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FUNCTIONS OF FINITE A-TYPE IN SEVERAL

COMPLEX VARIABLESC)

BY

ROBERT O. KUJALA

Abstract. If A: R* -> R* is continuous and increasing then a meromorphic func-

tion fon Ck is said to be of finite A-type if there are positive constants s,A,B and R

such that Tf(r,s)-¿AX(Br) for all r> R where T,(r,s) is the characteristic of/. It is

shown that if A(Br)/A(r) is bounded for r sufficiently large and B>\, then every

meromorphic function of finite A-type is the quotient of two entire functions of

finite A-type.

This theorem is the result of a careful and detailed analysis of the relation between

the growth of a function and the growth of its divisors. The central fact developed in

this connection is: A nonnegative divisor v on C with v(0) = 0 is the divisor of an

entire function of finite A-type if and only if there are positive constants A, B and R

such that

NjX&r) S A\(Br),

\\   I   AHz)z- á AX{Br)r-' + A\(Bs)s
-p

for all rgi> R, all unit vectors f in C, and all natural numbers p. Here k|£ represents

the lifting of the divisor v to the plane via the map z>-^-z£ and JVV|¡ is the valence

function of that divisor.

Analogous facts for functions of zero A-type are also presented.

Introduction. The purpose of this paper is to present a detailed description of a

comprehensive theory of functions of finite A-type in several complex variables

(as announced in Bull. Amer. Math. Soc. 75 (1969), 104-107) which extends the

results of Rubel and Taylor in [5] for one variable and those of Stoll in [6] for

functions of exponential type in several variables. One common motivation for all

of these researches is the desire to extend a theorem proved by Lindelöf in 1905 (see

[4]) which gives necessary and sufficient conditions for the existence of an entire

function on the plane with a prescribed set of zeros and given order and type.

Specifically, §1 contains a discussion of divisors on Ck and the concept of the

restriction of a divisor to the complex line through the origin and a vector in Ck

ending with Proposition 1.5 which describes the behavior of a general class of
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growth indices for a divisor. §2 presents an application of 1.5 to the valence

function of the restriction of a divisor and concludes with Proposition 2.3 which

states that TVv(r; £), the valence function for the restriction of a nonnegative divisor

v on Ck to the complex line through £ in Ck, is a continuous nonnegative pluri-

subharmonic function of £ on Ck provided that v(0) = 0.

In §3 the essential facts concerning the characteristic of a meromorphic function

on Ck are presented. The first of the central results of the paper is Theorem 3.9

which states that for each meromorphic function / on Ck such that /(0) e C\{0}

there are positive numbers A, B and C such that

Tfiní) ÚATf(Br) + C

for all r > 0 and all unit vectors f in Ck. Here T, is the characteristic of/and Ts(- ; Ç)

is the characteristic of / restricted to the complex line through f.

In §4 the basic facts concerning functions of finite A-type are presented and the

relationships between finite A-type and the classical concepts of order and type are

developed. In §5 the Rubel and Taylor Fourier coefficients of a meromorphic

function are defined and their basic properties are presented.

In §6 occur the main results of this paper. Theorem 6.1 states that iff is mero-

morphic and of finite A-type on Ck with /(O) e C\{0} then there are positive con-

stants A, B and R such that TVV(/; £) ̂  AX(Br) for r > R and all unit vectors | of Ck

where v is the pole-divisor of/ This theorem is proved by an easy application of

Theorem 3.9. Theorem 6.4 states that a necessary and sufficient condition for a

nonnegative divisor v on Ck with v(0) = 0 to be the divisor of an entire function of

finite A-type is the existence of positive constants A, B and R such that

Nv(r; i) £ AX(Br)

and

11    ■
v(r; i)z->

P s<|2|gr
á AX(Br)r-" + AX(Bs)s-

for all r ^ s > R, all unit vectors £ in Ck and all natural numbers p. The proof of this

result involves a careful combination of the techniques of Rubel and Taylor with

those of Stoll.

§7 contains applications of the preceding results to show the existence of a large

class of functions A for which every meromorphic function of finite A-type can be

written as the quotient of two entire functions of finite A-type. In §8 consequences

of §7 for the classical cases are derived. §9 summarizes the analogous results which

may be obtained for the theory of functions of zero A-type. Finally, §10 presents a

certain strengthening of the preceding results for some of the classical cases.

1. Divisors. If/is a holomorphic function on an open connected neighborhood

of £0 in Ck and is not identically zero there, then

/(Ö = I PS,-to)
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where the series converges uniformly to the function on some neighborhood of Co,

each P„ is either identically zero or a homogeneous polynomial of degree q, and

Pv^0. The nonnegative integer v, uniquely determined by/and £0, is called the

zero-multiplicity of f at £0 and will be denoted by vf({,0). A function v: Ck ->- Z is

said to be a divisor if and only if for every £0 in Ck there are functions g^O and

«^0 which are holomorphic on an open connected neighborhood U of £0 such that

v(Ç)=vg(Ç) — vh(Ç) for all £ in U. The set of all divisors on C, denoted by Dk, is a

Z-module of functions and is partially ordered by the usual partial ordering of

real-valued functions. In particular, we define the set of nonnegative divisors by

D£ :={veDk:V^0}.

Then Dk is closed under addition.

If v is in Dk, then there are defining functions g and « for v in an open connected

neighborhood of £ in Ck such that g and h are coprime at £ (i.e., the germs of g and

« are coprime in the local ring of germs of holomorphic functions at £). It follows

that the equations v+(Q: = vg(l) and f~(£): = v„(£) define nonnegative divisors v+

and v~ which are uniquely determined by v. Clearly, v = v+ — v~.

Let/be a meromorphic function on Ck. If /is identically zero, let us define

"/°(0=0 f°r au t 'n Ck- If/is not identically zero, then each £ in Ck has an open

connected neighborhood U on which there are holomorphic functions g7¿0 and

«5¡¿0, coprime at £, such that hf=g on U. The nonnegative integers v°(£):=v9(£)

and t7°(0: = v„(£) are uniquely determined by / and £. The functions r° and vf

are nonnegative divisors on Ck and are called, respectively, the zero-divisor and /«e

pole-divisor off. We define i«e divisor off by

. 0 o>

Then ^ is a divisor with the following elementary properties :

(vfy = v°   and   (v,)- = „?,

Vf g   =   »V + i's,

KÎtf = vf   and   vSr = i^,

nit = -vr.

Moreover, ^(0 = 0 f°r all ^ i° some open subset U of Cfc if and only iff is holo-

morphic on U; and vs(Q = Q for all £ in U if and only if/ is holomorphic without

zeros on U.

Since Ck is a contractible Stein manifold, the second Cousin problem can be

solved on Ck [2, pp. 105, 181], that is, every nonnegative divisor is the divisor of an

entire function. Thus, if v is a divisor, then there are entire functions g and « such

that vg = v+ and vh = v~ so that vglh = v. Therefore, every divisor is the divisor of some

meromorphic function. We also note that for every meromorphic function f there are

entire functions g and h such that hf=g on Ck and g and h are coprime at every point

ofCk [2, p. 181].
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The support of a divisor v on Ck, denoted by supp v, is defined to be the closure

in Ck of v'1(Z\{0}). The support of the divisor of an entire function/is then/-1(0)

so that the support of a nonnegative divisor v is simply v~1(Z\{0}). The support of

an arbitrary divisor v is the union of the supports of v+ and v~ ; therefore, the

support of a divisor on Ck is either empty or an analytic set of pure dimension k — 1

in Ck. Clearly, supp v is empty if and only if v is the identically zero divisor.

Otherwise, v is constant on each connectivity component of the set of simple points

of its support.

For each £ in Ck, define £* : C->- Ck by £*(z) = z£. If/is meromorphic on Ck and

£*(C)d:supp vf for some £ in Ck, then/° £* is meromorphic on Cand is called the

restriction off to £. We will also write/|£ for/o £*. If £*(C)4;supp v¡, then/|£ is

meromorphic and not identically zero on C. Thus, given a divisor v on Ck and £ in

Ck such that £*(C)d:supp v, we may define the restriction ofiv to £, denoted by v|£,

as follows : Let/ be meromorphic on Ck with v, = v. Then v| £ :=v!K. For convenience,

we will write v(z; £) instead of v|£(z). Let us introduce the following notation:

Dk:={veDk:Q$suppv}   and   D¿ := í)k n Z>¿.

Then £>k is a submodule of Dk and Dk={veDk : v(0)=0} is closed under

addition. Clearly, if v is in Z)k, then v\t is defined for all £ in Ck, and the mapping

v \-> v|£ carries Dk into £>1; DJ into D?, and is Z-linear. It is easily seen that if v

is in Dk and £ is in Ck, then

(1.1) v(z; w£) = v(zw; £)   for all z and w in C

Also, for each v in Z)fc and £ in Ck, v|£^v ° £*, but v(z£)=0 for z in Cimplies that

v(z; £)=0; therefore,

(1.2) ze supp (v| £)    if and only if z£ e supp v.

Lemma 1.3. For each v in Dk and compact subset K of C,

{£eCk : £*(/Q n supp v = 0}

is an open subset of Ck.

Proof. Since K is compact there is r > 0 such that \z\ < r for all z in K. If the set in

question is empty, it is open. So suppose £*(#) ct supp v= 0 for some £0 in C.

Since it is continuous, £Î(X) is a compact subset of Ck which does not meet the

closed set supp v. Therefore, there is s>0 such that s^ |£—£'| for all £ in £*(^)

and all £' in supp v. If £ is in Ck with | £ - £0| < s/2r then for each z in K, |£*(z) - £*(z)|

= |z£o-z£| = |z|-|£0-£|<r(í/2r)=í/2<í so that £*(z) <£ supp v. Thus, |£-£0|

<s/2r implies Ç*(K) n supp v= 0.   Q.E.D.

Lemma 1.4. Le/ v /« D^,ainCandr>0begiven. Suppose Uis an open connected

neighborhood of{0 in Ck such that (a + re")£ <£ supp vfor all £ in U and all tin[—tt, tt].

Then

2    K*;ö=    2    Kí;Co)  foralU in U.
\z-a\<r lí-o|<r
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Proof. Choose an entire function / with vf = v. By (1.2), the hypothesis implies

that for each £ in U and all r in [—tt, tt], a+reil $ supp v\l so that [/|£](a+re")#0.

Thus, by the argument principle,

V    v(z-£) = -Lf   VWa+r*>r*dt
|z4«r       °     2^J_Jl[/|£](a+re«)       M

for all £ in U, where the integral can be considered to be the Lebesgue integral.

But, by the chain rule,

L/lfl'M = | /W)U. = pÍ"p ̂(w£)

where £ = (i/i,..., uk) is in U and w is in C. It follows that the integrand above is a

continuous function of (t, £) on [—tt, tt] x U so that the integral is continuous in £

on U. But a continuous integer-valued function on a connected set is constant;

therefore, the result follows.   Q.E.D.

Proposition 1.5. Suppose that g: R+ x [C\{0}] -> C is a continuous function

such that g(r, z)=0 if \z\-r in R+. For v in Dk define Gv: R+ x Ck -* C by

Gv(r,£):=    2    v(z;Qg(r,z).
0<|2|Sr

Then Gv is continuous on R+ x Ck.

Proof. Since GV = GV* — GV- it suffices to prove the result for a given v in Dk.

Let (rQ, £„) in R+ x Cfc be given. There are two cases to be considered : First, suppose

that z^ supp f|£0 whenever |z|5¡r0. Then, since supp v|£0is a closed set of isolated

points in C, there is 80>0 such that z£suppv|£0 whenever z e K0 and

K0:={z e C : \z\^r0 + 80}. Thus, by (1.2), C¡(K0) n supp v= 0, so that by (1.3)

there is a neighborhood of U of £0 in Cfc such that i*(K0) n supp i/= 0 for all £

in U. It follows that C7v(r, £)=0 whenever 0<r<ro + So and £ is in U; therefore,

Gv is continuous on a neighborhood of (r0, £0) in R+ xCk. On the other hand,

suppose that

{z e supp f|£0 : |z| ^ r0} = {ax, a2,..., aq)

where aß^ax for /¿7e A. Since 0 £ supp v it follows from (1.2) that 0 £ supp v|£0 so

that there is 8X such that

(i) 0<SX< |a„| for ft=l,.. .,q.

(ii) 20^1^-a^if^^A.

(iii) 81<r0-|fl^| if \au\<r0.

(iv) v(z;£0) = Oifr0<|z|^r0 + S1.

Let e>0 be given. By the continuity of g on R+ x [C\{0}], there is S2>0 such that

S2<8! and, for each p.= \,2,.. .,q, \g(r,z)-g(r0,au)\<e/(3A) if |r-r0|<82 and

|z—aj ^82 where

A:=    2    K*;£o)*i.
0<M£3ra
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Moreover, by the uniform continuity of g on compact subsets of R+ x [C\{0}] we

may choose the above 82 so small that \g(r, z)—g(r', z')\ <e/(3A) whenever |r —r'|

< 82 and \z — z'\<82 provided that both (r, z) and (r1, z') are in K where

K:={(t,w)eR+x[C\{0}]: \t-r0\ á¡k,\r0-\w\\ S 8,}.

It follows that

\gir,z)\ = \gir,z)-gir0,r0z/\z\)\ < e/i3A)

if \r—r0\ <82 and \r0 — \z\ \ <82 since g(r0, w)=0 if |w| =r0 by hypothesis. Define

K' ;={zeC : \z\ £ r0 + ó\ and \z-au\ ^ S2 for p. = l,...,q}.

Then K' is compact and i*(K') n supp v= 0 by (iv). By (1.3) there is S3>0 such

that Í*(K') n supp v= 0 whenever |£-£0| < S3. It then follows from (1.4) that

(*) 2     v(z;0 = v(au;t0)
\z-au\<ô2

whenever |£—£0| < S3 and p.= 1, 2,..., q. But then from (ii) we get

(**) 2    Kz; 0=2    2   Kz; 0=2 "(««; « ^ a
0<|2|£ro+<ii /i = l |z-a„l<<52 « = 1

whenever | £ - £01 < 83 since r0 + âx < 2r0 by (i) and v(z ; £0) ̂  0 for all z in C. Suppose

(r, £) is in R+xCk with \r—r0\<82 and |£—£0|<S3; and let r' = min (r, r0) and

r" : = max (r, r0). Then

Gv(r,0=    2   K*;0*fr,*)-f   2    ±    2    ]v{z;t)gir,z)

so that

Gv(r,£)-6>0,£0)

(***} =     2     Hz;Og(r,z)-v(z;io)g(r0,z)]±     2     «fo Osfr, 4
O<|0lSro r'<\z\£r"

But the absolute value of the second of these terms is less than or equal to

2     v(z;Q\g(r,z)\<     2     ^;Q(eßA)
r'<\z\¿r" r'<\z\£r"

è WA)     2     **\ o = «/3
0<|z|gr0+Í2

by the choice of S2 and (**). Moreover, the first term in (***) may be written as

2      2     \y(z\Ç)g(r,z)-v(z;lQ)g(r0,z)]-       ¿ 2 Áz\í)g(r,z)
íi = l lz-aul<¿2 H = l:|a„|=r0   |z-a„| <ó2;\z\ >r0

by choice of 83 and (iii). Now, the latter term is also less than e/3 in absolute value

by an argument similar to the above and we observe that the former term can

be written as



1971] FUNCTIONS OF FINITE A-TYPE 333

2        2     v(z;Og(r,z)-v(all;t,0)g(r0,all)\
« = 1 L|s-a„|<<52 J

= 2 Í     2     Áz-A)g(r,z)-     2     y(z;i)g(ro,au)]

g
= 2      2     v(z;C)[g(r,z)-g(r0,au)]

» = 1  |Z-0UI<02

by (*), so that its absolute value is also less than e/3 by the initial choice of S2 and

(***) again.

Therefore, we have shown that Gv is continuous at (r0, £0).   Q.E.D.

2. The growth of a divisor.   The classical indices of growth for a divisor

v in t>k are the counting function «v and the valence function Av, defined by

«v(r; £) : =  2 K*; Ö.       Nv(r; £) : = f nv(r; £) ̂
Izlgr Jo '

for r>0 and £ in Ck. Clearly, for each r>0 and £ in Ck, «v(r; £) and A„(r; £) are

Z-linear functions of v on Dk; and for each v in Dk and £ in Ck, nv(r; £) and

Av(r; £) are nonnegative increasing functions of r on R+. By [5, 1.3, p. 57],

(2.1) Av(/;£)=    2   K^OlogrV
0<lzlSr |Z|

Therefore, as an immediate consequence of (1.5) we have

Proposition 2.2. For each v in Dk, Ny(r; £) is a continuous function of(r, £) on
R+xCk.

Moreover, from (1.1) and (2.1) we get

(2.3) Av(r;z£) = Av(r|z|;£)

for v in Dk, r>0, z in C and £ in Ck\{0}.

The behavior of Av is further characterized by the following result :

Proposition 2.3. For each v in Dk andr>0, Nv(r; £) is a continuous nonnegative

plurisubharmonic function oft on Ck.

Given v in Dk , we can choose an entire function/on Ck such that vf = v which

means/(0)#0. But, by Jensen's Formula and (2.1),

Nv(r, £) = ¿ j"_x log |/(re«£)| dt-log |/(0)|

for r >0; and log |/| is plurisubharmonic [2, p. 44] so that the proof of Proposition

2.3 is contained in the following lemma:

Lemma 2.4. If u is plurisubharmonic on Ck, then (\/2tt) j*_n u(re"Qdt is pluri-

subharmonic in £ on Ck for each r > 0.

Proof. By definition [2, p. 44] u plurisubharmonic on Ck implies that u is upper

semicontinuous on Ck so that u(re%) is upper semicontinuous in t on R for each
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r>0 and £ in Ck. Thus, if »(£): = (l/2*r) j1n u(re%) dt for r>0 and £ in Ck, then

v(Ç) is in Äu{-oo}.

As a special case, suppose that u is a C °° plurisubharmonic function on Ck. Then

fc P2..

p,«=i     ^^p •'*(

for all £ and (w1;..., wk) in Ck (loc. cit.). But by the chain rule

d2 d2u
u(re%) = re-«re» -^z- (re«£).

dzp dzq '   dzp dzq

Now, v is a Cœ function on Ck and

k S2i; k I   C"      B2

S^p^âTâFi£)= 2,wp^2^    äräF"(re"0i/i

for each £ and (m^, ..., wj in Ck. Therefore, t> is a C°° plurisubharmonic function

on Ck (loc. cit.).

In the general case, if m is a plurisubharmonic function on Ck, then u is the limit

of a decreasing sequence uu u2,... of C° plurisubharmonic functions on Ck [2, p.

45]. Thus, {«!(/•£"£) - upireuÇ)}peN is an increasing sequence of nonnegative functions

of / on R converging to i/i(re<f0 — «(/e"£) as p approaches oo. Therefore, by the

monotone convergence theorem,

¿- r [«i(«"o-«p(««o] * -> y- r [«i(«bo-«(««oí a.
¿ttJ-„ ¿trj-n

Since rp(£)=(l/27r) J* „ wp(/e"£) ¿/ is in Ä and t>(£) is in Ä u {-oo}, it follows that

i?p(£) converges to z>(£) asp approaches oo for £ in Ck. But »j, v2,... is a decreasing

sequence of C °° plurisubharmonic functions by the above special case. It follows

that v is plurisubharmonic on Ck (loc. cit.).   Q.E.D.

3. The growth of a meromorphic function. In the following let aT be the posi-

tive element of volume on the sphere 5,k(r):={£e Ck : |£|=r}, considered as a

real i2k— l)-dimensional Cx manifold, oriented to the exterior of the ball

Bkir): = {t,eCk : |£|<r}; and let Kfc(r) denote Okrak-1)/(Â:-l)!, the volume of

Skir). In order to define the characteristic of a meromorphic function, we introduce

wk, a positive C" complex exterior differential form of bidegree ik—l,k—\) on

Ck defined by

<"i(z) := 1,

i    rki "ik-i
u>kizu ..., zfc) := î]ç-1)\ [ 2 2 ^ A dfp\

k    /,-\fc-l

dzx A dz1 A ••• A dzp _ i A dzp _ !-ÍJ)
A c/zp + 1 A i/zp + 1 A • ■ • A <fefc A i/zfc.
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If/is meromorphic on Ck and r>0, let

AM'*Wti\\       (l + l/|2)-4#A#A^

where Wk(r) is a normalizing factor having the value Trkr2k'2/(k— 1)!. Then A,

is a nonnegative, increasing, continuous function on R+ [6, p. 406]. The character-

istic off is given by

TXr, *) : = Í ,4,(0 —   for r à í > 0.

Clearly, T,(-, s) is a nonnegative increasing function of class C1 on [s, oo). More-

over, P/(e*, s) is a convex function of x on [log j, oo). We now list some of the

other basic properties of the characteristic (see [6, pp. 406-407, 409-410]).

Proposition 3.1. Iff is meromorphic on Ck and a is a complex number, then for

r^s>0

Tf+a(r,s) = Ti(r,s)

and

Txl!(r,s) = Tf(r,s)   iff*0.

Proposition 3.2. For each pair of functions f and g meromorphic on Ck and each

s>0, there are constants A and B in R+ such that

Tf+g(r,s) í T,(r,s) + Tg(r,s) + A

and

Tfg(r, s) ^ Tf(r, s) + Tg(r, s) + B  for r ^ s.

Proposition 3.3. Iff is meromorphic on Ck, £0 is in Ck, and g(£)=/(£+£0) for £

in Ck, then

T¿r,s) ¿ (l + \l0\fsy*-íT¿r+\t0\,s)

for r^s>0.

Proposition 3.4. Iffis an entire function on Ck and M¡(r): = max {|/(£)| : |£|=r}

for r>0, then for each s>0 there are constants A and B in R+ such that

log+ Mf(r) ^ ATf(ier,s) + B

and

T;(r, s) ^ log+ MA\r) + \ log 2   for r ^ s.

Proposition 3.5. If f is meromorphic on Ck and v, is in Dk,  then T,(r)

:=f0 A,(t) dt/t and Tf(r; £): = P/K(r) exist for r^0 and £ e Ck.

Moreover,

T^ = VTü\      TfctMf)  forr^O.
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Proposition 3.6. If fis meromorphic on the plane and vf(0)=0, then

T,(r) = Arv(0+¿£n log V(l +1/(0|2) A-log V(l +1/(0)|2)

for r^O where v=vf and Nv(r) = Nv(r; 1).

The contents of Propositions 3.1 and 3.6 are usually referred to as the First Main

Theorem (of Value Distribution Theory). Rubel and Taylor use the characteristic of

Nevanlinna, defined by

Tf(r) := Av(r)+ ¿£ log+ |/(re«)| dt

for / meromorphic on the plane, r^O and v = vf with v;(0) = 0 [5, p. 75]. Since

log+ jcglog \/(l+x2) and log (l+x)^log 2 + log+ x for x^O, the First Main

Theorem implies the following relations between T, and T* :

Proposition 3.7. Iff is meromorphic on C with vr(0)=0, then

Tr(r)úTf(r) + logV(i + \f(0)\2)

and

Táj) £ Tf(r) + log ̂ 2  for r ^ 0.

The following is an analogue of (2.3):

Proposition 3.8. If f is meromorphic on Ck with v, in Dk, then Tf(r; z£)

= T,(r |z| ; £) for r^O, z in C and £ in Ck.

Proof. Given/meromorphic on C with v, in Dk, a e Cand £ e Ck, letga=/|a£.

Then by the chain rule g'a(z) = ag'x(az). But by definition

Aga(r)=l-\      J.&LÀdzAdz
n Jw<

77 J\z\<r

,,,<r(l + ka(z)|2)22'

\g'x(az)\2     [andzAd2
(\ + \gx(az)\2)2   2

so that

= - Í n If (T)M2X2 l,dw Adw = Agi(\a\r)
^J|u,|<lolr(l + kl(w)|2)22 9lM    '

Ur, a£) = TSa(r) = £ A9a(t) - = £ Agi(\a\0 f

-L|a|r ds

Agi(s) -i = rBl(Mr) = Tf(\a\r, £).       Q.E.D.

Propositions 3.2, 3.3, 3.4 and 3.8 show that the characteristic of a meromorphic

function is an analogue of the maximum modulus of an entire function. But the

maximum modulus has the useful property that Mfi((r)¿Mf(r) for | in Sk(l) and

/entire on Ck; we now wish to establish a similar result for the characteristic.
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Theorem 3.9. If fis meromorphic on Ck with v, in Dk, then there are constants

A, B and C in R+ such that T,ir; Ç)^AT,iBr) + Cfor r>0 and £ in 5fc(l).

The demonstration of this theorem depends upon the following three lemmas,

the first of which is a direct consequence of Proposition 3.5 of [6, pp. 406-407].

Lemma 3.10. If g and h are entire functions such that vg and vh are in Dk, then

Tglh(r) ÛttmI     log V(\g\2 + |A|2K-log V(k(0)|2+ \h(0)\2)
'kV) Jskm

with equality holding whenever g and h are coprime at every point of C.

Lemma 3.11. If g and h are entire on Ck, then log \/(|ila+|A|2) & plurisub-

harmonic on Ck.

Proof. Since \/(|g|2 + |A|2) is continuous and nonnegative on Ck,

logV(UI2 + |A|2)

is upper semicontinuous on Ck to [-oo, oo). Given £ and 7j in Ck, g2(£+Z77) and

h2(i+zrj) are entire functions of z on C. Therefore, log |g(£+zi?)|2 and

log |A(£+zi7)|2 are subharmonic functions of z on C; and it follows that

log(|s(£+Z77)|2 + |A(£+Z77)|2)issubharmonicinzon C [2, 1.6.6 and 1.6.8, p. 18].

Clearly, \ log (|g|2+ \h\2) is plurisubharmonic on Ck by definition.    Q.E.D.

Lemma 3.12. If u is a nonnegative plurisubharmonic function on Ck and0<t< 1,

then

m .      1+r        If

whenever |£| ^tr.

Proof. If m is plurisubharmonic on Ck, then

»2fc-2   r -2_ I Í-I2

«QSyTrA <V)T—§-koÁr¡)
rkV)Jskm I1?-11

whenever |£| <r [3, pp. 26-28]. But if |£| ^tr and |.ij| =r, then

r2-\i\2 < (/+|£|)(r-|£|)     _    (\+t)r

h-£|2k =      (/-|£|)2k      = (l-r)8*-1!-*-1

and the result follows since u is nonnegative.   Q.E.D.

Proof of Theorem 3.9. Given/meromorphic on Ck with v, in Dk, we can choose

entire functions g and h, coprime at every point of Ck, such that hf=g and A(0) = 1.

Then w: = log \/(|g|2 +\h\2) is plurisubharmonic on Ck by (3.11) so that

i;(£): = (1/2tt) ¡¡IxUie^dt is a plurisubharmonic function of £ on Ck by (2.4).

Moreover, since m(z£) is subharmonic in z on C the mean-value property implies

that

»(0 ^ k(0£) - ii(0) = log V(l + k(0)|2)
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which is nonnegative. Thus, we may apply (3.12) with t=\ to get

-5.221c-2   r

V(-r® -   Vi2r\ V°2r
vk\¿r)  Jsk(2r)

for £ in Sk(\). But by reversing the order of integration and using the rotational

invariance of a2r we get

V02T =

Jsk{2r) Js,
W2T

■/Sfc(2r) JSk(2r)

(also see [6, 1.2, p. 395]). But, for each £ in Sk(l), vg]i and vMi are in Dx since

vg=v°f and vh=vf. Thus, we may apply (3.10) to/|f=(g|fí/(A|fí and to f=g/h to

obtain

■3    22k-2   [■

Tf(r; i) è v(r{) ï ^^ m2r = 3-22k'2[T,(2r) + u(0)]
'k\L")  Jsk(2r)

for i in Sk(l). Therefore, (3.9) is true when ^ = 3-22fc-2, P=2, and C=Au(0).

Q.E.D.
We can now demonstrate the following analogue of Liouville's Theorem :

Corollary 3.13. If f is meromorphic on Ck, then the following are equivalent:

(i) / is constant.

(ii) A,=0onR+.

(iii) Tf=0onR+.

(iv) For each s>0, T,(-, s) is bounded on [s, oo).

(v) There is some s> 0 such that T,(-, s) is bounded on [s, oo).

Proof. Clearly, (i) implies (ii), (ii) implies (iii), (iii) implies (iv), and (iv) implies

(v). Thus, it suffices to show that (v) implies (i). As a special case suppose that/is

meromorphic and nonconstant on the plane with vr(0)=0. Then there is z0 in

C\{0} such that b=f(z0) is in C\{/(0)}. Let g(z) = l/(f(z)-b) for z in C. Then g is

meromorphic on the plane with v9(0)=0. Now, if r> \z0\ and v=vf, then by (2.1)

N*(r) =    2    "00 log t-î ^ y(z0) log ~ > 0.
0<UISr |*| |*o|

But, by the First Main Theorem,

Tg(r) ^ Av(r)-log VO + U(0)|2)   for r ^ 0

so that Tg is unbounded. But from (3.1) for each s>0 and r^s,

Tf(r,s) = Tg(r,s) = Tg(r)-Tg(s)

so that Tf(-, s) is unbounded on [s, oo).

In the general case, suppose/is meromorphic on C with Tf(-, s) bounded for

some s > 0. If supp v, = C\ then/= 0 on C1. If supp vf^Ck, choose £0 in Ck\supp vf.

Let #(£)=/(£-£o)- Then v9 is in Dk and Tg(-,s) is bounded on [s, oo) by (3.3).
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Therefore, Tg is bounded on R+ and Tgit is bounded on R+ for each £ in Skil) by

Theorem 3.9. But, from the above special case it follows that g\£ is constant for

each f in SkH). Thus, for each £ in Ck\{0},

g(o = [si(i/iiix](i{i) = [g\m\M0) = m
and, therefore,/(£)=g(£+£0)=^(0)=/(-£0) for all £ in Ck.   Q.E.D.

The above proof illustrates how the theorem may be used to reduce problems

concerning several variables to questions involving only one variable. Of course,

this example is elementary. A more powerful application will be made in the study

of functions of finite A-type which follows. Meanwhile, we will explore a few more

immediate consequences of this theorem. First we have the following modification:

Corollary 3.14. If fis meromorphic on Ck with vf in Dk, then there are con-

stants A, B and R in R+ such that 7}(r; f)gAT,iBr) for allr>R and £ in Skil).

Proof. If/is constant, the result is trivial. In the other case, T, is unbounded by

the preceding corollary so that there is R>0 such that C^TfiBr) for all r>R

where A, Band Care the constants of (3.9). Thus, T,ir; 0^(A + l)T,iBr) for r>R

and f in 5fc(l) by (3.9).   Q.E.D.

Corollary 3.15. Iff is meromorphic and nonconstant on Ck with v{ in Dk, then

Proof. If/is not constant, then Ar£0 by (3.13) so that Af(R)>0 for some R>0.

But id/dx)T,iex)=A,iex) for x in R by definition; and T,iex)-T,iex')

^Afiex')ix—x') for x^x' by the mean-value theorem since A, is increasing.

Replacing x' by log R and x by log r, we get

TA/) ä TfiR)+ AfiR) log ir /R) > 0   for r > R

and the result follows.    Q.E.D.

Corollary 3.16. Iff is meromorphic on Ck with v¡ in Dk, then there are constants

A, B and R in R+ such that Tfctir)^ATfiBMxr) for all r>R and each C-linear

mapping r: C' -*■ Ck provided Mz:= max {|t(£)| : £ e S/l)}.

Proof. If/ is meromorphic on Ck with v¡ in Dk and t. C -*■ Ck is a C-linear

mapping then/o t is meromorphic on C1 with vM in D¡. Let £ in S ¡il) be given.

If *■(£)=0, then/o t|¿e=/(0) so that TfJr; f)=0 for all r>0. On the other hand,

if t(í)^0, then/° r|f =/|t(£) so that

7}„t(r; 0 = IXr; r(fl) = 7>(r|T(f)|; (l/Kfí|M¿))
^ r^rM,; (1/KfílMfí) ̂  /17X5A//)

for all r>Ä by (3.8), the definition of M%, and (3.9). Thus, for all f in S/1),

7>o,(r; Ç)^AT,iBMzr) for each r>R so that T,nir)<,ATfiBMxr) for each /■>£

by (3.5).   Q.E.D.
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Corollary 3.17. If f is meromorphic on Ck with v, in Dk, then there are con-

stants A, B and R in R+ such that Tflv(r)^ATf(Br)for all r>R and each C-linear

subspace VofCk.

Proof. If V={0}, the result is clear. If ^{O}, then choose a unitary basis

{u ..., £) of Kand extend it to a unitary basis &,..., £k ofCk. Define tv: C1 -*■ Ck

by
TV(ZX, ...,Zj)  =  Zi¡¡i+ ■ ■ ■ + Zy£y.

Then tv is a C-linear mapping and Mzr= 1. If we identify/"! V with/° tv as usual,

then the result follows from (3.15).   Q.E.D.

4. Functions of finite A-type. We say that A is a growth function if and only if

A: R+ -*■ R+ is continuous and increasing. In the remainder of this paper the symbols

"A" and "¡i" will always represent growth functions. Clearly, X+p, A/x, max (A, /¿)

and min (A, /*) are growth functions. Moreover, max (1, Tf(-, s)) is a growth

function for each function /meromorphic on Ck and each s>0 (here we agree that

P/(r,j) = 0if 0<r<j).

We will say that a meromorphic function / on Ck is of finite X-type whenever

there are constants s>0 and P>0 such that

,. T,(r, s)
lu?Jlup iw <0°-

Let Mk(X) denote the set of functions of finite A-type on Ck, Ek(X) denote the set of

entire functions of finite A-type on Ck, Mk(X) denote the set off in Mk(X) with v,

in Dk, and Êk(X) denote Pfc(A) n Mk(X).

Theorem 4.1. (i) Mk(X) is an extension field of C and is invariant under affine

transformations of the variable in Ck.

(ii) Pfc(A) is an integral domain containing C and is invariant under affine trans-

formations of the variable in Ck.

(iii) Either Mk(X) = Ek(X) — C or Ek(X) contains the ring of complex polynomial

functions on Ck and Mk(X) contains the field of complex rational functions on Ck.

Proof. Pk(A) is an integral domain by (3.2) and contains C, the constant func-

tions, by (3.13). Mk(X) is a field by (3.1) and (3.2). The invariance under affine

transformations of the variable is a consequence of (3.3) and (3.16). If Mk(X)

contains a nonconstant function, then (3.15) implies that lim sup (log r)/X(Br)<co

for some P>0 so that, in particular, A is unbounded. On the other hand, if

fp(zu ..., zk): = zp for p = 1, 2,..., k, then each fp is entire on Ck and, clearly,

M!p(r) = r so that log+ M,p(r)=log r for r> 1. Hence, lim sup (log+ Mfp(r))/X(Br)

<oo and/p is in Pfc(A) for each p=l,2,...,k, by (3.4). Since Pfc(A) is an integral

domain containing C, it follows that Ek(X) contains each polynomial function;

and since Mk(X) is a field containing Ek(X), it follows that Mk(X) contains each

rational function.   Q.F.D.
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It follows that Mk{X) contains QiEkiX)), the field of quotients of EkiX). The

primary objective of this paper is to determine conditions on A which will imply

that Mfc(A) is exactly QiEkiX)). We have an immediate reduction of the problem

as follows :

Proposition 4.2. //^cg^A)), then Mfc(A) = ß(£fc(A)).

Proof. Let/in Mk{X) be given. If/=0, then/is in ^(A) and there is nothing to

prove. If/^0, then there is r¡ in Ck\supp v¡. Let F(£): =/(£+t?). Then Fis in Mk{X)

by (4.1)(i). If Mki\)c QiEkiX)), then there are functions G and H in £k(A) such that

HF= G and H^ 0. Define gtf) : = G(£ - v) and A(£) : = #(£- r¡). Then g and A are in

■Etc(A) by (4.1)(ii). But clearly, hf=g and h^O so that/is in QiEkiX)).   Q.E.D.

Combining (3.5), (3.14) and the definition of Mk{X) we get

Proposition 4.3. Suppose f is meromorphic on Ck with v, in Dk. Then f is in

MkiX) if and only if there are constants A, B and Rin R+ such that Tfir; Ç) ̂  AXiBr)

for all r>R and all f in Ski\).

The constants A, B and R as in the above proposition will be called a uniform

defining system for f in MkiX). The above result could be paraphrased as: "A

function f meromorphic on Ck with v¡ in Dk is in MkiX) if and only iff\$ is in M±iX)

uniformly in f on Sk(l)."

Let us examine the relation between finite A-type and some other traditional

concepts. Recall that the zero type off, meromorphic on Ck, is defined by

T0(f) : = lim sup   .   '       for some s > 0,
r-»oo       log r

and the p-type offFor p>0 by

rrr   / \

rjf) : = lim sup      '       for some s > 0.
r-»oo r

Also, the order of fis defined by

/-. a x-      v l°g+ T,ir,s)   , -
Ord / : = hm sup —=-:———-   for some s > 0.

r-œ logr

Clearly, these definitions are independent of s; and Ord/is in [0, oo]. If Ord/=p

in [0, oo), then rpifi) is called the type off and is denoted by r(fi).

As easy consequences of the definitions involved we have

Proposition 4.4. Let A(r):= max (1, logr) for r>0. Then the following are

equivalent for f meromorphic on Ck:

(i) / is of finite X-type.

(ii) T0(/)<oo.

(iii) Ord/=0a«i/r(/)<oo.
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Proposition 4.5. For p>0, let A(r): = r" for r>0. Then the following are equiva-

lent for f meromorphic on Ck:

(i) / is of finite X-type.

OO rp(f)<co.
(iii) Ord f<p or both Ord f=p and r(f)<oo.

Moreover, by (3.16) we have

Proposition 4.6. For each f meromorphic on Ck with vf in Dk there are constants

A and B in R+ such that rB(fo 9) $ A(BMv)pTp(f) for p^Q and Ord (/» <p) g Ord/

for each C-linear mapping y. C1 -> Ck.

And, from (3.16) we obtain

Proposition 4.7. Iff is in Mk(X), then f° <p is in M¡(X)for each C-linear mapping

<p: C1 ->Ck provided that <p(C') is not a subset o/supp vf.

For the sake of completeness we mention the following result:

Proposition 4.8. (i) If lim supr_ <*> A(r)//x(Pr)<oo for some P>0, then Mk(X)

<=Mk(p.).

(ii) Mk(X) u Mk(n)<=Mk(X + n) = Mk(max (A, n))<= Mk(Xp.).

(iii) Mk(X) n Mfc(ii) = Mfc(min (A,,*)).

5. The Fourier coefficients of a meromorphic function. In [5] Rubel and Taylor

introduce the Fourier coefficients of a function / meromorphic on the plane with

v;(0)=0 as follows:

c,(r;/) :- i- f log |/K««)|c-"* A

for/? in Zand r>0 (where the integral is the Lebesgue integral). If/is meromorphic

on Ck with vf in Z>fc and £ is in Ck, let us define

cP(r;/,£):=cp(r;/|£).

Proposition 5.1. If fand g are meromorphic on Ck with v¡ andv9 in Dk, then for

each p in Z, r > 0, and £ in Ck,

(0 c.p(r;f 0 = cp(r;f £),
(ii)cp(r;l//£)=-cp(r;/£),

(iii) cp(r ; /g, £) = cp(r ;/,£) + cp(r ; g, £),

(iv) Cpí/;/, íe«£)=eipícp(w;/, £)/or s>0W/ m P,

(v) log |/(re,ii£)|=2p=-oo cp(r;f Ç)em where we mean that the symmetric

partial sums of the series converge in the L2-norm (with respect toton[—Tt, n]) to the

function on the left.

Proof. For (v) see [5, 4.2, p. 76]; the rest is proved by trivial verifications.

Q.E.D.
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If /is meromorphic on the plane with r/(0)=0, then we can choose s>0 so that/

is holomorphic and never zero on Bxi2s). Let us define

2wipJw~, fiz)

for each /? in TV. Clearly, the definition is independent of the choice of s. For /

meromorphic on Ck with v¡ in Dk and £ in Ck, let <*„(/; £): = ap(/|£). In this case

we can choose s>0 so that/is holomorphic and never zero on Bkis). By Taylor's

Theorem

for z in i?i(s/|£|) and £ in Ck\{0}. However, there is a function g holomorphic on

Bkis) such that exp ig)=fithere. Let

g(£) = I ^p(0
p = 0

be the expansion of g in terms of homogeneous polynomials converging uniformly

on Bkit) for some t with 0<tSs. Clearly, exp [g|£]=/|£ on Bxit/\í\) for each £ in

Ck\{0} so that [g\£]' = [/|£]'/[/|£] on ^(//|£|). Moreover, [g|£](z)=g(z£)

= Z?=oi'P(Ozp so that [g|£]'(z) = 2P°=1^Pp(£)z^-1 for z in Bx(t/\i\). Therefore, by

the uniqueness of the Taylor coefficients we have <xp(/; £)=PP(£) for all £ in Ck\{0}.

Since aPif; 0) = 0 for all p in TV, we have proved

Proposition 5.2. For each function f meromorphic on Ck with v, in Dk and each

p in TV, aPif; £) is either identically zero or a homogeneous polynomial of degree p in

£ on Ck.

For v in t>k, £ in Ck, p in TV and r > 0, let

Kir;v,Ç):=\   2    K*î Ö07*)*,

/v;(r;v,o :=; 2 **;Q(*!ry,
P \z\ir

np := tv;-tv;.

Then, since g(r, z)=ir/z)"-iz/r)p is continuous onÄ*x [C\{0}] and g(r, z)=0 if

|z| =r, an immediate consequence of (1.5) is

Proposition 5.3. For each v in Dk andp in TV, TVp(r; v, £) is a continuous function

ofir,0onR+xCk.

By Lemma 4.2 of [5, pp. 76-77] we have

Proposition 5.4. Iff is meromorphic on Ck with v¡ in Ùk, then for each r>0and

£/nCk

Co(/;/,0 = log |/(0)| +TVv/(r;£)
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and

2cv(r;f £) = /■*«,(/; t) + Nv(r; v„ £)

for each p in N.

Combining (5.1)(i), (5.2), (5.3) and (5.4), we obtain

Proposition 5.5. If fis meromorphic on Ck with v¡ in Dk, then for each p in Z,

Cp(>",f, £) is a continuous function of (r, £) on R+ x Ck.

6. Admissible divisors. We will say that a divisor v in Dk is of finite X-density

if and only if there are constants A, B and P in R+ such that Av(r; £) ̂ AX(Br) for all

r>R and all f in Sk(l).

Theorem 6.1. Iff is in Mk(X), then vf is of finite X-density.

Proof. Let A, B and P be a uniform defining system for /in ^(A). By the First

Main Theorem

Av»(r; 0 g Tf(r; 0 + log VO +1/(0)|2)

since log V(\ + \f(rettO\2)^0 for r>0, t in [-*■, n] and f in Sk(l). Therefore, if

r>R and f is in 5^(1),

Av»(r; 0 Ú AX(Br) + log V(1 + |/(0)|2)

s [JtMM]„

so that vf is of finite A-density.   Q.E.D.

Remark. When k=l, the above result is a consequence of Theorem 5.3 of

[5, p. 88]. In fact, the above proof is essentially the same as that given for the

corresponding result in [5] if we make the observation that the defining constants

for v|f to be of finite A-density depend upon A,/(0) and the defining constants for

/|£ to be of finite A-type. In particular, and this is the crucial point, the constants

derived in [5] do not depend upon Ç. In this case, we have repeated the details of the

proof in order to emphasize this fact. In the sequel we will omit proofs that are

totally analogous to those given in [5] for corresponding results. (See also [5,

remark following 1.11, p. 58].)

For v in Dk, p in TV, r>s>0 and £ in Sk(l) let

Cp(r, s; v,i):= r'*N'p(r; v, {)-s'>Np(s; v, £)

= ^2    <z;Oz-p
P s<|a|gr

and let Cp(s, r; v, £):= Cp(r, s; v, $). We will say that vin Dk is X-balancedprovided

that there are constants A, B and P in P+ such that

\Cp(r,s; v, 0| ^ AX(Br)/r' + AX(Bs)/s"

for all p in N and all £ in 5^(1) whenever r>s>R. And v in Dk will be called
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X-admissible whenever v is both A-balanced and of finite A-density. Note that, by

taking appropriate maxima, we can assume that for each A-admissible divisor there

is one set of constants A, B and R which satisfy the conditions for finite A-density

and for A-balancing.

Lemma 6.2. If v in Dk is of finite X-density and there is a sequence {ap}psN of

complex-valued functions on Sk(l) and constants A, B and R in R+ such that

|rpcep(£) + TVp(r; v, £)\ ̂  AX(Br) for all p in TV and all | in Sk(l) whenever r>R, then

v is X-admissible.

Proof. See [5, 2.5, pp. 65-66]. The balancing constants can be taken to be 3A, eB

and R if we also assume, without loss of generality, that A, B and R are also the

defining constants for the finite A-density of v.   Q.E.D.

Lemma 6.3. If v in Dk is X-admissible, then there is a sequence {ccp}peN of con-

tinuous complex-valued functions on Sk(l) and constants A, B and Rin R+ such that

| r "«„(£) + TVp(r ; v, f ) | ̂  A X(Br )/( 1 +p) for allp in TV and all | in Sk( 1 ) whenever r>R.

Proof. (This is a generalization of [5, 2.5, p. 65]; but since the proof given there

requires some modification in order to achieve the continuity of the ap, we give a

complete proof here.) Let v be A-admissible with defining constants A, B and R.

First of all we observe from [5, 1.11, p. 58] that if A': = 2A and B': = 2Be, then

(*) |Cp(r, s; v, 0\ â A'X(B'r)/pr" + A'X(B's)/psp

for all p in TV and all | in Sk(l) whenever r > R and s > R.

Now, let w: = min{/7GTV : liminfr_„o r_pA(ÄV) = 0} where we agree that

min 0 =oo. Thus, m is in TV U {oo}.

Definition ofapforp in Nandp<m. Since r~pX(B'r)>0 and lim infr_„o r~"X(Br)

,¿0, it follows that liminf^oo r-pX(B'r)>0. But r~pX(B'r) is continuous and

strictly positive on [R+l, oo) so that /p: = inf {r-pX(B'r) : r^R + l}>0 and there

is rp^R+l such that (rp)-pX(B'rp)-¿2Ip^2r-pX(B'r) for all r>R+\. For f in

Sk(l) define

«,(*)'■ = -(rp)-"Np(rp;v,0.

Then ap is continuous on Sk(l) by (5.3). Moreover,

\«p(t) + r-pN'p(r; v, £)\ ^ \Cp(rp, r; v, f)| +(rp)-"|TV;(rp; v, £)|

A'XjB'r,)   A'X(B'r)   Nv(erp; j)

-    p(rp)p   *    prp    +   p(rp)p

for r>R and t; in 5^(1) by (*) and [5, 2.2, p. 65]. Therefore, since v is of finite

A-density, we have

(**)    \«M) + r-pN'p(r;v, ft| ¿ ^+«Ä < 5^'A(fV)
V     J      I   PVÏ7 P\   »    , S.7I   - prp pr„       T    p^y      _ pr„

for r>R+1 and è, in Sk(l) by the choice of rp.
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Definition ofapforp in NandpTîm. By the definition of w there is an increasing

unbounded sequence of real numbers {sq}qeN with íj>P + 1 such that

lim,-,«, (sg)'mX(B'sq) = 0. Consider the sequence {(sq)-pNp(sQ; v, 0},eAr. As in (**)

(for q'^q)

\(sq)-mp(sq; v, 0-(sq)-''Np(sq.;v, ¿)|

g \Cp(sq, sq>; v, £)\ +(sq)-'\N"p(sq; v, f)| +(sq,)'F\N;(sq,;v, fl|

A'X(B'sq)   A'X(B'sq.)   AX(Besq)   AX(Besq-)

= p(sQy     p(sq.y + p(sqy + P(Sq.y

, 2A'X(B'sq)   2A'X(B'sq)

=   (sQr      (sQ-r

which converges to zero as q approaches oo. Thus, the sequence is uniformly

Cauchy on Sk(l) so that

*„(£)•■= -lim(sq)-'Np(sq;v,Ç)

is continuous on Sk(l) by (5.3). Moreover, as in (**)

\-(sq)-pNp(sQ; v, 0 + r'"N;(r; v, f)|

^ \Cp(sq, r; v, i)| +(sq)'>\K(sq; v, t)\ Ú ^^ + 2^>)

for i in Sk(\) and r>R+1. But lim,-,« (sq)'mX(B'sq) = 0 by choice; therefore,

\<xp(0 + r-"N;(r;v,0\ = lim \-(sq)-»Np(sq; v, 0 + r-pK(r; v, £)|
q-* oo

(***) ^l'A(PV)   5^'A(PV)

for all £ in Sk(l) whenever r>P+l.

Consequently, for each p in N,

\r"ap(0 + Np(r; v, fí| ï r»\«p(£)+r-*N;(r; v, ¿)| + \N';(r; v, £)|

5¿'A(PV)   vlA(Per)

/> />

lUA(2Per)     22^A(2Per)
p =      P + l

for all £ in 5k(l) whenever r > R +1 by (**) and (***).   Q.E.D.

The major result of this paper is the following :

Theorem 6.4. A divisor v in Dk is the divisor of a function f in Êk(X) if and only

ifv is X-admissible.

The proof will depend upon the properties of a pair of operators, the first of

which is the integral operator 8k defined by
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8kíf](í) := (k-l) \\l-t)k-2f(t0dt
0

for £ in Bk(r) and/: Bk(r) -> C.

Lemma 6.5. Iff is holomorphic on Bk(r) for some r>0 and k^2, and £ is in

Bk(r), then

(i) 8k[f] is holomorphic on Bk(r).

(ii) «fc[/](0 = (l/í/fc(l))k(i)/((C|OíK(a where (£|£) denotes the standard

Hermitian product of £ and Ç.

(iii) Iff(0)^0, then

Sfc[log 1/11(0 â-r^r, f      log |/(«lfífíki(í).
k\l>JSi¿l)

(iv) //"/« eni/re withf(0)=l, then

log+ Af» g 83k-1[Ä/(4r) + 2TVX4er)]

for all r>0 where

B,(r);= max {8k[log |/|](£) : |£| ¿ r}

and

N,(r) -t^tt f      TVv/(r; £>i(0
KfclU Jsfcd)

Proof, (i) is clear, (ii) is Lemma 5.3 of [6, p. 414]. (iii) is Lemma 5.4 of [6, p. 414].

(iv) is a consequence of Lemma 5.6 of [6, p. 415] and the proof of Proposition 2.2

of [5, p. 65].   Q.E.D.

For/holomorphic on Bk(r) we define the C-linear differential operator 8k by

8*1/1«) := (¿TiiS I**"1.»].-!

for £ in Bk(r).

Lemma 6.6. Let f be holomorphic on Bkir)for some r>0 andk^2. Then

(i) ///(0) = 0, then 8k[f ](0) = 0.

(ii) 8k[f] is holomorphic on Bkir).

(iii) 8fcoSkr/]=sko8ic[/]=/

Proof, (i) is obvious, (ii) is an immediate consequence of the Leibnitz formula

and the chain rule. That 8k o 8k = 8k o 8k is proved by a standard interchange of

integral and differential operators. If / is a homogeneous polynomial then

8fc° 8fc[/]=/by (6.5)(ii) and Lemma 5.8 of [6, p. 415]. If /is holomorphic on

Bkir), then/is the uniform limit of a sequence of homogeneous polynomials on a

neighborhood of 0 so that Sk o 8k(f]=fby the preceding case, (ii), (6.5)(i) and the

identity principle.   Q.E.D.

Proof of Theorem 6.4. If/is in ¿sfc(A) then vf is A-admissible by an analogue of the

proof of Theorem 4.6 of [5, p. 78] followed by (5.4) and (6.2). Conversely, if v in
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Dx is A-admissible then v=vf for some fin ÉX(X) by Theorem 5.2 of [5, p. 87].

Therefore, suppose that v in Dk is A-admissible where k 2:2. Choose an entire

function P on Ck with vF = v and P(0) = 1. By (6.3) there is a sequence {ap}peN of

continuous complex-valued functions on S=Sk(l) and constants A, B and P in

R+ such that \r"ap(i) + Np(r;v, 0\SAX(Br)/(l+p) for all £ in S and /> in N

whenever r>R. Let c0(r; £): = Nv(r; 0, cP(r; 0- = ^[r"^p(0 + Np(r; v, £)], and

c.p(r; i) := cp(r; 0   forp in N.

Then for each f in S and r > P,

(1) 2    Mn 0\2 = MA(Pr)]2C < oo   where C := | l//>2
p = -oo p = l

[Here we have assumed that A, B and P are also the defining constants for the

finite A-density of v.] By Theorem 5.1 of [5, p. 84] there is a unique entire function

ft on C for each | in S such that/{(0)= 1, vf¡ — v\¿ and cp(r;ft) = cp(r; f) for each/?

in Z and r > 0. It follows immediately from (5.4) that for each p in N and f in £

(2) «p(/i) = «p(0

so that ctp(/?) is continuous in £ on S. Moreover, for each i in S and r > R

± f_J\og \ft(re»)\\dt

^ Ü- f   |log \f((reu)\ |2 ¿il       [by Holder's Theorem]
(3) tlltj-n J

[-     co -.1,2

=     2,    lcp(r;/{)l2 [by Parseval's Theorem]

^ ^C1/2A(Pr) [by (1)].

But F\i is entire on Cfor each f in S; and P|f(0)= 1 and vFii = v\£ by construction.

Therefore, there is a unique entire function g( on C for each £ in S such that

(4) F\$=f(exp(gi)   and   g{(0) = 0.

Since Re g( is harmonic on C for each £ in 5, it follows that for z in C with \z\¿r

and r > R

1   Ç" 4r2-\z\2
Reg((z) = T-       Reg(2reil) ._   ,,    'l2 ifr [Poisson Formula]

LttJ-k \lre —z\

1      fit 4_2_|_|2 1      /•« 4_2_|_|2

- ¿ j_n log |P(2re«0| j&4,*-¿ ]_, log LW)I ||Jp *

[by (4)]

g 31og+ MF(2r)+¿£ |log \M2re«)\ \^^dt

^ 3 log+ MF(2r)+3ACll2X(Br) [by (3)]

= : 3P;(2r).
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Therefore, by the Borel-Carathéodory Lemma [7, p. 175], since g((0)=0, Mn(r)

^ l2K(4r) for each f in S and r>R. Let ap(|) be the pth Taylor coefficient of gt

at 0. Then by the Cauchy estimates, |ap(£)| ^ l2K(Ar)r~p for each p in TV, f in S

and r >R. Thus, for all £ in Bk(r) with r> R, $ in S, and p in TV,

so that

fc(tfio) = 2 «p(í)aiopp=i
converges uniformly in (£, ¿) on Bk(r)xS for r>Ä. However, from (4) we obtain

aP(0 = ¿J    ^(^-" & = «^ £)-«,(/<)

when 2?fc(s) n suppr= 0. Now ap(F; £) is continuous in f on 5 by (5.2) and

avifd is continuous in f on 5 by (2). Therefore, g?((£|i)) is continuous in i on £

for each £ in Ck and is holomorphic in £ on Ck for each £ in S.

Let F: = Kfc(l) and G(£): = (1/K) js &((£|f)Vi(i). From the preceding it is clear

that G is entire on Ck with C7(0)=0. Let H:= 8k[G]. Then by (6.6)(i) and (ii) H is

entire on Ck with #(0)=0.

Let/:= F exp (-H). Then/is entire on Ck with vf=vF=v and/(0) = 1. To show

that / is of finite A-type we proceed as follows: Since /|f=F|£ exp (—H\i)

=/4 exp (g( — H | i) by (4), we have for each £ in Ck

\ f log I/TOÖW0
(5)

= p Js log \m\m°M)+\\s Re [^((£ií))-^((íioaK(a.

But by (6.5)(ii) and (6.6)(iii) this second integral is equal to the real part of

(6) \ js gM\0)ox(i)-8k[H](0 = G(0-8k o 8k[G](0 = 0.

And since log |/{| is subharmonic on C for each f in S we have for £ in Bk(r) with

r > R by the Poisson estimate

log \fM\m ^ ¿£ log i/«(^")i|^iSA

(7) ¡¡¿J^iogUKa^l*

^ 3,4C1/2A(25r)   by (3).

Consequently, combining (6.5)(iv), (6.5)(iii), (5), (6) and (7) we get

log+ M Ar) S 83k-1[3ACll2X(%Br)+2AX(4Ber)]

g S3k-l5ACll2X(4Ber)

for r > R. Thus, /is of finite A-type by (3.4).   Q.E.D.
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Remark. It is easily verified that the function /in the above is canonical in the

sense that it is the unique entire function on Ck such that/(0) = 1, vf=v and

«p(/; 0 = [P+kp~l) \\s «ptfXflöMf)-

7. Regular growth functions. We will say that a growth function A is regular

for k if and only if Mk(X) = Q(Ek(X)). Also, A is called regular if A is regular for all

dimensions.

Proposition 7.1. IfXis regular for k+\, then X is regular for k.

Proof. Suppose that A is regular for k + \. By (4.2) it suffices to show that

Mk(X) is a subset of Q(Ek(X)). Let/in Mk(X) be given. Define t: Ck+1 -+ Ck by

t(z1; ..., zk + x) = (zx,..., zk). Then r is C-linear so that P:=/° t is in Mk + x(X) by

(4.7). By hypothesis, there is H in Ek + x(X) such that H^O and //Pis in Pfc+i(A).

Choose £* in Ck+1\(supp vH u supp vF). For £ in Ck+1 define //*(£) = //(£ + £*)

and P*(£) = P(£+£*). By (4.1) H* and //*P* are in 4 + i(A). Define r*:Ck->Ck+1

by t*(z1( ..., zk)=(zx,..., zk, 0). Then t* is C-linear so that «* = //* o T* and

«*/* are in £fc(A) when/*=P* ° t*. For 77 in Ck define «(ij) : = h*(-n — t(£*)) and

/#(t?-t(£*)). Then « is in Pfc(A) and hf* is in P"(A). But by construction «£0 and

/#=/.   Q.E.D.
We will say that A is strictly regular for k if and only if for each v in Dk which is

of finite A-density, there is v in Dk such that v'^v and v is A-admissible. As before,

we say A is strictly regular if A is strictly regular for all dimensions.

Theorem 7.2. If X is strictly regular for k, then X is regular for k.IfX is regular

for k, then X is strictly regular for 1.

Proof. Suppose A is strictly regular for k. Let/in Mk(X) be given. Then vf is of

finite A-density by (6.1) and there is a divisor v in t>k such that v'^v and v is

A-admissible. By (6.4) there is « in Èk(X) such that vh = v'. By (4.1)(i), «/is in Mk(X);

but vhf = vh + vf = v' + v° — vf 2:0 so that hf is in Ek(X) by the elementary properties

of divisors. Thus, A is regular for k by (4.2). The second statement in the theorem

is a consequence of (7.1) and Theorem 5.4 of [5, p. 90].   Q.E.D.

In order to show the existence of a reasonably large class of regular growth

functions we present the following sequence of results :

Proposition 7.3. If X is a growth function for which there are constants A, B

and Rin R+ andp0 in Nsuch that

[' AÍOí"""1 dt á AX(Br)r'" + AX(Bs)s'p

whenever r^s>R andp0úp in N, then X is strictly regular.

Proof. (Compare [5, p. 71].) Suppose v in Dk is of finite A-density with defining

constants A', B' and P', which can be assumed to be greater than 1. Choose an
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entire function/on Ck with v,=v. Let w. = exp (2ni/p0) and define/,(£):=/(cu"£)

for p in TV and £ in Ck and g:=/i/2- • -/Po. Clearly, g is entire on Ck and v':=vg

= vx-\-|-vPo^i'Po = v where V = W Moreover, vp(z; {) = v(z; wp£) by con-

struction. But Ioj"^! so that

PO PO

"An 0=22 "«(*; 0=22 "(*; ««0
|z|gr 9 = 1 9 = 1 |z|gr

Po

= 22 "i*""; 0 = Po"Ár; 0 ^ PoN,(er; f),
9 = 1 IzlSr

and

/Vv-(r; |) = PoNv(r; 0

by (1.1) and [5, p. 65]. Thus, v is of finite A-density since TVv-(r; i)=PoA'X(B'r) for

£ in Sk(l) and r>R'. It now suffices to show that v' is A-balanced. Observe that if

p<p0 then 2?°=1 cuI",=0 so that

Cp(r, s; v', g) = \    2    "'(z;^-'

1 PO

= -22 <z> ̂Oz-"
P s<\z\£r 9 = 1

Po   1

= 2 -   2   *(*»«; fKp   [by (l.i)]
«=l/' s<|z|Sr

Po

= 2 «»"Cp(r,i;v, 0 = 0.
9 = 1

On the other hand, if p^p0 and r^s>R":= max (/?, /?'), then

|Cp(r, s; v', ft] á ;    2    "'fr Okl "P = ̂  f '"" *»</; Ö
Z7 s<lz|gr /> Js

i r
^ - nv,(r; i)r-p+\ nv.(f, i)r"p_1 A    [integrating by parts]

^ Ç #,(«■; |)r-p+/70 f TVv(e/; f)*-*"1 A
/' Js

^ A'X(B'er)r-p+p0A' CX(B'et)t~p-1 dt

S A'X(B'er)r-p+p0A' f  " A(u)U-"-1(5'e)-p-2 ¿h
Jß'es

= ^'A(5'er)r-I,+^'(5e)-2j,-2[^A(Ä5'er>-p+^A(55'ei)i-p]

^ ^"A(5V)r-" + ̂ "A(5"i)j-p

where ^": = ^'+^0^'^ and B": = B'e+BB'e since 5'>1. Thus, *' is A-balanced.

Q.E.D.
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Corollary 7.4. IfX is slowly increasing, i.e., if there is B> 1 such that X(Br)/X(r)

is bounded for r sufficiently large, then X is strictly regular.

Proof. Lemma 3.7 of [5, p. 71] shows that the hypothesis of (7.3) holds when A

is slowly increasing.   Q.E.D.

8. Applications. Since max (1, log r) and r" for p>0 are slowly increasing

functions of r, they are regular by (7.4). Combining this with (4.4) and (4.5) we

obtain

Proposition 8.1. Let p^tO be given. A meromorphic function on Ck has finite

p-type if and only if it is the quotient of two entire functions having finite p-type.

Proposition 8.2. The following are equivalent for f meromorphic on Ck:

(i) f is a rational function.

(ii) r0(f)<co.

(iii) Ord/=0ani/r(/)<oo.

Proof, (ii) and (iii) are equivalent by (4.4). Since each coordinate projection has

finite zero-type by (3.4), it follows that each polynomial and, therefore, each

rational function has finite zero-type by (4.4) and (4.1)(i). Conversely, by (8.1)

it suffices to show that each entire function having finite zero-type is a polynomial.

But if/is entire and t0(/)<oo, then assuming without loss of generality that v,

is in hf, from (3.4), (3.14) and (4.4) we obtain

log+ Mm(r) â ATm(%er,s) + B g AT,(%er; Ç) + B

^ A'AT,(%B'er) + B ^ A"A'A log(%B'B"er) + B

for r sufficiently large. The Cauchy estimates then show that/|f is a polynomial of

degree no larger than A"A'A. Consequently,/is a polynomial.    Q.E.D.

We can now state the following criteria for algebraic divisors :

Proposition 8.3. Let A(/) = max (1, log/-) for r>0.  Then the following are

equivalent for v in Dk :

(i) v is X-admissible.

(ii) v is the divisor of a polynomial in Ck.

(iii) «v(r; £) is bounded for all r>0 and all Ç in Sk(\).

(iv) v is of finite X-density.

Proof, (i) and (ii) are equivalent by (8.2), (4.4) and (6.4). If v is the divisor of a

polynomial then «v(r; Ç) is bounded by the degree of that polynomial. Thus,

(ii) implies (iii). Suppose that nv(r;Q^A. Then Av(r; i)=5o nv(t; 0 dt/t

= §rSonv(t; ¿j) dt/té A log r/s0 for rts0 where supp v n Bk(s0) = 0. Thus, v is of

finite A-density; and (iii) implies (iv). If, on the other hand, v is of finite A-density,

then for r sufficiently large

NÁr;t)= f nv(t;£)^^AlogBr
Jso l
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so that fS0 [nv(t; £)-A]dt/fiA log Bs0. But if nv(t0; t)-A^e>0 for any i0>0,

then «v(r; f)-/i^e>0 for all t>t0 and J,0 [«v(/; 0-/4] dt/t is unbounded since

Jt" e/t dt = <x>. Thus, (iv) implies (iii). It now suffices to show that (iii) implies (i).

But \Cp(r,s;v, |)| ^s~"nv(r; 0 for all r~as>0, so that v is A-admissible if «v is

bounded.   Q.E.D.

Let us now examine the meaning of finite A-density and A-admissibility for the

other classical growth functions.

Proposition 8.4. Let X(r): = r" for p>0. Then

(i) A divisor v in Dk is of finite X-density if and only ifr~"nv(r; £) is bounded for

allr>Oandall£inSk(l).

(ii) When p is not an integer, every divisor of finite X-density is X-admissible.

(iii) When p is an integer, a divisor v in Dk is X-admissible if and only if there is

R>0 such that r~"N'Pir; v, |) is bounded for all r> R and all f in Skil) and v is of

finite X-density.

The proof is an appropriate modification of that given for Proposition 3.3 of

[5, p. 69].
Combining (6.4) with (4.4), (4.5), (8.3) and (8.4) we obtain the following

generalization of a theorem of Lindelöf (see [4], [5, p. 88] and [6, p. 418]):

Proposition 8.5. A divisor v in Dk is the divisor of an entire function having

finite p-type if or p ̂  0) if and only if r' "«v(r ; f ) is bounded for all r>0 and all f in

Skil) and, when p is a natural number, r~°N'0ir; v, £) is bounded for all f in 5fc(l) and

all r sufficiently large.

9. Functions of zero A-type. We say that a meromorphic function / on Ck is

of zero X-type whenever there are constants s>0 and B>0 such that

lim Tfir, s)/XiBr) = 0.
r-»oo

Let M°(A) and £°(A) denote, respectively, the classes of meromorphic and entire

functions of zero A-type on Ck. As an immediate consequence of the definitions

involved we have the following relations between finite and zero A-type:

Proposition 9.1. (i) Afg(A)cMfc(A) and E%iX)^EkiX).

(ii) IfX is bounded, then ££(A) = TWg(A) = Ffc(A) = MkiX) = C.

(iii) IfXis swiftly increasing, i.e. if there is B> 1 such that limr^œ A(/)/A(¿j>) = 0,

then MliX) = MkiX) and E^iX)=Ek{X).

(iv) Mk(X) is the union of those classes Mki¿p) where lim,.^«, /x(r)/A(A(¡r) = 0 for

some B^ > 0.

(v) If limr^x piir)IXiBr)=0 for some B>0, then Mfc0¿)eAf£(A).

Note. In view of (ii), in the sequel we will assume that all growth functions are

unbounded.



354 R. O. KUJALA [November

We say that A0: R* ->Ä+ is a vanishing function provided that A0 is decreasing

and converges to zero at oo. The theory of functions of zero A-type is completely

analogous to the theory of functions of finite A-type and is developed by judiciously

replacing the constants "A " by vanishing functions "A0". We now list some of the

results which can be obtained in this manner:

Proposition 9.2. (See 4.1). (i) M°(X) is an extension field of C and is invariant

under affine transformations of the variable in Ck.

(ii) Either Mk(X) = E°(X) = C or Ek(X) contains the ring of complex polynomial

functions on Ck and Mk(X) contains the field of rational functions on Ck.

Proposition 9.3 (See 4.3). Suppose fis meromorphic on Ck with v¡ in Dk. Then

fis in Mk(X) if and only if there are constants B > 0 and P > 0 and a vanishing function

A0 such that Tf(r; £)^A0(r)X(Br)for all r> Randall £ in Sk(l).

We say that a divisor v in Dk is of zero X-density if and only if there are constants

P>0 and P>0 and a vanishing function A0 such that Av(r; £)?¿A0(r)X(Br) for all

r>R and all £ in Sk(l). Let M°k(X) = Mk(X) n M°k(X).

Proposition 9.4 (See 6.1). Iff is in Mk(X), then vf is of zero X-density.

We say that v in Dk is finely X-balanced if and only if there are constants P > 0

and P>0 and a vanishing function A0 such that

|C,(r, s; v, £)\ g A0(r)X(Br)r'" + A0(s)X(Bs)s-p

for all p in N and all £ in Sk(l) whenever r>s>R. And we say v is finely X-admissible

whenever v is of zero A-density and is finely A-balanced.

Proposition 9.5 (See 6.3). If v in Dk is finely X-admissible, then there is a

sequence {ap}pew of continuous complex-valued functions on Sk(l) and constants

B>0 and P>0 and a vanishing function A0 such that

\r>ap(£) + Np(r;v,£)\ £ A0(r)X(Br)/(l+p)

for allp in N and all £ in Sk(l) whenever r>R.

Remark. In modifying the proof of (6.3) it is necessary to define m as

min {peN : lim inf Ao(r)X(B'r)r'p = 0}.

Proposition 9.6 (See 6.4). A divisor v in Dk is the divisor of an entire function

of zero X-type if and only ifv is finely X-admissible.

We say that A is zero-regular for k if and only if every meromorphic function of

zero A-type on Ck is the quotient of two entire functions of zero A-type on Ck; and

A is zero-regular whenever A is zero-regular for all dimensions. In view of (9.1)(iii)

we have

Proposition 9.7. When X is swiftly increasing, X is zero-regular for k if and only

if X is regular for k.
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Proposition 9.8 (See 7.1). If X is zero-regular for k+l, then X is zero-regular

for k.

We say that A is strictly zero-regular for k if and only if for each v in Dk which is

of zero A-density there is a finely A-admissible divisor v in Dk such that v'^v;

and A is strictly zero-regular whenever A is strictly zero-regular for all dimensions.

Proposition 9.9 (See 7.2). If X is strictly zero-regular for k, then X is zero-

regular for k.IfX is zero-regular for k, then X is strictly zero-regular for 1.

Proposition 9.10 (See 7.3). If X is a growth function for which there are con-

stants A, B and R in R+, a vanishing function AQ, and p0 in TV such that

ÍXit)!-"-1 dt Ú A0ir)XiBr)r-p + AXiBs)s-p

whenever r^s>R andp0¿p in TV, then X is strictly zero-regular.

Proposition 9.11 (See 7.4). If X is slowly increasing, then X is strictly zero-

regular.

Turning to the classical growth functions we have

Proposition 9.12 (See 4.4 and 8.2). Let A(r): = max (1, logr). Then the follow-

ing are equivalent for f meromorphic on Ck:

if) fis of zero X-type.

(ii) r0(/) = 0.

(iii) Ord/=0 and r(/) = 0.

(iv) / is constant on Ck.

Proposition 9.13 (See 4.5 and 8.1). For P>0, let A(r): = rp. Then the following

are equivalent for f meromorphic on Ck:

(i) fis of zero X-type.

(Ü) rpif) = 0.

(iii) Ord f<p or both Oxdf=P and t(/)=0.

(iv) fis the quotient of two entire functions of zero X-type on Ck.

Proposition 9.14 (See 8.3). Let A(r): = max(l, logr). Then the following are

equivalent for v in Dk :

(i) v is finely X-admissible.

(ii) v is the divisor of a constant function on Ck.

(iii) nv(r; 0 = O/or all r>0 and all f in Sk(l).

(iv) v is of zero X-density.

Proposition 9.15 (See 8.4). For p>0, let X(r): = rp. Then

(i) A divisor v in Dk is of zero X-density if and only ifr~"nv(r; 0 converges to

zero at r = oo uniformly in f on Sk(l).

(ii) When p is not an integer, every divisor of zero X-density is finely X-admissible.
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(iii) When p is an integer, a divisor v in Dk is finely X-admissible if and only ifv

is of zero X-density and r~°N'p(r;v, £) converges to a complex-valued function on

Sk(\) as r approaches oo uniformly in £ on Sk(\).

Proof, (i) If v is of zero A-density, then nv(r; £)^N,(er; £)^A0(er)(Be)°rp for r

sufficiently large, where A0 is a vanishing function. Thus, r-"nv(r; £) converges to

zero at r = oo uniformly in £ on Sk(l). Conversely, suppose that there is P(e)>0

for each e>0 such that r-°nv(r; £)<e whenever r>R(e) and £ is in Sk(l). Let

P(e) = sup {Av(eP(e); £) : £ e Sk(l)} which is finite since Nv(eR(e); £) is continuous

in £ on Sk(l) by (2.2). Let e0 = ep/2. Then whenever £ is in Sk(l) and

r>max (R(e0), [2K(e0)/e]llD) we have

Nv(r; £) = Nv(R(e0); £)+ P     «,(*; Or1 dt
JB(eo)

< K(e0) + (e/2)rp

so that r-"Nv(r; £)<e. It follows that

A*(r) = sup {s-'Nv(s; £) : s ^ r, £ e Sk(l)}

is a vanishing function such that Av(r; £)^At(r)r" for all r>0 and £inSk(l). Thus,

v is of zero A-density.

(ii) Suppose v is of zero A-density. For each natural number p<p let ep

= e(p—p)/2. As in (i) we obtain that for each e>0

< er'-" i'nv(t; ty-'-1 dt

whenever r>max (R(ep), [2P(ep)/E]1"') so that

Ap(r) = sup {*»-' j'o «v(i; fir*-1 dt : s i r, £ e Sk(l)^

is a vanishing function. Now, for each natural number p and r ^ s > 0

\CP(r, s; v, £)\ g (l/p)    2    <z> ZM ~" = Wp) f'"P ¿Mi *»■
s<lz|£r Js

Integration by parts shows that this integral is dominated by

r-pnv(r,£)+^nv(t;£)rp-1dt.

Thus, forp<p and r^s>0

\Cp(r,s;v,£)\ g At(r)r»-*+Ap(r)r°->.

But, for p > p and r ^ s > 0 we have

\Cp(r,s;v,£)\ è At(r)r°-*+AÏ(s)s»-*l(p-p).
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Hence, if p is not an integer we see that v is finely A-balanced by the vanishing

function

At* = 2 Ap+At   min ip-p).
p<p I   V>P

Thus, v is finely A-admissible.

(iii) If v is of zero A-density and limr_a, r'"Np(r;v, 0 = a(£) where the con-

vergence is uniform in £ on Sk(l) then Ap(r) is a vanishing function where Ap(r) = 1

for 0 < r ^ Rx and for r > Rx

Ap(r) = sup \(l/p) I 2 Áz\ 0z-"    :s^r,£e Sk(l)
^ |s<lzl

where Rx is chosen so that |2r<izi v(z\ 0z""| <p whenever r>Rx. Once again it

follows that v is finely A-balanced by the vanishing function At*+Ap. Conversely,

if v is finely A-admissible then v is of zero A-density by definition and the balancing

condition on Cp implies the Cauchy criterion for the uniform convergence of

r-"N'p(r;v, 0 at r = oo on Sk(l).   Q.E.D.

Remark. An examination of the proof of (9.5) will show that in (iii)

limr^„o r~"N'p(r; v, f) = ap(f) which is continuous on Sk(l).

Proposition 9.16 (See 8.5). A divisor v in Dk is the divisor of an entire function

having zero p-type (for p^O) if and only if r~pnv(r; £) converges to zero at r = oo

uniformly in i on Sk(l) and, when p is a natural number, r~"N'p(r; v, 0 converges

to a complex-valued function as r approaches oo uniformly in i on Sk(l).

10. Extra-regular growth functions. We say that a growth function A is extra-

regular if and only if every meromorphic function of finite A-type is the quotient of

two entire functions of finite A-type which are everywhere locally relatively prime.

And we can make an analogous definition for extra-zero-regularity. The following

is then an easy consequence of the arguments used in (7.2) and (9.9), of Proposition

3.5 of [6, p. 406], and of (8.3), (8.4)(ii), (9.14) and (9.15)(ii):

Proposition 10.1. If X(r): = max (1, log r) for r>0, then X is extra-regular and

extra-zero-regular. If X(r) = rp for nonintegral positive p, then X is extra-regular and

extra-zero-regular.
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