyulr; €) = Ty(r; 7(£)) = T;(r|7(€)]; (1/|m(€)Dr(€))
< T(rM.; (1|7(OD(€)) = AT(BM.r)

for all r>R by (3.8), the definition of M,, and (3.9). Thus, for all ¢ in Sy(1),
T;o(r; §)S AT,(BM,r) for each r> R so that T, (r)< AT (BM,r) for each r>R
by (3.5). Q.E.D.



340 R. O. KUJALA [November

COROLLARY 3.17. If f is meromorphic on C* with v, in Dy, then there are con-
stants A, B and R in R* such that T;y(r)< AT,(Br) for all r> R and each C-linear
subspace V of C*.

Proof. If V'={0}, the result is clear. If V#{0}, then choose a unitary basis
£, ..., & of Vand extend it to a unitary basis &, . . ., £ of C*. Define ,: C/ — C*
by

(215 -5 2) = 21061+ - - 2465

Then 7y is a C-linear mapping and M,,=1. If we identify f|V with fo =, as usual,
then the result follows from (3.15). Q.E.D.

4. Functions of finite A-type. We say that A is a growth function if and only if
A: R* — R* is continuous and increasing. In the remainder of this paper the symbols
“X” and “u> will always represent growth functions. Clearly, A+ p, Aw, max (A, p)
and min (A, x) are growth functions. Moreover, max (1, T;(:, s)) is a growth
function for each function f meromorphic on C* and each s> 0 (here we agree that
Ty(r,s)=0if O<r<s).

We will say that a meromorphic function f on C* is of finite A-type whenever
there are constants s>0 and B> 0 such that

. Ti(r, s)

llIIrl_’Sal;lp AGBr) < 0.
Let M,(}) denote the set of functions of finite A-type on C¥, E,(A) denote the set of
entire functions of finite A-type on C¥*, M,(}) denote the set of f'in M,(A) with v,
in Dy, and E,(}) denote E,(X) N M,(}).

THEOREM 4.1. (i) M,(}) is an extension field of C and is invariant under affine
transformations of the variable in C*.

(ii) E.(}) is an integral domain containing C and is invariant under affine trans-
formations of the variable in C*.

(iii) Either M,(X)=E,(A)=C or E()) contains the ring of complex polynomial
functions on C* and M,(}) contains the field of complex rational functions on C*.

Proof. E,()) is an integral domain by (3.2) and contains C, the constant func-
tions, by (3.13). M,() is a field by (3.1) and (3.2). The invariance under affine
transformations of the variable is a consequence of (3.3) and (3.16). If M,(})
contains a nonconstant function, then (3.15) implies that lim sup (log r)/A(Br) < o
for some B>0 so that, in particular, A is unbounded. On the other hand, if
foz1, ..., z):=1z, for p=1,2,..., k, then each f, is entire on C* and, clearly,
M, (r)=r so that log* M, (r)=log r for r> 1. Hence, lim sup (log* M,(r))/A(Br)
<o and f, is in E,(}) for each p=1,2,..., k, by (3.4). Since E,(}) is an integral
domain containing C, it follows that E,(X) contains each polynomial function;
and since M,(]}) is a field containing E,(2), it follows that M;(}) contains each
rational function. Q.E.D.
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It follows that M,(A) contains Q(E,(})), the field of quotients of E,(A). The
primary objective of this paper is to determine conditions on A which will imply
that M, (}) is exactly Q(E,(A)). We have an immediate reduction of the problem
as follows:

PROPOSITION 4.2. If M (X\)< Q(E,())), then M,(X)= Q(E,(N)).

Proof. Let fin M,(A) be given. If f=0, then fis in E,(A) and there is nothing to
prove. If f#0, then there is 5 in C*\supp v,. Let F({):=f({+7). Then Fis in M,(})
by (4.1)(i). If M, (A)< Q(E(})), then there are functions G and H in E,(A) such that
HF=G and H#0. Define g({):= G({—n) and h():= H({—n). Then g and A are in
E,(X) by (4.1)(ii). But clearly, hf=g and A0 so that fis in Q(E,(2)). Q.E.D.

Combining (3.5), (3.14) and the definition of M, (}) we get

PROPOSITION 4.3. Suppose f is meromorphic on C* with v, in D,. Then f is in
M, () if and only if there are constants A, B and R in R* such that T,(r; £)< AX(Br)
for all r>R and all ¢ in S)(1).

The constants A, B and R as in the above proposition will be called a uniform
defining system for f in M,(X). The above result could be paraphrased as: “4
function f meromorphic on C* with v, in Dy is in M(}) if and only if f| £ is in M(X)
uniformly in ¢ on S,(1).”

Let us examine the relation between finite A-type and some other traditional
concepts. Recall that the zero type of f, meromorphic on C¥, is defined by
I( s )

To(f) := hm 1sup — = for some s > 0,

and the p-type of f for p>0 by

Tf(" 5)

(f) := 11m 1Sup ——2— for some s > 0.

Also, the order of f is defined by

+
log* Ty(r,s) ¢ o some s > 0.
logr

Ord f := lim sup
Clearly, these definitions are independent of s; and Ord f'is in [0, c0]. If Ord f=p
in [0, 00), then 7,(f) is called the type of f and is denoted by (f).
As easy consequences of the definitions involved we have

PROPOSITION 4.4. Let A(r):=max (1,logr) for r>0. Then the following are
equivalent for f meromorphic on C¥:
(i) fis of finite A-type.
(i) 7o(f)<oo.
(iii) Ord f=0 and 7(f) <co.
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PROPOSITION 4.5. For p>0, let X(r):=r® for r>0. Then the following are equiva-
lent for f meromorphic on C*:
(i) fis of finite A-type.
(i) 7,(f)<oo.
(iii) Ord f<p or both Ord f=p and ~(f) < co.

Moreover, by (3.16) we have

PROPOSITION 4.6. For each f meromorphic on C* with v, in D, there are constants
A and B in R* such that ,(f o ¢) < A(BM,)*1,(f) for p=0 and Ord (fo ¢)=Ord f
for each C-linear mapping ¢: C! — C¥.

And, from (3.16) we obtain

PROPOSITION 4.7, If fis in M, (}), then f o ¢ is in M (A) for each C-linear mapping
¢: C?! — C* provided that ¢(C’) is not a subset of supp vy°.

For the sake of completeness we mention the following result:

PROPOSITION 4.8. (i) If lim sup,... A(r)/u(Br)<oo for some B>O0, then M,(})
< M ().

(i) M (D) Y M (1)< Mi(A+p) = Mi(max (A, p))<= M(Aw).

(i) Mi(X) N My ()= M, (min (A, p)).

5. The Fourier coefficients of a meromorphic function. In [5] Rubel and Taylor
introduce the Fourier coefficients of a function f meromorphic on the plane with
v,(0)=0 as follows:

orif) =5 [ loglftreyle= dr

for p in Z and r > 0 (where the integral is the Lebesgue integral). If fis meromorphic
on C* with v, in D, and { is in C¥, let us define

eo(r; £, 8) i= ¢p(r; £19).

PROPOSITION 5.1. Iff and g are meromorphic on C* with v, and v, in Dy, then for
eachpin Z, r>0, and { in C*,

(@) c-o(r; 5 D=05(r; £, 0),
(1) ep(r; 1S, O=—cyp(r; £, 0,
(iii) cp(r; /8, D=cy(r; f, D+cr(r; 8, O,
@iv) ¢ (r; f, sel)=e'Ptcy(rs; £, {) for s>0 and t in R,
(V) log |f(re*l)|=2p- - w c(r; f, 0)e'™ where we mean that the symmetric
partial sums of the series converge in the L2-norm (with respect to t on [—m, w]) to the
Sfunction on the left.

Proof. For (v) see [5, 4.2, p. 76]; the rest is proved by trivial verifications.
Q.E.D.
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If fis meromorphic on the plane with v,(0)=0, then we can choose s> 0 so that f
is holomorphic and never zero on B;(2s). Let us define

1 @ _
1= ——=<z"Pdz
)= Z0ip s 7G)
for each p in N. Clearly, the definition is independent of the choice of s. For f
meromorphic on C* with v, in D, and { in C¥, let a,(f; {):= p(f]0). In this case
we can choose s> 0 so that fis holomorphic and never zero on B,(s). By Taylor’s
Theorem

[flﬂl — > o . p-1
[le] (Z) - pZ1p P(f: C)Z

for z in B,(s/|{|) and { in C*\{0}. However, there is a function g holomorphic on
B,(s) such that exp (g)=f there. Let

80 = 3 PO

be the expansion of g in terms of homogeneous polynomials converging uniformly
on By(t) for some ¢ with 0<¢<s. Clearly, exp [g|{]=f|{ on By(¢/|{|) for each { in
CH{0} so that [g|{]'=[f|{)/[f]{] on By(t/|{]). Moreover, [g|{l(z)=g(z0)
=2 p=0Pp({)z? so that [g|L)(z2)=17-1 pP,({)z? ! for z in B,(t/|{|). Therefore, by
the uniqueness of the Taylor coefficients we have «,(f; {)=P,({) for all { in C*\{0}.
Since «,(f; 0)=0 for all p in N, we have proved

PROPOSITION 5.2. For each function f meromorphic on C* with v, in D, and each
P 7 K

P in N, ay(f; {) is either identically zero or a homogeneous polynomial of degree p in
{ on C*,

For v in D,, { in C¥, pin N and r>0, let

Nrin 0= 3w 0L,

P o<izis
» 1 -
Ny v, ) i= = > w(z; DEIr),
PazEr
N, := N,—N;.

Then, since g(r, z)=(r/z)?—(Z/r)? is continuous on R* x [C\{0}] and g(r, z)=0 if
|z| =r, an immediate consequence of (1.5) is

PROPOSITION 5.3. For eachv in Dy and p in N, N,(r; v, {) is a continuous function
of (r,{) on R* x C*,

By Lemma 4.2 of [5, pp. 76-77] we have

PROPOSITION 5.4. If f is meromorphic on C* with v, in D,, then for each r>0 and
{in C*
co(r; £, §) = log [fO)| +N,,(r; §)
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and
2¢y(r; £, 0) = rPay(f; )+ Ny(r; vy, )
for each p in N.

Combining (5.1)(i), (5.2), (5.3) and (5.4), we obtain

PROPOSITION 5.5. If f is meromorphic on C* with v, in Dy, then for each p in Z,
¢(r; 1, 0) is a continuous function of (r, {) on R* x C*.

6. Admissible divisors. We will say that a divisor v in D} is of finite A-density
if and only if there are constants A, Band Rin R* such that N,(r; £) < AAN(Br) for all
r> R and all ¢ in S,(1).

THEOREM 6.1. If f is in M,(}), then v{° is of finite A-density.

Proof. Let 4, B and R be a uniform defining system for fin M,(}). By the First
Main Theorem

Nya(r; §) S Ty(r; §)+log +/(1+](0)]?)
since log /(1 + | f(re£)|2)=0 for r>0, ¢t in [—m, ] and £ in Sy(1). Therefore, if
r>R and ¢ is in Si(1),
Nyp(r5 ) S ANBr)+log v/(1+|/O)]%)

BT

so that v is of finite A-density. Q.E.D.

REMARK. When k=1, the above result is a consequence of Theorem 5.3 of
[5, p. 88]. In fact, the above proof is essentially the same as that given for the
corresponding result in [5] if we make the observation that the defining constants
for v|¢ to be of finite A-density depend upon A, f(0) and the defining constants for
f|€ to be of finite A-type. In particular, and this is the crucial point, the constants
derived in [5] do not depend upon ¢. In this case, we have repeated the details of the
proof in order to emphasize this fact. In the sequel we will omit proofs that are
totally analogous to those given in [5] for corresponding results. (See also [S,
remark following 1.11, p. 58].)

For vin Dy, pin N, r>5>0 and £ in S,(1) let

Cy(r, 539, &) := r ?Ny(r; v, §)—s7"Ny(s; v, §)
LS e
P s<izi=r
and let C,(s, r; v, £):= C,(r, s; v, £). We will say that »in D;} is A-balanced provided
that there are constants 4, B and R in R* such that
|Co(r, 55 v, )| = AX(Br)/r+ AX(Bs)/s*

for all p in N and all £ in Si(1) whenever r>s>R. And » in D; will be called
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A-admissible whenever v is both A-balanced and of finite A-density. Note that, by
taking appropriate maxima, we can assume that for each A-admissible divisor there
is one set of constants 4, B and R which satisfy the conditions for finite A-density
and for A-balancing.

LEMMA 6.2. If v in D} is of finite M-density and there is a sequence {a,}pey Of
complex-valued functions on S;(1) and constants A, B and R in R* such that
|rPoy(€)+ Ny(r; v, £)| £ AX(Br) for all p in N and all ¢ in S,(1) whenever r> R, then
v is A-admissible.

Proof. See [5, 2.5, pp. 65-66]. The balancing constants can be taken to be 34, eB
and R if we also assume, without loss of generality, that 4, B and R are also the
defining constants for the finite A-density of v. Q.E.D.

LEMMA 6.3. If v in Dif is \-admissible, then there is a sequence {a,}pey of con-
tinuous complex-valued functions on S, (1) and constants A, B and R in R* such that
[PPay(€)+ Ny(r; v, €)| £ AXNBr)/(1+p) for all p in N and all ¢ in S,(1) whenever r> R.

Proof. (This is a generalization of [5, 2.5, p. 65]; but since the proof given there
requires some modification in order to achieve the continuity of the «,, we give a
complete proof here.) Let v be A-admissible with defining constants 4, B and R.
First of all we observe from [5, 1.11, p. 58] that if 4":=24 and B’:= 2Be, then

* |Cor, 559, €)| < A'N(B'r)/pr®+ A'X(B's)/ps®
for all p in NV and all £ in Si(1) whenever r> R and s> R.

Now, let m:=min{pe N :liminf,., r PA(B'r)=0} where we agree that
min & =o0. Thus, m is in N U {c0}.

Definition of «,, for p in N and p<m. Since r~?A(B'r)>0 and lim inf,_, o r ~?A(Br)
#0, it follows that liminf,,. r~PA(B'r)>0. But r=?A(B’r) is continuous and
strictly positive on [R+1, o) so that I,:=inf {r PA(B’r) : r= R+1}>0 and there
is r,Z R+1 such that (r,) ?A(B'r,) <2I,<2r ?X(B’r) for all r>R+1. For ¢ in
Sk(1) define

O‘p(f) = _(rp)_p p(rp; v, €).

Then «, is continuous on S,(1) by (5.3). Moreover,

la,(£)+r‘”N,§(r; Vs f)l = ICp(rp’ r;v, f)l +(’p)_p|Nz(’p; v, f)l
< A'XB'r,) + A'X(B'r) + Ny(ery; &)
p(ry)” pr* pry)y
for r>R and ¢ in S,(1) by (*) and [5, 2.2, p. 65]. Therefore, since v is of finite
A-density, we have

24'NB'r)  A'NB'r) AXBer,) _ SA’NB'r)
+ + <
pr’ prr piry = pr*
for r>R+1 and £ in Sy(1) by the choice of r,.

(**)  |ex())+r 2Ny(r;v, §)| <
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Definition of e, for p in N and p = m. By the definition of m there is an increasing
unbounded sequence of real numbers {s;}, e~ Wwith s;>R+1 such that
limg. o (s;) " ™A(B'sy)=0. Consider the sequence {(s;) “?Ny(s4; v, £)}een- As in (**)
(forq'24)

I(Sq)_pr(sa; Vs g)_(sq,)—p p(sq'; V, f)l
s IC,(Sq, Sgs Vs g)l +(sq)_p|N;(sq; v, f)l +(sq')—p|N;(sq'; v, f)l
< A'NB’sy)  A'NB'sq) AMBes,) . AN Bes,)
= P(Sq)p p(sq’)ﬂ P(sq)p p(sq')p

< 4NB's)  24NB'sy)

- (sq)m (sq')m

which converges to zero as ¢ approaches co. Thus, the sequence is uniformly
Cauchy on S,(1) so that

“p(f) = _qli'n; (sa)-pr(sq; v, §)

+

is continuous on S;(1) by (5.3). Moreover, as in (**)
|—(Sq)"N,,(S¢; Vs §)+r"’N,’,(r; v, §)|
A'X(B'r) 2A'MB'sp)

< [Colsw 13 O+ () 7INGs0s v, O £ = 5=+ =055

for ¢in S,(1) and r> R+ 1. But lim,., » (s;) “™A(B’s,)=0 by choice; therefore,
las(§)+ 7 Ny(rs v, )| = lim [ (52" Ny(sas v, O +r7"Nylrs v, §)|

(***) < A'NBT) 54'NB'r)

for all ¢ in S;(1) whenever r> R+ 1.
Consequently, for each p in N,

[PPag(&)+ No(r; v, )] S rPleg(§)+r ?Ny(r; v, )|+ |N;(r; v, €)|
54A'X(B'r) _l_AA(Ber)
p p
114AX(2Ber) < 224M2Ber)
P =  p+l
for all ¢ in Sj(1) whenever r> R+1 by (**) and (***). Q.E.D.
The major result of this paper is the following:

IIA

A

THEOREM 6.4. A divisor v in D;} is the divisor of a function f in E,(}) if and only
if v is A-admissible.

The proof will depend upon the properties of a pair of operators, the first of
which is the integral operator 8* defined by
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U = k=1 [ (L=1p~2f(ed) i
0

for { in By(r) and f: B,(r) — C.

LEMMA 6.5. If f is holomorphic on B(r) for some r>0 and k=2, and { is in
B(r), then

(1) &*[f] is holomorphic on B,(r).

(i) SO =/ViD)) f5,0, /(L] E)€)o1(€) where (L|€) denotes the standard
Hermitian product of { and ¢.

(iii) I f(0)#O0, then

. 1
#l0g 11110 Sy [ Tog LA(@IODNex(o.

(iv) If f is entire with f(0)=1, then

log* M,(r) < 8% ~2[B/(4r)+2N(4er)]
Sor all r>0 where
By(r) := max {§*[log | f]1(0) : || = r}

and
1
Ny(r) :=Wl) Lku) N, (r; €)ay($).

Proof. (i) is clear. (ii) is Lemma 5.3 of [6, p. 414]. (iii) is Lemma 5.4 of [6, p. 414].
(iv) is a consequence of Lemma 5.6 of [6, p. 415] and the proof of Proposition 2.2
of [5, p. 65]. Q.E.D.

For f holomorphic on B,(r) we define the C-linear differential operator 8, by

BLAN0) = ey gt B YD

for { in B,(r).

LEMMA 6.6. Let f be holomorphic on B,(r) for some r>0 and k=2. Then
(i) If f(0)=0, then §,[f](0)=0.

(ii) 8[f] is holomorphic on B,(r).

(iii) 8 o 8*[f]=28" o §,[f]=f.

Proof. (i) is obvious. (ii) is an immediate consequence of the Leibnitz formula
and the chain rule. That §, o 8*=8* o §, is proved by a standard interchange of
integral and differential operators. If f is a homogeneous polynomial then
8 o &[f1=f by (6.5)(ii) and Lemma 5.8 of [6, p. 415]. If f is holomorphic on
B,(r), then f'is the uniform limit of a sequence of homogeneous polynomials on a
neighborhood of 0 so that 8* o §,[f]=f by the preceding case, (ii), (6.5)(i) and the
identity principle. Q.E.D.

Proof of Theorem 6.4. If fis in E,()) then v, is A-admissible by an analogue of the
proof of Theorem 4.6 of [5, p. 78] followed by (5.4) and (6.2). Conversely, if v in
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D¢ is A-admissible then »=v, for some fin E;(2) by Theorem 5.2 of [5, p. 87].
Therefore, suppose that v in Dy is A-admissible where k=2. Choose an entire
function F on C* with vp=v and F(0)=1. By (6.3) there is a sequence {e,},.5 of
continuous complex-valued functions on S=S,(1) and constants 4, B and R in
R* such that |rPa,(é)+ Ny(r;v, )| AXBr)/(1+p) for all ¢ in S and p in N
whenever r> R. Let co(r; €):= Ny(r; €), cy(r; £):=3[rPe,(£)+ Ny(r; v, )], and

c_p(r; &) :=c,(r; ) forpinN.

Then for each ¢ in S and r> R,
6)) > le(r; ©I2 < [AMBr)]’C < o where C:= > 1/p2

p=-—® p=1
[Here we have assumed that A, B and R are also the defining constants for the
finite A-density of ».] By Theorem 5.1 of [5, p. 84] there is a unique entire function
S+ on C for each £ in S such that f,(0)=1, v;,=v|£ and c,(r; f;) =c,(r; &) for each p
in Z and r>0. It follows immediately from (5.4) that for each p in Nand £in S
(2 ap(fe) = ap(€)

so that «,(f;) is continuous in ¢ on S. Moreover, for each £ in S and r> R

1 n
2 | llog icre®) | dt

1 J*n ]1/2 R
< |= lo re*)| |2 dt by Holder’s Theorem
" [ og Lrrety 12 ™ oy ]
© 1/2
= [ > leslrs f¢)|2] [by Parseval’s Theorem]
S AC'2X(Br) [by (D).

But F|¢ is entire on C for each ¢ in S; and F|£(0)=1 and vg;=v|£ by construction.
Therefore, there is a unique entire function g, on C for each ¢ in S such that
@ F|¢ = frexp(g:) and g(0) =0

Since Re g, is harmonic on C for each ¢ in S, it follows that for z in C with |z| <7
and r>R

Re g:(z) = g f Re g(2re*) l_Z-Tl%ITz dt [Poisson Formula]
1 z 1 (" : 4r2—|z|?
=5 L log |F(2re*¢)| D“"{:l—zlli t—Zj_n log | f,(2re")| ﬁ, dt
[by (D]
1 z
< 3log* My(2r)+5- | llog |f2re) |W—|z|—lzdt
< 3log* Mp(2r)+3ACY2\(Br) by 3]

=:3K(r).
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Therefore, by the Borel-Carathéodory Lemma [7, p. 175], since g,(0)=0, M,(r)
<12K(4r) for each ¢ in S and r> R. Let a,(£) be the pth Taylor coefficient of g,
at 0. Then by the Cauchy estimates, |a,(£)| <12K(4r)r=? for each pin N, £in S
and r> R. Thus, for all { in B,(r) with r>R, £in S, and p in N,

aoncierl s 55

» ~ 12K(8r)
[cloF = =~

so that

[

g(l1®) = 2 a(O(L|¢y

p=1

converges uniformly in ({, £) on B,(r) x S for r> R. However, from (4) we obtain
1 -
ay(§) = 5— g(2)z77 dz = oy(F; £)—op(f)

2mip Jiz1=s
when By (s) N supp v=@. Now «,(F; §) is continuous in £ on § by (5.2) and
a,(fy) is continuous in ¢ on S by (2). Therefore, g.((¢|£)) is continuous in £ on S
for each { in C* and is holomorphic in { on C* for each ¢ in S.

Let V:=V,(1) and G({):= (1/V) [s g:(({|€))o1(€). From the preceding it is clear
that G is entire on C* with G(0)=0. Let H:= §,[G]. Then by (6.6)(i) and (ii) H is
entire on C* with H(0)=0.

Let f:= Fexp (— H). Then f'is entire on C* with v;=vy=v and f(0)=1. To show
that f is of finite A-type we proceed as follows: Since f|é=F|¢exp (—H|¢)
=f; exp (g:— H|£) by (4), we have for each { in C*

7 ], 108 L@i98lon(®
©
= 5 [ 1B L@eDIon@+5 || Re Lax@le)-H(HOI®.

But by (6.5)(ii) and (6.6)(iii) this second integral is equal to the real part of
©) 7| & @-81110 = 60 -8 sie1 = 0

And since log |f;| is subharmonic on C for each ¢ in S we have for { in By(r) with
r> R by the Poisson estimate

1 sl ((413)]8
log |1 < 3, | log|fi(2re) l2:e“ —'((Cglff))llzdt

T

3
™ < 3, ) 1og |fe(2ret)| dt

< 3ACY2)(2Br) by (3).
Consequently, combining (6.5)(iv), (6.5)(iii), (5), (6) and (7) we get
log* My(r) < 8% ~1[34C2\(8Br)+2AX(4Ber)]
< 8%-154CY2)\(4Ber)
for r> R. Thus, fis of finite A-type by (3.4). Q.E.D.
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REMARK. It is easily verified that the function fin the above is canonical in the
sense that it is the unique entire function on C¥* such that f(0)=1, v,=v and

+k—1\ 1
PN 5 [, soierae)
7. Regular growth functions. We will say that a growth function A is regular
for k if and only if M,(X)= Q(E,(})). Also, A is called regular if A is regular for all
dimensions.

w30 = (

ProposITION 7.1. If X is regular for k+1, then X is regular for k.

Proof. Suppose that A is regular for k+1. By (4.2) it suffices to show that
M,(}) is a subset of Q(E,(})). Let fin M,(}) be given. Define r: C¥** — C* by
7(Z1s - - > Zks1)=(21, - . ., 2). Then 7 is C-linear so that F:=fo 7 is in M, ,(}) by
(4.7). By hypothesis, there is H in E,,(}) such that H#0 and HF is in E; ,,(}).
Choose {* in C*¥*+*\(supp vy U supp vz). For { in C¥*+! define H*({)=H({+(*)
and F*({)=F({+{*). By (4.1) H* and H*F* are in E; ,,(A). Define 7*: C* — C*+!
by *(z1, ..., zx)=(21, ..., 2, 0). Then 7* is C-linear so that h*=H* o 7* and
h*f* are in E,(A) when f*=F* o r*. For » in C* define h(n):= h*(n—({*)) and
fH(n—7(£*)). Then A is in E*(A) and Af* is in E*(2). But by construction 2#0 and
f*=f. Q.E.D.

We will say that A is strictly regular for k if and only if for each v in D which is
of finite A-density, there is »' in D;f such that »' 2v and ' is A-admissible. As before,
we say A is strictly regular if A is strictly regular for all dimensions.

THEOREM 7.2. If A is strictly regular for k, then X is regular for k. If A is regular
for k, then X is strictly regular for 1.

Proof. Suppose A is strictly regular for k. Let fin M,(}) be given. Then v is of
finite A-density by (6.1) and there is a divisor +' in Djf such that ' 2v and ¥’ is
M-admissible. By (6.4) there is 4 in E;(X) such that v, =v". By (4.1)(i), Af is in M,(});
but v, =v, +v,=v +v}—v7 20 so that if is in E,(A) by the elementary properties
of divisors. Thus, A is regular for k by (4.2). The second statement in the theorem
is a consequence of (7.1) and Theorem 5.4 of [5, p. 90]. Q.E.D.

In order to show the existence of a reasonably large class of regular growth
functions we present the following sequence of results:

PROPOSITION 7.3. If X is a growth function for which there are constants A, B
and R in R* and p, in N such that

j XO)t-P-1 dt < ANBr)r-?+ AN(Bs)s~?

whenever r=s> R and po<p in N, then A is strictly regular.

Proof. (Compare [5, p. 71].) Suppose v in Dy is of finite A-density with defining
constants A’, B’ and R’, which can be assumed to be greater than 1. Choose an
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entire function f on C* with v,=v. Let w:= exp (2mi/p,) and define f,({):= f(w?{)
for pin N and {in C* and g:=f,f;- - -f,,. Clearly, g is entire on C* and v':=v,
=vi+ -+ 2vp,=v Where vy,i=v, . Moreover, v,(z; §)=v(z; w?£) by con-
struction. But |w?|=1 so that

Po Po

n(r; §)=IE v(z; 6) = 2 D vz; %)

2ISr q=1 q=1 |2|Sr

= g Z W(zw?; §) = pon(r; &) = poN,(er; §),

q=1 |2|sr
and
Ny(r; &) = poNy(r; &)

by (1.1) and [5, p. 65]. Thus, +' is of finite A-density since N,.(r; £) <poA4'A(B’r) for
£ in Si(1) and r> R'. It now suffices to show that ' is A-balanced. Observe that if
P <po then 252, =0 so that

Cor sV, O =2 S vz bz

P s<izisr

On the other hand, if p=p, and r2 s> R":=max (R, R’), then

G s, O 1 S v o)) =1 f't-'dnm;e)
<lzigr DPJs

1
Ps
=< }’nv,(r; §)r'”+J n,(t; £)t"?~1dt [integrating by parts]
< B Ngers 7 +po || Nifet; > dr

T
< A'NBler)r-?+pod’ I XBlet)t->-1 dt

8

Ber
< ANB'er)r-"+pod’ f Nup—?-(B'e)~?~3 du
B’es
S A'X(B'er)r=?+poA’(Be)~2?~2[AN(BB'er)r~?+ AN(BB'es)s ~?]
S A'MB'r)r-?+A"X(B"s)s*?

where A":= A"+ poA’'A and B":= B'e+ BB’e since B'>1. Thus, +' is A-balanced.
Q.E.D.
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COROLLARY 7.4. If Xis slowly increasing, i.e., if there is B> 1 such that A\(Br)[A(r)
is bounded for r sufficiently large, then A is strictly regular.

Proof. Lemma 3.7 of [5, p. 71] shows that the hypothesis of (7.3) holds when A
is slowly increasing. Q.E.D.

8. Applications. Since max (1,logr) and r* for p>0 are slowly increasing
functions of r, they are regular by (7.4). Combining this with (4.4) and (4.5) we
obtain

PROPOSITION 8.1. Let p=0 be given. A meromorphic function on C* has finite
p-type if and only if it is the quotient of two entire functions having finite p-type.

PROPOSITION 8.2. The following are equivalent for f meromorphic on C*:
(i) f is a rational function.

(i) 7o(f)<c0.

(iii) Ord f=0 and ~(f)<co.

Proof. (ii) and (iii) are equivalent by (4.4). Since each coordinate projection has
finite zero-type by (3.4), it follows that each polynomial and, therefore, each
rational function has finite zero-type by (4.4) and (4.1)(i). Conversely, by (8.1)
it suffices to show that each entire function having finite zero-type is a polynomial.
But if fis entire and 7o(f) <o, then assuming without loss of generality that v,
is in D}, from (3.4), (3.14) and (4.4) we obtain

log* M;(r) £ AT;(8er, s)+B < AT/(8er; )+ B
< A'AT,(8B’er)+B < A"A’Alog (8B'B"er)+ B

for r sufficiently large. The Cauchy estimates then show that f|¢ is a polynomial of
degree no larger than 4”"4'A. Consequently, fis a polynomial. Q.E.D.
We can now state the following criteria for algebraic divisors:

PROPOSITION 8.3. Let A(r)=max (1,logr) for r>0. Then the following are
equivalent for v in Dif :
(i) v is A-admissible.
(ii) v is the divisor of a polynomial in C*.
(iii) n,(r; &) is bounded for all r>0 and all ¢ in Si(1).
(iv) v is of finite M-density.

Proof. (i) and (ii) are equivalent by (8.2), (4.4) and (6.4). If v is the divisor of a
polynomial then n,(r; £) is bounded by the degree of that polynomial. Thus,
(i) implies (ii). Suppose that n,(r;§)SA. Then N(r; &)=, n,(t; &) dt/t
= f;o n/(t; §)dtft<Alogr/s, for r=s, where supp v N B,(s)= &. Thus, v is of
finite A-density; and (iii) implies (iv). If, on the other hand, v is of finite A-density,
then for r sufficiently large

Ny(r; §) = J

So

T

ny(t; 5)%{ < Alog Br
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so that [; [n,(t; €)— Al dt[t < A log Bso. But if n,(to; §)—AZe>0 for any #,>0,
then n,(t; §)—A=e>0 for all 1>1, and j;o [n,(t; €)— A] dt/t is unbounded since
_ft“: e/t dt=00. Thus, (iv) implies (iii). It now suffices to show that (iii) implies (i).
But |Cy(r, s;v, £)| s Pn,(r; €) for all r=s5>0, so that v is A-admissible if n, is
bounded. Q.E.D.

Let us now examine the meaning of finite A-density and A-admissibility for the
other classical growth functions.

PROPOSITION 8.4. Let A(r):=r® for p>0. Then
(i) A divisor v in Di is of finite A-density if and only if r~"n,(r; £) is bounded for
all r>0and all ¢ in S(1).
(ii) When p is not an integer, every divisor of finite A-density is A\-admissible.
(iii) When p is an integer, a divisor v in D;t is A-admissible if and only if there is
R>0 such that r="N,(r; v, £) is bounded for all r> R and all ¢ in S\(1) and v is of
finite M-density.

The proof is an appropriate modification of that given for Proposition 3.3 of
[S, p. 69].

Combining (6.4) with (4.4), (4.5), (8.3) and (8.4) we obtain the following
generalization of a theorem of Lindeldf (see [4], [S, p. 88] and [6, p. 418]):

PROPOSITION 8.5. A divisor v in Di is the divisor of an entire function having
finite p-type (for p=0) if and only if r~°n,(r; £) is bounded for all r >0 and all ¢ in
Si(1) and, when p is a natural number, r~°N(r; v, ) is bounded for all ¢ in S\(1) and
all r sufficiently large.

9. Functions of zero A-type. We say that a meromorphic function f on C¥ is
of zero A-type whenever there are constants s >0 and B> 0 such that

lim Ty(r, s)/MBr) = 0.

Let M2(2) and E2(}) denote, respectively, the classes of meromorphic and entire
functions of zero A-type on C*. As an immediate consequence of the definitions
involved we have the following relations between finite and zero A-type:

PROPOSITION 9.1. (i) MY(N)< M, (}) and EXA)< E(}).

(ii) If X is bounded, then EJ(A\)= M3(\)=E,(\)=M,(A)=C.

(iii) If A is swiftly increasing, i.e. if there is B> 1 such that lim, ., , A(r)/A(Br)=0,
then MY(X)= M, (X) and EN)=E,(}).

(iv) MQ(X) is the union of those classes M,(u) where lim,._, o, u(r)/A(B,r)=0 for
some B,>0.

) Iflim,_, o u(r)/A(Br)=0 for some B>0, then M, ()< M3(}).

Notk. In view of (ii), in the sequel we will assume that all growth functions are
unbounded.
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We say that 4,: R* — R* is a vanishing function provided that A, is decreasing
and converges to zero at co. The theory of functions of zero A-type is completely
analogous to the theory of functions of finite A-type and is developed by judiciously
replacing the constants “4”’ by vanishing functions “4,’’. We now list some of the
results which can be obtained in this manner:

PROPOSITION 9.2. (SEE 4.1). (i) M(}) is an extension field of C and is invariant
under affine transformations of the variable in C*.

(ii) Either MY(A)=ER(N)=C or EXA) contains the ring of complex polynomial
functions on C* and MY)(}) contains the field of rational functions on C*.

PROPOSITION 9.3 (SEE 4.3). Suppose f is meromorphic on C* with v, in D,. Then

fisin M(}) if and only if there are constants B> 0 and R >0 and a vanishing function
Ag such that T((r; §) < Ao(r)X(Br) for all r> R and all ¢ in S;(1).

We say that a divisor v in Dy is of zero A-density if and only if there are constants
B>0and R>0 and a vanishing function 4, such that N,(r; £€) < A,(r)A(Br) for all
r> R and all ¢in S,(1). Let M2(A)=M,(A) N MY(X).

PROPOSITION 9.4 (SEE 6.1). If f is in MY(}), then v{® is of zero A-density.

We say that v in Dy is finely A-balanced if and only if there are constants B>0
and R>0 and a vanishing function 4, such that
|Co(r, 55, )| = Ao(r)A(Br)r=?+ Ao(s)M(Bs)s~®

for all pin Nand all ¢ in S)(1) whenever r > s> R. And we say v is finely A-admissible
whenever v is of zero A-density and is finely A-balanced.

PROPOSITION 9.5 (SEE 6.3). If v in Dj is finely M\-admissible, then there is a
sequence {ap}pen Of continuous complex-valued functions on S,(1) and constants
B>0 and R>0 and a vanishing function A, such that

|rPey(§)+ No(r; v, €)| = Ao(r)A(Br)/(1+p)
for all p in N and all ¢ in S,(1) whenever r> R.

ReMARK. In modifying the proof of (6.3) it is necessary to define m as
min {p € N : lim inf 4o(r)A(B'r)r-?=0}.

PROPOSITION 9.6 (SEE 6.4). A divisor v in Di is the divisor of an entire function
of zero M-type if and only if v is finely X-admissible.

We say that A is zero-regular for k if and only if every meromorphic function of
zero A-type on C* is the quotient of two entire functions of zero A-type on C*; and
A is zero-regular whenever A is zero-regular for all dimensions. In view of (9.1)(iii)
we have

PROPOSITION 9.7. When A is swiftly increasing, X is zero-regular for k if and only
if A is regular for k.
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PROPOSITION 9.8 (SEE 7.1). If A is zero-regular for k+1, then X is zero-regular
for k. :

We say that A is strictly zero-regular for k if and only if for each v in D;} which is
of zero A-density there is a finely A-admissible divisor »* in D; such that v’ =v;
and A is strictly zero-regular whenever A is strictly zero-regular for all dimensions.

PROPOSITION 9.9 (SEE 7.2). If X is strictly zero-regular for k, then A is zero-
regular for k. If A is zero-regular for k, then X is strictly zero-regular for 1.

PRrOPOSITION 9.10 (SEE 7.3). If A is a growth function for which there are con-
stants A, B and R in R*, a vanishing function Ay, and p, in N such that

j "Ne)Plde < Ag(r)N(Br)r-? + AX(Bs)s~?

whenever r2s> R and p,<p in N, then ) is strictly zero-regular.

PROPOSITION 9.11 (SEE 7.4). If A is slowly increasing, then A is strictly zero-
regular.

Turning to the classical growth functions we have

PROPOSITION 9.12 (SEE 4.4 AND 8.2). Let A(r):= max (1, log r). Then the follow-
ing are equivalent for f meromorphic on C*:
(i) fis of zero A-type.
(ii) 7o(f)=0.
(iii) Ord f=0 and +(f)=0.
(iv) fis constant on C*.

PROPOSITION 9.13 (SEE 4.5 AND 8.1). For p>0, let X(r):=r*. Then the following
are equivalent for f meromorphic on C*:
(i) fis of zero A-type.
@ii) =,(f)=0.
(iii) Ord f<p or both Ord f=p and +(f)=0.
(iv) fis the quotient of two entire functions of zero X-type on C*.

PROPOSITION 9.14 (SEE 8.3). Let A(r):=max (1, logr). Then the following are
equivalent for v in D;} : ‘
(i) v is finely A-admissible.
(ii) v is the divisor of a constant function on C¥.
(iii) ny(r; £)=0 for all r>0 and all ¢ in S(1).
(iv) v is of zero X-density.

ProPoSITION 9.15 (SEE 8.4). For p>0, let Xr):=r*. Then
(i) A4 divisor v in Dj} is of zero A-density if and only if r="n,(r; £) converges to
zero at r=0o0 uniformly in ¢ on S,(1).
(i) When p is not an integer, every divisor of zero A-density is finely A-admissible.
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(iii) When p is an integer, a divisor v in D;t is finely A-admissible if and only if v
is of zero A-demsity and r=°N,(r; v, £) converges to a complex-valued function on
S(1) as r approaches o uniformly in £ on Si(1).

Proof. (i) If v is of zero A-density, then n,(r; £) < N,(er; §) < Ay(er)(Be)°r® for r
sufficiently large, where A, is a vanishing function. Thus, r~?n,(r; £) converges to
zero at r=o00 uniformly in ¢ on Si(1). Conversely, suppose that there is R(¢)>0
for each £>0 such that r=*n,(r; £) <e whenever r> R(e) and ¢ is in S,(1). Let
K(e)=sup {N,(eR(); £) : £ € S,(1)} which is finite since N,(eR(e); &) is continuous
in ¢ on S,(1) by (2.2). Let e,=e¢p/2. Then whenever ¢ is in S,(1) and
r>max (R(eo), [2K(e0)/£]'/*) we have

N3 € = N(RGeo); O+
< K(eo)+(e/2)r?
so that r~°N,(r; £) <e. It follows that
AJ(r) = sup{s™*Ny(s; &) : s Z r, £ € Si(1)}

is a vanishing function such that N,(r; £) < A5(r)r* for all r>0 and £ in S;(1). Thus,
v is of zero A-density.

(ii) Suppose v is of zero A-density. For each natural number p<p let ¢,
=e¢(p—p)/2. As in (i) we obtain that for each £>0

n,(t; O)t~tdt
)

rv-ofo'nv(t; Ol < e
whenever r>max (R(e,), [2K(e,)/€]*'*) so that
Ay(r) = sup {s"‘” J: n(; Ot P rdt:s=2r e Sk(l)}
is a vanishing function. Now, for each natural number p and r=s>0
G sim &1 S WD) 3 o DIz~ = ) [ 17 dengs; &),
Integration by parts shows that this integral is dominated by
rony(r; )+ J; m(t; )t~ dr.

Thus, for p<pand r=s>0
|Cor, 53, &) S AF(I* =7+ A,(r)r" "
But, for p>p and r=s>0 we have

|Colr, 53 v, )| = AT(rIr* =+ A5(s)s*~*/(p— p).
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Hence, if p is not an integer we see that v is finely A-balanced by the vanishing
function
A= A,,-I—A}‘,‘/min (p—»p).
P<p p>p

Thus, v is finely A-admissible.

(iii) If v is of zero A-density and lim,. r=°N,(r; v, £)=a(£) where the con-
vergence is uniform in ¢ on Sy(1) then A4,(r) is a vanishing function where 4,(r)=1
for 0<r=<R, and for r> R,

4,0) = s {p) | 3 e =0

s<l|zl

s, EGSk(l)}

where R, is chosen so that |>, .. v(z; §)z~°| <p whenever r> R,. Once again it
follows that v is finely M-balanced by the vanishing function 4¢* + 4,. Conversely,
if v is finely A-admissible then v is of zero A-density by definition and the balancing
condition on C, implies the Cauchy criterion for the uniform convergence of
r=°Ny(r;v, £) at r=00 on Si(1). Q.E.D.

REMARK. An examination of the proof of (9.5) will show that in (iii)
lim, o 7~ °N,y(r; v, £)=0,(¢) which is continuous on Sy(1).

PROPOSITION 9.16 (SEE 8.5). A divisor v in Dit is the divisor of an entire function
having zero p-type (for p=0) if and only if r=*n,(r; £) converges to zero at r=o0
uniformly in ¢ on Si(1) and, when p is a natural number, r=°Ny(r; v, £) converges
to a complex-valued function as r approaches oo uniformly in ¢ on S,(1).

10. Extra-regular growth functions. We say that a growth function A is extra-
regular if and only if every meromorphic function of finite A-type is the quotient of
two entire functions of finite A-type which are everywhere locally relatively prime.
And we can make an analogous definition for extra-zero-regularity. The following
is then an easy consequence of the arguments used in (7.2) and (9.9), of Proposition
3.5 of [6, p. 406], and of (8.3), (8.4)(ii), (9.14) and (9.15)(ii):

ProposITION 10.1. If A(r):= max (1, log r) for r>0, then X is extra-regular and
extra-zero-regular. If A(r)=r" for nonintegral positive p, then X is extra-regular and
extra-zero-regular.
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