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THE BIFURCATION OF SOLUTIONS IN BANACH SPACES

BY

WILLIAM S. HALL

Abstract. Let L: D<^X->- D^X* be a densely defined linear map of a reflexive

Banach space Jfto its conjugate X*. Define M and M* to be the respective null spaces

of L and its formal adjoint L*. Let /: X"->- X* be continuous. Under certain con-

ditions on L* and /there exist weak solutions to Lu=f(u) provided for each w e X,

v(w) 6 Mean be found such that f(v{w) + w) annihilates M*. Neither M and M* nor

their annihilators need be the ranges of continuous linear projections. The results have

applications to periodic solutions of partial differential equations.

1. Introduction. Sufficient conditions are given for the existence of solutions in

a reflexive Banach space X for the equation

(1.1) Lu=f(u)

where/is a (nonlinear) continuous map of Xto its conjugate X*. We assume the

linear operator L has a nontrivial manifold of solutions. Hence one condition is

that a bifurcation equation can be solved. Results of these kinds are not new; what

is of interest here is that none of the frequently assumed hypotheses of comple-

menting subspaces, direct sum decompositions, and continuous projections are

made. Rather, we show that if the solution to the bifurcation equation satisfies a

continuity condition, then the quotient space and the natural map provide the

necessary tools for solving (1.1).

While thus broadening the class of problems that can be considered via bi-

furcation theory, only weak solutions are obtained. Hence our work neither

replaces nor entirely includes the researches of others in this area. Of these, we

mention the work of Hale, Bancroft, and Sweet [1] for general theory, the paper of

Mawhin [2] for an application to ordinary differential equations, and the efforts of

Cesari [3], Hale [4], Vejvoda [5], Rabinowitz [6], and the author [7], [8] for

applications to periodic solutions of partial differential equations.

The paper is divided into four sections. First, the notation is introduced and a

linear equation is solved. The nonlinear equation is then considered, and the next

section is devoted to remarks on the previous. An example from partial differential

equations concludes the paper.
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2. A related linear problem. Let (D, || • ||) be a normed linear space and X its

isometric completion. (X*, || ■ ||*) will be its conjugate, and for u e X, v e X*, put

(u, v) to be the value of v at u. X is assumed reflexive, and we suppose Z)c x*.

L: D -> D is a given linear operator which we assume has a formal adjoint L*

defined by (<p, Lip) = (>p, L*<p) for all <p, >p in D. Note that L is regarded as having

range in X*, and because X is reflexive, the range of L* is also in X*.

When </r e D satisfies L^=0, then 0=(<p, L>p)=(>p, L*<P) for all <p e D. This moti-

vates the definition

M = {ueX; (u, L*<P) = 0, V<¿ e D)

as the generalized null space of L. Similarly, the generalized null space of L* is the

set

M* = {ue X; (u, 14) = 0, V<¿ e D}.

°M and °M* are their respective annihilators in X*, while X/M and X/M* are the

corresponding quotient spaces. II: X^-X/M will denote the natural map 11«

= u + M.

Note that the conjugate of X/M is °M and that the adjoint fl* : °M -> X* is the

inclusion. Hence (u+M, <p) = (Uu, <p) = (u, Y\*<p) — (u, <p) whenever <pe°M. Also,

because X is reflexive, the dual of °M is congruent to X/M, and the range of L*,

E* = {4,eD;rP = L*<p,4>eD),

is dense in °M. If not, and if v ̂ 0 is in °M\c\E* then by the Hahn-Banach

Theorem and reflexivity, there exists u + M such that (u + M, u)=dist (v, cl P*)>0,

||tt+M|| = l, and u vanishes on cl E*. Hence (u+M, L*<p) = (u, L*<p)=0 for all

<pe D. Thus u e M and so ||m + M||=0t^1.

If ue D satisfies Lu=g, ge D, then g annihilates M* n D since for such <p,

(<p, g) = (u, L*<p) = 0. Conversely, we have

Theorem 1. Suppose for all <pe D, \\<p + M*\\uk\\L*<p\\*. Then for each g in°M*

there is a unique coset u + M=Kg such that any representative is a weak solution of

Lu = g. The operator K: °M* -*■ X/M is linear and bounded with \\K\\ ̂ k.

Proof. Let JS?*: D/M* -* X* be the induced operator defined by &*(<p+M*)

=L*(p, tp e D. By hypothesis,

\\<P + M*\\ ̂  k\\L*<p\\* = k\\&*(<p + M*)\\

and hence (jS?*)-1 is a continuous bijection of E* onto D/M* with norm not

exceeding k.

Define the functional / on E* by l(<p)=((J?*)-1ip, g). Then / is linear, and from

the above

W)\ ú \\(ä?*)-l<P\\ M* ú A#||*|k||*.
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Let / also denote the unique extension to °M, the closure of E*. By reflexivity,

there is a unique u+M such that l(>/i) = (u + M,ifi) for all ifieE*, and ||«+M||

=\\i\\mg\\*-
Let K: °M->- X/M be given by u+ M=Kg. Then K is linear and \\K\\ ̂ k.

Now >j, = ̂ *(<f,+ M*)=L*4,, for some <f> e D. Thus, /(</.) = (u + M, <¡i) =

(u + M, L*</>), and since L*<£ e °M, (u+M, L*<f>) = (u, L*<f>) for any representative

tie u + M. But, 1(<I>)=((£'*)-1<I>, g) = (t + M*, g) = (</>,g) since g annihilates M*.

Therefore, (u, L*<f>) = (Kg, L*<j>) = (<f>, g). This last relation holds for all </> e D since

(jS?*)_1 is bijective. Hence any u eu + M is a weak solution of Lu=g. This proves

the theorem.

3. The nonlinear equation. We now consider the problem Lu=f(u). The follow-

ing properties for/are assumed:

(i) /is a continuous, bounded map of X to X* such that

(3-D 1/001* Ú Cl[\\u\\]

where c± is increasing in ||u||.

(ii) For each ueX, there exists v(u) e M such that f(v(u) + u) is in °M*. The

element v. X^ M is continuous and

(3.2) UK«)|| ̂ c.[|ii|]

where c2 is increasing in ||u||. This is the assumption that the bifurcation equation

can be solved, and that the solution v(u) is a bounded continuous function of u.

Theorem 2. Let f be as above and suppose ||^ + M*|| ^k\\L*<f>\\* for all <f> e D.

Assume the operator K of Theorem 1 is completely continuous. If cx is "sufficiently

small", then Lu=f(u) has a weak solution.

The statement, "if d is sufficiently small" will be clarified in the proof. We

shall need the following result:

Theorem (Michael [9, p. 6]). Let Z and W be Banach spaces and T\Z^-W

a continuous epimorphism. For each X> 1, there exists a continuous A: W-+Z such

that (T o h)(w) = w for all w e IV. In addition,

\\h(w)\\ ï Ainf{||z||;Pz = w}.

We shall use Michael's result with Z= X, W= X/M, and P= II. In this case

(3.3) \\h(u + M)\\ <, A||M + M|.

Proof of Theorem 2. Let A and A be as above. Let B(a)={ue X; \\u\\^a} and

consider the map

Tu = (hoK)(f(v(u) + u))
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where A is as in Theorem 1, and where peMis chosen as in (ii) above. Then T is

continuous, and by (3.1) to (3.3),

17*|| ú X\\Kf(v(u) + u)\\ Ú X\\f(v(u) + u)\\*

S XkCi[\\v(u) + u\\] g Xkci[c2[a] + a].

Hence, if A > 1 and a > 0 can be chosen so that

(3.4) XkCl[c2[a]+a] ^ a

then T maps B(a) to itself. Since A" is completely continuous, Schauder's Theorem

gives a fixed point w. Thus, w = (h ° K)f(v(w) + w) and Ylw = Kf(v(w) + w). Let

u=v(w) + w. Then

(u,L*<P) = (llu,L*<P) = (flw,L*<P)

= (Kf(v(w) + w),L*<P) = (<P,f(v(w) + w)) = (<P,f(u)).

Hence u is the desired solution and the theorem is proved.

The hypothesis that A" be a compact mapping can be removed if both/and v are

Lipschitz continuous in u. Even so, the function Tu=(h ° K)(f(v(u) + u)) is not

necessarily Lipschitzian since h may not possess this property. Hence a method

other than the application of a nonexpansive mapping theorem is required. This is

provided by the following result.

From the interior mapping principle, if T: Z -> W is an epimorphism, then there

is a t>0 such that for each we W, 3z eZ with w — Tz and ||z| ^r||w||.

Theorem (Graves [10, p. 111]). Let G:Z-> W be continuous for ||z||<y with

G(0) = 0. Let T be as above and suppose

||G(z)-G(z')-T(z-z') 1 < S||z-z'||

whenever \\z\\ <y, \\z'\\ <y. Ift8< 1 and \\w\\ <y(l —t$)/t, then there exists z eZ such

that G(z) = w.

We shall apply this theorem with Z=X, W=X/M, and 7=11. In this case any

t > 1 will suffice.

Assume/satisfies the conditions (i)', (ii)' below:

(i)' /is a continuous, bounded map of X to X*, and there are constants di and

d2 such that

(3.5) ||/(0)||* ú di,

(3.6) ||/(")-/(w')ll* á d2\\u-u'\\,

whenever ||«|| =o and ||«'|| _a.

(ii)' For each ue X, there exists v e M such that f(v(u) + u) e °M*. The element

v. X-> M satisfies

(3.7) || KO) || = d3,

(3.8) K«*)-«*»')ll ^ Mu-u'W,
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whenever ||u|| ^ a and ||«' || :£ a. Here, v(0) is an element in M such that/(yj(0)) e°M*.

(v(0) is the bifurcation point for Lu=f(u).)

Theorem 3. Suppose for all <l>eD, ||L*^||*^ ||<£-rM*||. If the constants d¡,

i= 1, 2, 3, 4, are "sufficiently small" then Lu=f(u) has a weak solution.

Proof. Define for ue X, \\u\\ ¿a, the function G: X-> X/M by

G(u) = Uu -Kf(v(u) + u) + Kf(v(0))

where Kis as in Theorem 1. G(0) = 0, and if ||u| ¿a, \\u'\\ ¿a, then by (3.5) to (3.8),

|G(«)-G(«')-n(«-«')|| á k\\f(v(u) + u)-f(v(u') + u')\\*

S kd2\\v(u) + u-v(u')-u'\\

è kd2{\\u-u'\\ + \\v(u)-v(u')\\}

í Ar<4{l+</4}||w-w'||.

Next, \\v(0)\\ gd3. Hence

\\Kf(v(0))\\ Z k\\f(v(0))\\*

í ¿{||/(t,(0))-/(0)||* + ||/(0)||*} ^ k&ds+dj.

Hence if there exists a > 0 and t > 1 such that

(3.9) kd2(l+dé) = rS < 1,

(3.10) k{d2d3 + d,} < a(\ - tS)/t.

Then by Grave's theorem, there is an element we X with ||w|| fía such that G(w)

= Kf(v(0)). Hence Xlw = Kf(v(w) + w), and as before, if u = v(w) + w, (u, L*</>)

= ((j>,f(u)) for all <j>e D. Thus, the theorem is proved.

4. Remarks. Special situations, such as when/contains a parameter, M splits

X, X is uniformly convex, etc., deserve comment.

Remark 1. If f(u)=g(u, e) where ||g(«, «) II * = '?(«> II «ll)> ancl if 1/(«>a)->0

uniformly in a with e, then inequality (3.4) holds for small e. Similarly, suppose

whenever ||w|^a, ||u'||^a,

\\g(Q, e)\\* ^ Pl(e), \\g(u, e)-g(u', e)\\* Í p2(e)\\u - u'\\,

where px and p2 are 0(e) as e -> 0. Then/will satisfy (3.9) and (3.10). However, see

the example, where such a restriction is not required.

Remark 2. Suppose M splits X so that X= M © N with N closed in X. Assume

/ and v satisfy the Lipschitz conditions (i)' and (ii)' of §3. Then the contraction

principle can be applied to the mapping Tu = (A ° K)(f(v(u) + u)) where A is the linear

isometry between A7 and X/M. By (3.8) v is uniquely determined by w. Put u = v(w)

+ w to obtain the locally unique weak solution to Lu=f(u).

In this case w is the limit of a sequence of Picard iterates

wn - (A °#)(/(i;(wn _!) + *„_!))
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where w0 is any element in N with ¡w0|| ¿a. Thus, to compute wn,

(i) find vn — v(wn_i) e M such Ü\alf(vn + wn_i) annihilates M*,

(ii) put wn = (ho K)(f(vn + wn^i)).

In the special case where X=X* is a Hubert space, M=M*, and w0 = 0, we

obtain the sequence used by Rabinowitz in [6, p. 159].

Remark 3. If X is uniformly convex, then corresponding to each u + M in

X/M, there is a unique w e X such that || u + M || = | w ||. w is orthogonal to M in the

sense that ||w + t>|| = ||w|| for all veM (Nirenberg [11, p. 30]). In addition, w

depends continuously on the coset u + M. To see this, let un + M -*u+M with

||«+M|| = 1. Let 8 e (0, 1) and choose n so large that

||wn-H+M|| < S   and    | ||«n + M+M[|-2||K + Ai|| | < 28.

If wn is the element in X with ||w„|| = ||w„ + M|| then |wn| < 1 + 8, and from the

above, ||«n + tt + M| >2(1-8).

Put *n=wn/(l + S)and x = w/(\ + 8) where ||w|| = ||« + Ai ||. Then ||x„|| ^ 1, ||jc|| ^ 1,

and

¡(x»+*)/2| = ||wn+w||/2(l + 8)

^ 11«. + « +M ||/2(1+8) ̂  (l-8)/(l + S).

By uniform convexity, ||xn-x|| ^r?{(l - S)/(l + 8)} where r¡(6) -> 0 as 6 -» 1. Hence

wn^w.

Thus, when X is uniformly convex we can define h : X/M -> X by h(u + M) = w,

where ||w|| = |«+M ||, and search for a fixed point to Tu=(ho K)(f(v(u) + u)). If,

for example, (3.4) holds (with A= 1), then one exists, and the solution to Lu=f(u)

is of the form u = v(w) + w where v(w) e M and w is orthogonal to M.

In general, h is not linear, but if A" is a Hubert space then h is just the linear

isometry relating X/M and M1, the orthogonal complement of M.

Remark 4. Using some theory from monotone maps, it is possible to give

conditions insuring that when M=M*, the bifurcation equation can be solved.

Let u be fixed in Xwith ||w|| ̂ a. Consider the functional lv(<P) = (<P,f(v+u)) where

<p and v are in M. By (3.1),

\IM)\ Ú \\f(v + u)\\*U\\ â{Ci[\\v\\+a]}\\<P\\

and so lv is continuous on M for each such v. Hence a mapping v -> Bv to the dual

of M is defined by (<p, Bv) = (<p,f(v+u)). Suppose /is such that

(i) B is monotone, (<p->p, B<p-Bip)^0 for all <p,<pe M,

(ii) there exists a closed ball C<= M with 0 e C such that (<p, B<p) ^ 0 on 8C.

By a theorem of Strauss [12, p. 118], B sends an element v(u) of M to zero. But the

dual of M is congruent to X*/°M. Hence f(v(u) + u) annihilates M* = M.

Remark 5. When X has a Schauder basis of eigenvectors of L*, it may be pos-

sible to find a simple criterion insuring that |0 + Af*|| ^¿||L*<£||* for all <p e D.
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Thus, suppose ueXhas the unique expansion w = 2 u(s)e(s) where e(s) e D for

each 5 in a (countable) index set T. Assume (e(s), e(t)) = 8st, so that the Fourier

coefficients of u are given by u(s) = (u, e(s)). Let L*e(s) = v(s)e(s), and put I^Ti

u T2 where F^fs e F; v(s)=0} and T2 is its complement.

Without loss of generality we can suppose that the members of D are finite linear

combinations of the basis elements {e(s)}. Then </> = v + w with

(4.1) P-r^'M*)   and   w = Y <l>(s)e(s)

where 2' is the sum over r\ and 2" is over T2. Because v e M*, ||^ + M*|| á ||^—»||

Now suppose (X, ||| • ||| ) is a sequence space forming a Hausdorff-Young pair

with X; that is, there exists a linear map B to u in X from its sequence of Fourier

coefficients u={u(s)} in Ï such that ||«|| :£ ||ßu|| ^ |||u|||. If 5*: X* -*■ $* is the

induced map then for te X* and corresponding ti = B*v in £*, |||b|||*á ||u||*.

For <£ e D define a map £* on 36 by {<£(î); s e F} ->- (v(í)^(í); s e F2}. The image

under S* is precisely the sequence of Fourier coefficients for L*<f> since

L*<f> = L*(t;+ w) = L*w = 2" v(s)<f>(s)e(s).

Let w be as in (4.1). Then to={<f>(s); s e F2}. Hence if |||ro||| ^ |||£*rt>|||*, then by

the properties of B and its adjoint,

U + M*\\ ï \\w\\ S I» » »I á *|||ß*»|* á *i¿vr-

For example, let L be a partial differential operator with constant coefficients.

Let X=LT(T) where r e (2, oo) and Tis the period cube of side 27r in Rn centered at

0. A suitable choice for D is the set of trigonometric polynomials

(4.2) <j>(x) = 2 Me""*

where s=(slt s2,..., sn) is an «-tuple of integers, x = (xlt x2, ■ ■., xn) is a point in

Rn, s-x=s1x1-\-r-s„xn, and <j>(-s) = <f>(s).

If L = 2ip|sm öp^", then the formal adjoint L* is defined via integration by parts,

\ <¡>i4=\ tm,
Jt Jt

and so ¿*=2tpis« (-l^-D* with

LVS* = v(s)eisx = { 2   (-l)p(w)pap\<?is*.
llPlSm J

By the Hausdorff-Young Theorem [13, p. 247], X = lr., l/r+ l/r' = 1. Hence if w

is as in (4.1), the Holder inequality gives

in »hi = {r wor}1** = {2" K*>KsMs)ryir'

g k{Z KIMM}1* - k\\\2*to\l*
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wherek={Z" l/\v(s)\"}1"!,q=p/(p-2). Hence if {l/v(j); s e F2}is in lq,q=p/(p-2),

then \\<P + M*\\ uk\\L*<p\\* for ail <P e D.
Remark 6. Let {gn} be a norm 1 sequence converging weakly in °M* to g. We

want to find conditions insuring that Kgn -* Kg strongly in X/M and hence that A"

is compact.

By the Hahn-Banach Theorem there is an element xn e °M* with ||x„||* = 1 such

that \\K(gn~g)\\=(K(g„-g), xn). Since the range of L* is dense in °M* there

exists tpn=L*<pn such that \\xn — 0n||* < 1/n. Let k= \\K\\, and recall from Theorem 1

that (Kg, L*<p) = (<p, g) whenever <pe D and ge°M*. Hence

Il*(*»-S)|| =(K(gn-g),xn)

= (K(gn-g),xn->pn) + (K(gn-g),L*<pn)

< 2k/n+(<pn,gn-g).

Hence the convergence of Kgn to Kg depends on showing that (<pn, gn—g) -*■ 0.

Let X, 3E, etc. be as in Remark 5. Assume that for u={m(í)} in 3£ and o={i;(í)}

in $*, (u, o) = 2 u(s)v(s). Suppose {e(s)} is also a basis for X* so that if v e X*

then r = 2 ^faM*) where o={t;(s)} is its sequence of Fourier coefficients. It is easy

to check that when u = '£u(s)e(s) is in X, Parseval's Theorem holds, i.e. (u,v)

= Hu(s)v(s)=(u,\>).

Suppose v(s) is as previously defined and for gn and g e °M*, let g„ and g be their

corresponding sequences in X*. Define a map Ä by

Q-+{g(s)Hs);seT2} = ®Q.

As in (4.1), write <pn = vn + wn, and observe that since g annihilates M*, (<pn, gn—g)

= (wn,gn-g). Thus

(<f>n,gn~g) = (Wn,gn-g) = J"<f>n(s){gn(s)-g(s)}

= 2nMs>(s){gn(s)-g(s)}Hs)

Ú P*ron|||*p(8n-ö)|||.

Now |||S*ron|||*_ ||L*wn||* = |L*0„||*= \\ipn\\* is bounded. Hence A" is compact if

gn -> g weakly implies Äfl„ -*■ Äfl.

For instance, suppose X, D, L, etc. are as in the example of Remark 5. If gn ->■ g

weakly in X*, then

gn(s) =     gne~isx^     ge'isx = g(s)

Jt Jt

for each s. Now,

P(fl»-B)iu = {(Yi+ZùiigA^-gismsr}11''

where 2í is the sum 2" °ver {•*; \s\ =r) and the second is over its complement.

Again suppose {l/v(s);seF2} is in lq,q=r/(r—2). If r is sufficiently large, the
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Holder inequality shows that 2n can be made arbitrarily small. This fixes r, and

since gn(s) -+ g(s) uniformly in s for \s | á r, 2î also goes to zero as n -*■ oo. Hence

in this case, the assumption v1(s) e lq insures both the continuity and complete

continuity of K.

5. An example.   Consider the equation

(5.1) c2wtt(t,y) + A2"w(t,y) = b\w(t, y)]'-1 sgn w(t, y)+g(t,y)

where y = (yi,..., yn), A is the n-dimensional Laplacean, r is a real number in

(2, oo), p is a positive integer, b and c are constants, sgn is the signum function, and

g is 2n/w0 periodic in t and 2tt/o)í periodic in yt.

The change of variable x0 = w0t, xi = œiyi reduces (5.1) to the form Lu=f(u) with

x = (x0, xu ...,*„)> u(x) = w(t, y), f(u) = b\u\r-1 sgn u + h, where h(x)=g(t,y) is

27T-periodic in each variable xt, i—0, 1,...,«. L is the operator

L = c2a>l d2/dx2o + {<o2 d2¡dx\+ ■ • • +<4 d2/8x2}2".

We put X=Lr(T), as defined in Remark 5. Then/is a bounded, continuous map

of X to its conjugate provided A e Lr{T), r' = r/(r— 1).

For this choice of X, Remark 6 also applies. Hence we must check that l/v(s),

where

v(s) = -c2w20si+{w2s2+ ■ ■ ■ +w2s2}2"

is an element of/,, q=r/(r—2).

Write

v(i) = -caw|{s§-(^+ ... + c2s2)2p}

where c¡ = wi/(ca)0)ll2p. Assume each c¡ is of the form (kt/mi)112 where &j and w( are

positive integers. Let m be the least common multiple of the mt. Then

v(s) = -(c2oj20lm2>)(m2j,sl-p2*(s))

where /3(í)=í/1if+ • • ■ +dns2 and the dt are positive integers. Clearly, v(s)=0 iff

ft(j) = w2pjg-p2!'(i) = 0.

Ifp(i)#0,

/."Hi) - 2-1p-*(s){(rri>So-fr(.s))-1-{m>So + pr(s)y1}.

Hence, if a = r/(r—2), then

|/i-(j)| ^ |p(í)|-n|m%-pí'(i)|-a + |m% + pp(í)|-'1}

where we have used the fact that \A + B\P^2P{\A\" + \B\P}. Thus

2 K*)|-° = {    2    +    2    W)|-a

i const { 2 l/í2a+ [      2 1^)1 -"] 2 1A"V
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The sum over p(s)^0 converges ifpa=pr/(r—2)>n/2. Ifnfi2p, any r e (2, oo) will

do, while if n > 2p, then r must be strictly less than 2n/(n — 2p). With these restric-

tions, v(s) satisfies the desired property.

Next, we must show that the bifurcation equation can be solved. In this case,

because L is symmetric, this means finding v(u) in M such that f(v(u) + u) annihilates

M. We also require v to be bounded and continuous in w. Use will be made of the

inequality

(5.2) (x-y)(\x + u\r-1sgn(x + u)-\y + u\'-1sgn(y + u)) ^ |x-v|72r_1

a proof of which can be found in [7].

Assume v(u) exists. Then

(v(u),b\v(u) + u\r-1sgn(v(u) + u) + h) = 0

and thus from (5.2),

(5.3) |i*«)ir"1 = 2r-1(|2>| H'^+IIAH*).

Next, if both v(u) and v(w) are solutions to the bifurcation equation then by (5.2)

and the mean value theorem,

\\v(u)-v(w)\\r-1 = (r-l)\\(v(w) + w + 9(u-w))r-2(u-w)\\*

where 0 < 8 < 1. Hence by Holder's inequality, | v(u) — v(w) ||r "1Ú const || u—w || where

the constant depends on the norms of v(w), u, and w. Hence v, if it exists, is a bounded,

Holder continuous function of u.

For the existence we apply Remark 4. By (5.2)

(<P, B<P) = (<P,f(<P + u)) = (<p, b\<p + u\'~1 sgn (<P + u)+h)

^(Ur-1l2T-1-\b\\\uri-\\hV)Ul

Hence if C is the set of ve M satisfying inequality (5.3) then (<p, B<p)^0 on dC.

Clearly B is monotone. Thus v exists and satisfies the requirements for Theorem 2.

To conclude, it must be shown that inequality (3.4) can be obtained. Remark 3

is applicable so A may be chosen equal to 1.

Let

Cl[t]  =   \b\t^+d, C2[t]  m  2(d[t])^-»

where d= \\h\\*. Clearly, (3.1) is satisfied by this choice of cu while (3.2) holds by

virtue of (5.3). We must show, therefore, that kCi[c2[a]+a]úa. As we shall see,

this can be done by restricting d, the amplitude of the external excitation.

Now,

kCi[c2[a] + a] = k^bKcM + aY^ + d}

Ú k{2r-1\b\(cr2-1[a] + ar-1) + d} = ma'-1+nd
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where w = 2r_1|A|A;(l-l-2''-1|A|) and n = (l+4r-1\b\)k. So if we can find positive

a0 such that w(a0) = mar0~1+nd— a0<0 then (2.6) will be met.

In fact, choose a0 = (l/m(r— l))1,(r_2). Because r>2, w(a) has a minimum here

and w(a0)=nd—a0(r—2)/(r— 1). With a thus fixed, restrict d to be less than

a0(r — 2)/n(r — 1 ). Then w(a0) < 0, and we have satisfied all of the conditions for (5.1)

to have a periodic solution.

We can now state

Theorem 4. The partial differential equation

c2wtt + A2pw = blwl'-1 sgn w+g(t, yu ■ ■., yn)

where p is a positive integer and g is 2tt/cd0 periodic in t and 2tt¡<x>í periodic in yt,

i= 1, 2,..., n, has a weak, rth power integrable solution with the same period as g

providing

(i) for each i, wf/(cw0)llp is rational,

(ii) r e (2,y) where j= +oo ifn^2p and j'=2n/(n-2p) ifn>2p,

Weither   b,   or   J»«* Jf-t. • -ft«"* \g(jttyu ..., y¿\««-»dtfa- • -fa   is
sufficiently small.

Furthermore, the solution is of the form v + w where v is in the generalized null

space of the operator c2 82/8t2 + A2p, and w is orthogonal to v.
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