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REPAIRING EMBEDDINGS OF 3-CELLS WITH

MONOTONE MAPS OF E3Q)

BY

WILLIAM S. BOYD, JR.

Abstract. If Si is a 2-sphere topologically embedded in Euclidean 3-space E3 and

S2 is the unit sphere about the origin, then there may not be a homeomorphism of E3

onto itself carrying Sx onto 52. We show here how to construct a map / of E3 onto

itself such that f\S¡, is a homeomorphism of Sx onto S2, /(E3 — Si) = E3 — S2 and

f'1(x) is a compact continuum for each point x in E3. Similar theorems are obtained

for 3-cells and disks topologically embedded in E3.

1. Introduction. In this paper we show that, for any 2-sphere 5 wildly embedded

in Euclidean 3-space F3, there is a monotone upper semicontinuous decomposition

G of F3 whose nondegenerate elements miss S such that E3/G is F3 and S is taken

to a tame 2-sphere in E3/G. If X is a wildly embedded set in a 3-manifold M3,

we will say that the embedding of X can be repaired (see [1]) if there exists a

monotone upper semicontinuous decomposition G of AT3 such that each non-

degenerate element of Gis disjoint from X, M3/G = M3, and the image of Sunder

the natural projection of M3 onto AT3/G is tamely embedded in M3/G. The main

theorem of this paper, Theorem 1, says that any 3-cell in E3 can be repaired. It

follows as a corollary of this theorem and a theorem of Hosay [11] and Lininger

[14] that any wild embedding of a 2-sphere can be repaired. Another corollary

using recent results of Daverman and Eaton [8] is that any 2-cell in F3 and many

arcs in E3 can be repaired. In §3, we construct a decomposition of the complement

of a 3-cell in S3. It is a kind of triangulation respecting wild embeddings which is

difficult to state as a theorem. Therefore, we have been content just with giving a

loose description of the decomposition and then proceeding with the construction.

The notation and terminology is largely standard. A cube-with-handles is a space

homeomorphic to a regular neighborhood in the 3-sphere S3 of a finite 1-complex

and a cube-with-holes is a space homeomorphic to the closure of the complement

of a cube-with-handles in S3. The distance between two points x and y in any
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metric space under consideration will be denoted by p(x, y) and N(A, r) will

denote the set of all points x such that p(x, A)<r. If a is a simplex in a space X

with triangulation T, we will use St (o) to denote the point set interior in X of the

star of a in the triangulation T. The /-skeleton of a triangulation T¡ will be denoted

by 77. A Sierpinski curve is the space obtained from a 2-sphere S by deleting the

interiors of a null sequence of mutually disjoint disks in S whose union is dense in

S. If X is a Sierpinski curve in S obtained by removing the interiors of the disks

{D/}, then the accessible part of X is the set U Bd D¡ and the inaccessible part of X,

here denoted by Inacc (X), is the set of all points of X which do not lie in the

accessible part of X. We have frequently abbreviated piecewise linear to pwl.

2. Some preliminary lemmas. Lemma 3 below is needed in the construction in

§3. Lemma 1 can be proved as in Theorem 4.1 of [3].

Lemma 1. Let D be a disk, X a Sierpinski curve lying in a 2-sphere S, D r\ X

= (Bd D) n X=A, A an arc lying in the inaccessible part of X. Then there is a null

sequence of mutually disjoint disks E„ E2, E3,... on D — A such that D C\ S

Cy4u ((J £¡) such that, for any e>0 and any point pe A, there is a neighborhood N

ofip in D so that only disks E¡ of diameter <e intersect N.

Lemma 2. Let e > 0. Let C be a wild cell in E3, X a tame Sierpinski curve in Bd C,

and S a 2-sphere. Suppose that G: Sx [0, 1] —> E3 is a homeomorphism which is

locally piecewise linear mod SxO, G(S x (0, 1 ]) lies in the unbounded complementary

domain ofG(SxO), G(SxO) n Bd C=X, and G(SxO) is tame. Let T, and T2 be

triangulations of S such that T2 refines T, and G(T2 x 0) lies in the inaccessible part

of X. Then, for some integer f, there is a homeomorphism H from S x [0, 1 /2?]

into E3, which is locally piecewise linear mod 5x0, such that

(1) P(H(x, t), G(x, t)) <efor allxeS and all t e [0, 1/2«],

(2) for all v e T2°, H(v x (0, 1 /2Ç]) nC=0,

(3) for alloeTi and « = 0, 1, 2, 3,..., H(oxl/2í + n) n C= 0,

(4) for all xeS, H(x, 0) = G(x, 0),

(5) if G has properties (2) and (3) with respect to T,, then H(x, t) = G(x, t) for all

(x, t) e T? x (0, 1/25] and H(Tl x (0, l/2í]) = G(ri x (0, l/2{]).

Proof. First we obtain condition (2). Let v,, v2, v3,..., vk, vk+1,..., v¡ be the

vertices of T2 with v,, v2,..., vk being those vertices for which G(v¡ x(0,l])nC

= 0. We will show how to adjust G so that G(vk+, x(0, 1/2"]) n C= 0 for some

nonnegative integer -n, so that G(vt x (0, 1]) n C= 0, i=l,..., k, and so that, if

7i°cH> v2,..., vk}, then GlT^0 x [0, 1] is left unaltered.

To do this, let v = vk+, and suppose that o and t are 1-simplexes in T2 such that

a n t = v. Let A=o u t and D be the disk G(A x [0, 1]). By Lemma 1, there is a

null sequence E„ E2, E3,... of mutually disjoint disks in D such that D n C

<^G(Ax0) u ((J Et), and, for each i=l, 2, 3,..., G(A xO) n Et= 0. Let a be a
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polygonal arc in D — \J F¡ joining the endpoints of GiA xO) such that

a n G(ux[0, 1])

is a single point p. Let ß be the subarc of G(u x [0, 1 ]) joining G(i> x 0) and p. If D'

is the disk in D bounded by a u GiA x 0), then there is a homeomorphism/of 2)'

onto itself, which is locally piecewise linear mod a, fixed on Bd D', so that

fiß) n (U F()= 0. By extending /piecewise linearly in a sufficiently close neigh-

borhood TV of Int D' so that/is fixed on Bd N and then extending this map to all

of F3 by the identity, we obtain a map/such that/° G satisfies requirement (2)

for some integer £ and the vertex vk + 1. Similarly, we alter G near each of the

vertices vk+2,vk+3,...,vl to obtain a homeomorphism Gx of 5x[0, 1], locally

piecewise linear mod 5x0, such that Gi|5x0 = G|5'x0 and, for all veT§ and

some sufficiently large integer 77, G,(yx(0, 1/2"]) n C= 0.

Adjusting Gx to obtain a homeomorphism G2 satisfying conditions (2) and (3) is

similar. Let a e T2 with Int o n Tx = 0 if Gi satisfies (2) and (3) (replacing T2 with

Tx and 27 with Gx). Note that we may suppose that Gx satisfies (2) and (3) if G

does. Let {v, t/} = Bd a. Lemma 1 can be used to obtain a sequence of "horizontal"

arcs in d(ax[0, 1/2"]) spanning from Gx(vx[0, 1/2"]) to Gx(v' x [0, 1/2"]) and

converging to GíOtxO) and "vertical" arcs from G^trxO) to the interiors of the

horizontal spanning arcs. By a suitable choice of these arcs, it is possible to define

G2 on ax 1/2V+" for some v^-q and all n = 0, 1,2,... in such a way that it extends

G2|S'xO = G1|,SxO. The "vertical" arcs are used to make the "horizontal" arcs

converge on G2(5'xO) = G1(SxO) homeomorphically and together they decompose

Gi(cr x [0, 1/2"]) into disks so that G2 can then be extended to take all of a x [0, 1/2"]

onto Gx(ax [0, 1/2"]). Doing this for each a e T2, we then have

G2: n x [0, 1/2"] -> GAJl x [0, 1/2"])

such that G2\Tix0 = G\T¿x0 and, for some v^r¡, G2(F2l x 1/2V + ") r> C= 0 for

each « = 0, 1,2,.... Furthermore, G2 can be taken to be locally piecewise linear

modFfxO. Let G2|5x0 = G1|5'x0 and G2|5x l/2" = G1|5x 1/2". Then G2 is

defined on the boundary of each cell tx [0, 1/2"], t e T2, and can be extended to

take this cell into G!(tx[0, 1/2"]) so that G2 satisfies all the conditions of the

lemma except possibly (1). Condition (1) is met by using the fact that G2(x, 0)

= G(x, 0) for all xeS and choosing l^v^ij. For this choice of f, we set 27=

G2|5x [0, l/2{]. This completes the proof of Lemma 2.

The following lemma is a modification of Lemma 2 of a paper by D. R. McMillan,

Jr. [15].

Lemma 3. Let C be a 3-cell and h: C ->■ E3 a homeomorphism. There is a monotone

decreasing sequence {£„}, 0<£n^ 1/«, and for each n, a pwl homeomorphism

T7n:BdCx[-£n,y->F3
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with the following properties:

(i) P(h(x), Hnix, 0) < I/n, for all x e Bd C and t e [-£„, L\],

(ii) 77n(BdC, -L)^lnth(C),

(iii) A(C) n 77n(Bd C, £n) is covered by the interiors of a finite disjoint collection

of2-cells in 77„(Bd C, £„) each of diameter less than l/n,

(iv) for all n, there exists a finite disjoint collection of topological 3-cells Ci, C2,

..., Ck in h(C) such that C" has diameter less than 1 ¡n and meets A(Bd C) precisely

in a 2-cell such that /i(Bd C) — 77n(Bd C x [ — £„, £„]) is covered by the interiors of

these 2-cells and such that

Bd C?-Int (CP n A(Bd C)) c /7n(Bd Cx [-£„, £„]).

Furthermore, there is a sequence of triangulations T,, T2,..., of Bd C iwcA /Aai

mesh h(Tn)< l/n, h(T¿) is a tame finite graph andTn+, refines Tn; there is a sequence

of homeomorphisms Gn : Bd C x [ — £„, £n] -> £3 which are locally piecewise linear

mod Bd CxO satisfying the following properties:

(1) pihix), Gnix, t)) < l/n, for all x e Bd C, t e [-{„, £„},

(2) Gn|BdCxin = /7n|BdCxÇn,

(3) Gn(Bd Cx[-r„ U) = 77n(Bd Cx[-tn, £„]),

(4) Gn(x, 0) = hix),far any x e T1,

(5) Gn(v x (0, £J) n A(C) = 0,/or a// v e IJ,

(6) G^1 x Q n A(C) = 0, /or a//12: «,

(7) for each n and each «', «' = 1, 2,..., « — 1,

G»(r¿ x [0, £„]) = GnW- x [0, £„]),

(8) /or eacA « a«*/eacA «', «= 1, 2,..., «— 1, eacA component of

Gn(Bd C x [- £„, £„]) n GvíT¿ x (£„, £„.])

« a closed set missing

GAT1- x £,) u GB<ri x w u GB,(I? x (î„ CB.J).

Proof. .S7e/> 1. Construction ofG,, H,, T,. Let e = 1 and let 8 be a positive number

such that for any homeomorphism g: Bd C ^ E3 differing from A|Bd C by less

than 8 and for any compact set Y in g(Bd C) whose components have diameter

less than S, then there is a finite collection of e-disks in g(Bd C) such that Y lies

in the union of the interiors of these disks. Let Tl be a triangulation of Bd C such

that h(T,) has mesh less than e and A^i1) is tame [2]. Let X, be a tame Sierpinski

curve in A(Bd C) such that h(Tl)cinacc (X,) and the diameter of each component

of A(Bd C)-X, is less than 8 [6, Theorem 9.1]. Let g,: Bd C^£3 be a homeo-

morphism obtained by pushing A(Bd C)-X, slightly into A(C) so that g, is locally

pwl mod (A-HA'i)), differs from A by less than S, g,\h-1(X,) = h\h~1(X,), and the

closures of components of A(C)—gi(BdC) form a null sequence of 3-cells
/"•i  /->i  fi
^,, y^2, »-3> • • • •
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Sincegi(Bd C) is locally tame mod a tame Sierpinski curve, it is tame [6, Theorem

8.2]. It follows from the tameness of gi(Bd C) and Theorem 2 of [5] that there is a

homeomorphism Gx: Bd Cx [— 1, 1] ->- F3 which is locally pwlmodBdCxO

satisfying G1(x,0)=gl(x) for all xeBdC, d(Bd Cx-l)<=lnt A(C), and con-

dition (1). By Lemma 2, we may suppose that Gx satisfies conditions (5) and (6).

Take Hx to be a sufficiently close pwl approximation to Gx using Theorem 3 of [5]

in order to obtain conditions (2) and (3). There is a k such that Cx, Ci,..., Ck

are the only cells of the null sequence not lying in TY^Bd Cx(-1, 1)) and these

cells are the ones of condition (iv). By our choice of 8, Hx satisfies condition (iii).

Step 2. Construction of Gn, Hn, Tn. Choose 8 as in Step 1, but with e=l/«.

Choose a Sierpinski curve Xn by adding on to A"n_i in the following way. Let

Du D2,..., Dm be those component disks of «(Bd C)-Inacc (Xn^1) such that the

diameter T)¡ = 8 or p(x, Gn.x(x, 0))ä8 for some xe D¡. We add these disks back

on to Xn.1 and remove a null sequence of disks from their interiors to obtain Xn

such that components of «(C) — Xn have diameter <8. Let F„ be a triangulation of

Bd C such that h(T¿) is a finite graph in the inaccessible part of Xn, Tn refines

Fn_!, and mesh h(T¿) < 1/« [2], [6].

We obtain gn, as we did gx, but in a more careful way to get gn: Bd C^ «(C)

such thatgn|(Bd C-«-HU Int Di)) = Gn-1\(Bd C-A_1(U Int A))xO by pushing

the little disks in (J A into Int «(C) but not so far as A was pushed by G„ _ x | Bd C

xO nor as far as 8. Thus p(gn(x),h(x))<8 and gn(«-1(A)) u Gn.1(h-1(Di}xO)

bounds a little cell C[ containing gn(h~1(Di)). Let N be a neighborhood of h(Ti_x)

in F3 such that (Cl N) n ({J C,')= 0. Let Nx be a neighborhood of (J C[ missing

Cl N. We take a space homeomorphism /fixed outside Nx which moves

Gn_!(BdCxO)

onto gn(Bd C) as follows: The C"s are tame [6, Theorem 8.2], so fatten the C,Ms

in Nx except at Bd D¡'s to form cells and move Gn-1(h~1(Di)xO) onto gn(h~1(Di)).

We do this inside the fattened C"s in such a way that / is fixed on «(Bd C) —

Ulnt(A) and on Gn_i((Bd C-h'WJ Int D,))xO), and so that /° Gn.x(x, 0)

=gn(x) for all x e Bd C. Extend/to a homeomorphism of E3 onto itself which is

fixed outside of the fattened C,''s.

We obtain G„ from/« Gn_x. Choose a power tn of ^, 0</n^Çn_1, so small that

Gn-^Fn1.! x [-rn, ijcjv and, for all x e Bd C, p(«(x), Gn_i(x, t))<l/n. In order

to get property (8), we also choose tn so small that

/• ö.--i(*"HU A) x [-/B, /„]) n GAn x C./20 = 0,

for «' = 1,2,..., «— 1 andy=0, 1,2,..., and so small that

/° G.-iiA-KU A)x [-?„, /,]) n GAv x(0, U) = 0,

for «' = 1, 2,...,«— 1 and y e F^. These last two conditions can be met, because

«(C) misses WíSx.t/20 and C„.(»x(0, £„.]), while /o G^^-HU A)x0)
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=£n(«_1(U A))  lies  in  A(C).  Set  Gá=f°Gn-,\BdCx[-tn,tn]  and  make it

locally pwl mod Bd CxO without changing its values on

(BdCxO)U(rn1_iX[-/n,/n])

by using Theorem 3 of [5] in such a manner as preserve property (8).

We use Lemma 2 to get Gn: Bd Cx [-£„, £n] -> E3, for some power £„ of J,

from G'n. In applying Lemma 2 we choose e sufficiently small to preserve properties

(1) and (8). Lemma 2 gives us properties (5) and (6) without destroying (4) or (7).

We obtain 77n from Gn as we obtained 77i from Gi using Theorem 3 of [6].

This also gives properties (2) and (3).

3. A decomposition. Cube-with-holes decompositions. For convenience, we make

the following definition: A cube-with-holes decomposition of a space X is a "tri-

angulation" of X with cubes-with-holes replacing 3-simplexes and disks-with-

handles replacing their 2-faces. In a cube-with-holes decomposition we will allow

each cube-with-holes to have any finite number of faces, not just four as in a

simplicial 3-complex. In this section we construct a cube-with-holes decomposition

of the complement in S3 of a wild 3-cell. In this case all but one cube-with-holes

has five faces; the one has many more faces. Some of the disks-with-handles have

four 1-faces, each a 1-simplex, whereas, others have three 1-faces.

Let C be a 3-cell and let h: C-> S3 be a topological embedding of C. We

construct a sequence of triangulations T,, T2,... of Bd C with mesh A(7"i) —> 0 as

/->oo and, with Ti + 1 refining T¡. Our decomposition of S3 — h(C) is into small

cubes-with-holes Vc m with o being a 2-simplex of Tm.,. For a fixed m, m^2, the

rff>m may be thought of as lying in a shell, Sm, about A(C) and this shell, which is

a 3-manifold with two boundary components (actually a cell-with-handles with a

cell-with-handles containing A(C) removed from its interior), consists of

(J{Ta,m:oeTl_,}.

The shell Sm+1 formed by (J {rff>m+1: oe T2} is the next shell in toward A(C)

from the one formed by (J {ram: o e T2^,}, and Sm+, n Sm is the outer boundary

of Sm+1 and the inner boundary of Sm. ra¡m, for m—\, is a single cube-with-holes

Ti, with V, being the closure of the complementary domain of S2 = (J T^2 not

containing A(C). Schematically the situation is shown in Figure 1.

Each shell Sm is a thickened sphere or hollow ball with holes and handles (see

Figure 2). The shell's two surfaces are divided into disks-with-handles in the same

pattern into which h(Tm.,) divides BdA(C); the shell itself is like a Cartesian

product of a sphere and an interval with handles added to the "outer" boundary

and removed from the "inner" boundary so that the shell lies in S3 — h(C).

Figure 3 shows what a cross-section of such a shell might look like. It is a union of

cubes-with-holes, each having five faces, with each face being a disk-with-handles.

Any two of the cubes-with-holes intersect along a disk-with-handles face or a
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Figure 1

1-simplex in the boundary of such a face or not at all. If a is a 2-simplex of Fm_1;

then Ya,m is the cube-with-holes "above" h(a) in the wth shell Sm.

First we construct a sequence of triangulations Tu T2,... of Bd Canda sequence

of cubes-with-handles Mx, M2,... converging to «(C) such that Afm=Fmu

(Uf=i 77/"), Fm is a tame 3-cell and each 77/", /'= 1, 2,..., km, is a small cube-with-

handles such that Lm n H¡" = Fr is a disk in Bd Lm n Bd Hf. On each Lm we will

Figure 2
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put a copy of Fi_j which will have a collar running down to a copy of T1_1 in T1

on Fm+1 dividing up the space between Bd Mm and BdFm+1. By adjusting this

collar it will miss Bd Mm+1 except in the copy of T1_1 on Bd Fm+1 and divide up

the space between Bd Mm and Bd Mm+1 into cubes-with-holes in such a fashion

that any two will intersect along a common disk-with-handles in their boundaries

or along an arc in the boundary of such a disk-with-handles, or not at all. In this

fashion we get a cube-with-holes decomposition of S3 — h(C). Each cube-with-

holes, Ta.m, will be named by the triangulation Fm_x and the 2-simplex ere Tm_x

associated with it by a map G„m, given by Lemma 3. The size of rffm -^ 0 as

«i -> oo and if ax, o2,... is a sequence of 2-simplexes with ct¡ e Tf and ai+1 lying

in Oi, then r„m,m -> f) am as «7 -> co.

Construction of Mx. Consider Gx: Bd Cx [ — £1} £J -»■ F3 and Tx from Lemma 3.

Choose ex as follows:

(a) £! <r¡x, where ^ is less than ^ the distance from G±(v x [0, £J) to

G.an - st wixto,^])

for each c e r".

(b) «x less than \ the distance from Gx(ax [0, fj]) —/vXG^Bd ax [0, £J), Vi) to

Gi({2?-Int cr} x [0, Ji]) for every cr e 7f.

Condition (a) says any ej-set intersecting N(Gi(v x [0,2^]), t^) cannot intersect

Gi(Fj x [0, £J) outside Gj(St (i>) x [0, £j]). Condition (b) says any ¿^-set intersecting

Gi(c7 x [0, £J) but not A/(Gx(Bd (o-) x [0, 0, r^) cannot intersect G^F/ x [0, £J)

except in G^Int (a) x [0, £i]). Together, these conditions imply that any 6^-set

intersecting G^T} x [0, £J) lies in G ¿(St (a0) n 7f) x [0, £J) for some a0 e T?—

that is, any ^-set intersecting G¿Tl x [0, £J) intersects it only in fins radiating

from one post G^a0 x [0, £j]).
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Following McMillan's Theorem 1 of [15] and using Lemma 3, we find an integer

«i such that l/n,<8,¡3, where 8, is a positive number chosen as McMillan does S

in his Theorem 1 for e = e,. We use 77ni, as given by Lemma 3 above, for his H

in his Theorem 1. This gives a cube-with-handles M,=L,u (\Jki, H1), where L,

is a cube with Bd L, Ci-homeomorphic to A(Bd C) and each 77,1 is an ej-cube-with-

handles for each i= 1, 2,...,k,; h(C) lies in Int M,. By Lemma 3, condition (7),

GnSTl x [0, £nJ) = G,(Tl x [0, ini]) c G,(T} x [0,1,])

so that the «i-set intersection properties prescribed by conditions (a) and (b) above

for G, and T, hold also for Gni and T,.

Construction of Mm. We assume Mm _, is already constructed. We construct Mm

just as M, but with additional restrictions on the closeness of Mm to A(C). Choose

em as follows :

(a) em <r¡m, where r¡m is less than ^ the distance from Gm(v x [0, £m]) to

Gm({n-St(v)}x[0,U)

for each v e T%.

(b) sm less than J the distance from Gm(o x [0, £J) - N(Gm(Bd o x [0, £m], -nm) to

Gm({Tà - Int o} x [0, U) for every a e T1.

Conditions (a) and (b) insure that any em-set intersecting G^T1 x [0, £m]) lies in

Gm(St (o°) x [0, U) for some a° e T°m.

(C)   em<p(h(C),BdMm.,).

(d) em<l/m.

(e) £m<em_i.

We choose an integer nm>nm-,> ■ ■ ■ >n, such that l/nm<8J3, where 8m is

chosen as 8 was in McMillan's Theorem 1 for e = em. We use HUm from Lemma 3

for his 77 in his Theorem 1. With this 77 his Theorem 1 gives Mm=Lm u (Uf=i H?)

with Bd Lm em-homeomorphic to A(Bd C), Lm a cell in an «¡„-neighborhood of A(C),

and each HP, i= 1, 2,..., km, an em-cube-with-handles. We also have

h(C) c Int M»cMBc int Mm_,.

By Lemma 3, GnJTix [0, {J = Gm(T¿x [0, S»J) so that conditions (a) and (b)

tell us that any £m-set intersecting GnJTi x [0, £nJ) lies in Gnm(St (a0) x [0, ÇnJ)

for some a0 e T°. According to McMillan's theorem, 77f n Lm = 77jm is a disk in

Bd 77f and in Bd Lm. The rest of the proof will consist mostly of simplifying inter-

sections between the Mm and the "collars" GUm_1(T1_,x[0, £,„m_J) of A(C) by

altering the "collars".

Before going on let us make the following simplification in notation. Rename

G„m and £Bm. We will use Gm instead of G„m and £m instead of £„m.

Simplifying intersections with Ff. We would like to say that Gm(T„ x £m) lies in

Lm — U f?- To achieve this we must look at how McMillan arrives at the T7,"1.



132 W. S. BOYD, JR. [November

Each T7¡m comes from a W™, a polyhedral cube-with-handles such that each com-

ponent of W™ n Fm is a 2-cell in the common boundary of Wtm and of Lm. He finds

an em/2-cell, F¡m, in Bd Lm such that W? n Lm<^F?. (No two of these FT intersect.)

Then 27™ is obtained by adding to W™ a cell obtained by thickening FT (in Lm).

This pushes Bd Lm into Lm slightly so that 77/" n Lm = FT (or rather the pushed-in

FT) and T7f n Lm is a single 2-cell FT.

With an em-homeomorphism of S3, we can adjust Gm(F¿ x [0, £m]) [before the

assumption just prior to this section this set would have been written

Gnminx [0,£nJ)]

in a sufficiently small neighborhood of F¡" so that GmiTm x £m) lies in Lm- U?5i F/1.

This homeomorphism also adjusts Gn.^T^-i x [0, £m_i]) so that Gm_i(F^_! x £m)

= GmiTm-i x £m) lies in Fm — (J¡ F/". In constructing this space homeomorphism we

just take a homeomorphism of Bd Lm onto itself which is fixed outside a small

neighborhood of F,m and slips Gm(Tmx £m) off Ff and extend to a homeomorphism

of S3 onto itself that is also fixed outside a small neighborhood of FT. These

neighborhoods are to be so small that nothing is moved near any other F/" and so

small that nothing is moved near any other Bd Mm. The foregoing shows that we

may assume that Gm(F¿x£m) lies in Lm-\J FT and that Gm(F¿x£m+1) lies in

Fm+1-U Fr1 and Ff n Gm(F¿ x [£m+1, £m])= 0.

If a1 is a 1-simplex of Fm_1; let us use the notation a^m— 1) to denote the disk

Gm_1(a1x[£m, £m_i])

and F(m—1) to denote (/„^(r^jx [£m, £„,_!]). Gm (as adjusted) imposes a tri-

angulation ôm on BdFm such that ôm = {Gm(crx £m): a e Fm_x}. Each simplex of

Qm is (em+l/«m)-homeomorphic to its corresponding simplex of Tm-\. The 1-

skeleton of Qi is a sub-polyhedron of Bd Fm. By construction, if a2 e Q2, then

aanCM(rA_1x[0,U) l'es in G^lS-iX« and in Bd a2. If o'eT1^, then,

assuming general position, a component of

a2 n ¿(m-1) = a2 n Gm_1(<r1 x [£m, £„_!])

is a simple closed curve in Int a2 n Int o-^m— 1) or is possibly an arc lying in the

boundary of each of the 2-celIs or a point in the boundary of each. This is a

consequence of condition (8) of Lemma 3.

By trading disks we can change o^im— 1) so that o^im — X) n a2 contains no

simple closed curves. Then a^w-l) n o2 is a common arc of boundary or a

common point in the boundary of each. We do not adjust a2 for fear of uncovering

«(C). Suppose au a2,...,al are the 2-simplexes of Qm. First we adjust F(m—1)

so that it misses Int crj as follows: Let 7 be any simple closed curve in Int ctx

nffm-l) that bounds a disk D in Int ax such that Int D does not intersect

Tim— X). Replace the disk 7 bounds in Tim— 1) by D and push off Int o^. Proceed-

ing in this manner Tim— 1) may be adjusted so that it misses Int ax. Note that the
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adjusted T(m— 1) (also denoted by T(m— 1)) is homeomorphic to the T(m— 1) we

started with. We did not introduce any new self intersections. Now we adjust

T(m—l) to miss Int o2, then to miss Int <j3, and so on. Thus T(m — 1) may be

adjusted to miss Lm—Q1m. Thus, we have that T(m— 1) n Lm= Qj„.

Before we calculate how much T(m— 1) is moved by the process, let us point out

one precaution we wish to make in the "pushing off" part of this disk trading

procedure. Each 77/" intersects Lm in a disk 7*7". From the point of view of the HT,

the disk trading occurs only near the Ff. By pushing F/" off itself in 77/" we get a

new disk disjoint from F/" having its boundary in Bd 7//"—F/". This new disk

together with the F/" and an annulus on Bd 77/" bounds a cell A-/" in 77/". K™ may

be thought of as a cylinder F™ x [0, 1], In pushing off during the above disk trading

procedure, we wish not to push anything into 77/"- Int Â7". When part of the disk

to be pushed off lies in F/" and is to be pushed to the ///" side of Lm, we wish to

push along the lines perpendicular to F/" in the representation of K™ as F/" x [0, 1].

Thus, any new disks resulting from such disk trading will intersect 77/" as shown in

Figure 4. This will be convenient later.

Now to show that the disk trading does not enlarge Gm(Tíx [lm+,, lm]) = T(m)

too much. Each T(m) has already had an ¿„-adjustment to move it off the F/".

Recall that p(h(x), Gm(x, t))<l/nm for all x e C and te[-lm, £m] and that Hm = Gm

on Bd Cx{-£m, £m}. This latter condition says Gm(Bd Cx£m)=Lm. All this was

Figure 4
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true before the alteration of Gm to push Gm(T^ x £m) off F/". Now Gm is an (em+ l/«m)-

homeomorphism of {(J T1 x [0, £m]} u {(Ji = m Bd Cx Q instead of a l/nm-homeo-

morphism. Since a2 e Q2 is (em+l/«m)-homeomorphic to some oeT2.,, then

mesh Qm is less than

l/(m-l) + 2£m + 2/«m.

Since l/nm<8m/3 and 8m<eJ2 (see McMillan's Theorem 1 and the beginning of

this construction) and em<l/m< l/(m-1), then mesh Qm<4/(m-l). Thus no

point of T(m— 1) gets moved by more than 4¡(m — 1) in the disk trading procedure.

Naming the cubes-with-holes. Now let us do some naming. T(m — 1) separates the

set A/m_i —IntLm into little 3-manifolds with connected boundary. See Figure 5.

We want to name these manifolds and their sides. Each 3-manifold with boundary

is a cube-with-handles with a "top" (which is a disk-with-handles), 3 "sides"

(disks) and a "bottom" (disk).

aom<^Bd Mm_,. Let oeTm-,- o corresponds to some set om_,cLm_, under

Gm_!, namely Gm_,(ox (,m-,). It does not correspond to an element of Qm~,, for

each such element is the image of elements of T2_2 under Gm_j. However, each

element of Qm-, is a union of such <rra_i's. Let aa¡m be the disk-with-handles

obtained by replacing those F/""1 in om_, with Bd 77/""1-Int F/""1.

ß„,mcBd Lm. Let a e T^-,- Under Gm there corresponds some om e g2,, namely

Gm(o x lm). Let ßa,m be this am.

yot.m,Yo2,m;yo3,m- If °eT2_,, let Bd<j be a, u a2 u <j3, where »,5^.!,

/=1, 2, 3. Define ya¡,m = oí(m— 1).

Each of the j8am and yff(>m (/'= 1, 2, 3) is a disk. If any two among aa¡m, ßa_m and

y(H>m intersect, it is along an arc of boundary. Recall that

Tim- 1) = U {y^'-o1 £ n~i) = Gm.,(Tl_, x [Çm) ¿;m_i]).

Then a„_m u ßum u y„í¡m u yff2>m u yff3im is a 2-manifold separating S3. Denote

Vertical pieces are part of
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by ra>m the closure of that component of S3 minus this 2-manifold in Int Mm.1

(see Figure 6). Then Mm_1-IntFm = lJ {ram: o e F2_i;. See Figure 5. For if

p e Int (Afm_!-IntFm) take an arc pq from p to BdAfm_j u Bd Fm such that

Int(/jc7)c:Int (Afm_!-Int Fm) and pq r\T(m-l) = 0. Then qeaam or /?„>m for

some a e F2^. Since /Jt7 —ç misses Bd r„ m, and points near c/ on the other side of

Bd rff m can be joined by an arc to S3 — Mm_1 missing Bd fa¡m, then p e r„m.

Hence, /Vfm_! —Int Fm<=[J {r„im: a e F2_x}. The other inclusion is obvious.

We must now alter the y so that we can replace ßa-m with the union of the

appropriate <vim+1's—that is, replace disks on ßa>m with Bd 77/"-Int F/"'s in the

manner we did to make the aam. To do this we adjust the y to miss the 77/*. We

cannot do this, however, while the y remain disks, so we add handles to the y.

Simplifying intersections with 27/". Before we can adjust Tim— 1) so that no T7/"

can intersect it, we must be sure that no handle of HT loops a "fence post"

Gm-i(nx [£m, £m_i]), where v is a vertex of rm_i. In Figure 7, 27/1 is shown as a

torus growing out of Bd Lm. Bd Fm is shown jutting up through two "walls" in

T(m— 1). The walls are shown as they were adjusted to remove T(m— 1) from Bd Lm.

Let NT be a regular neighborhood in Cl (S3-Lm) of TTf. We want the NT to

be mutually disjoint, each NT to be an em-set, and ET = NT n Lm to be a disk.

We want each ET, and hence each NT, to miss Gm(Tm x [0, £m]). This can be done,

because the FT have this property. In particular, we want each ET to miss the

1-skeleton of Qm. We also want NTclnt Afm_i.

We want to look at each TTf as a fattened up wedge of simple closed curves

J'/m, r= 1, 2,..., RUm, with 7r*'m in general position with respect to \J y0¡m, with

the wedge point xi¡m in Int FT, and with J},m—xi>m<=int 27/". Furthermore, we
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Figure 7

want to choose the 7ri,m so that they intersect the disks y n KT exactly twice (see

Figure 4). Define a pseudo-isotopy//": NTx/^- NT such that

(1) fm(x, 0) = x, for all x 6 7VJ»,

(2) fm(x, t)=x, for all x eJ'r-m, r=l, 2.2?i>m, and for all x e Bd A//",

(3) fT\(NT-(HT-FT)) x /is a homeomorphism for all f e [0, 1],

(4) //"(TTf, 1) = U {J'r'm :r=l,2,..., RtJ u FT,
(5) 7?"(/V,m, f)=-^r for all t in [0, I].

The plan is to adjust the yff,m's to miss (JrJ}-m and use/"1 to push them off all

of HT- By choosing a stage t of fT close enough to the end stage that/¡m(T7im, t)

lies so close to ((JT J¡,m) u FT that it misses all the y„,m's, too, we can use

(fTlNTxt)-1

to push all the yff,m's off TTf1.

First, we make a few definitions. Consider each J'/m and each y„,m as being

oriented. Let 7 be any 7j,m and y any yCT m. Let /?(7) be the number of positive

crossings of 7 through y and let «(7) be the number of negative crossings of 7

through y. Define the piercing number of 7 with respect to y to be

p #7 = p(J)-n(J)

and the intersection number of 7 with respect to y to be

I(J) = p(J) + n(J).

We will refer to an arc of boundary of a ya%m spanning from Bd Fm_! to Bd Fm

as a post. We will refer to y„_m as a fin from each of its posts. We will assume that

each J\'m is in general position with respect to T(m— 1) so that 7n T(m— 1) is

finite, misses all the posts of T(m— 1), and crosses at each point of intersection.
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Let us look back to Tim — 1), which is the union of the yff>m's. We made two

adjustments to T(m— 1) to get the y0>m's. Before the adjustments, each 77/" was an

em-set so that, by our choice of em at the very beginning of this proof, 77/" n T(m — 1)

lay in the union of the fins radiating from some post P. Thus /?#7/,m=0 with

respect to all y" not radiating from this post P, because 7(7/,m) = 0 with respect to

such y". The first adjustment (moving Gm.,(T1., x [0, Cm-i\) off the F/" and F/""1)

does not change this. The next adjustment, the disk trading, did. It caused new y"

to hit 77/" in A/". But p #7 with respect to y" is the linking number of 7 and Bd y".

Since Bd y" and J were not moved in the disk trading procedure, pjfj with respect

to any y" which is not a fin of F remained 0. Hence neither adjustment made

p # 7 with respect to those y which are not fins from P nonzero.

If F is a post in T(m— 1), y and y are fins from P, and (77/" —A/") n Tim— 1) lies

in the union of the fins from F, then, for any J'/m in 77/", p #J/-m = 0 with respect

to y implies p #J}-m = 0 with respect to y . For consider the set

x = u {rff,m : F c rff-m} u K?.

Then yU/ separates A', Â7" lies in one component, and J}'m<= X. Since J^,m is a

simple closed curve, it crosses y u y' as many times in one direction as another.

Since p #7/,m=0 with respect to y, it crosses y as many times in one direction as

another. Thus it must cross y' as many times in one direction as another. Hence

P #7/,m=0 with respect to y . This shows, in fact, that any simple closed curve in

U {rCT,m : p c r,,m}

links Bd y iff it links Bd y'.

We want p #7=0 with respect to all y making up T(m— 1). To accomplish this

we must adjust T(m— 1). For each post F we choose a fin y such that P^Bd y,

and for each J such that p # 7 # 0 with respect to y and 7<= fí¡" such that (77/" - AT")

n F(m — 1) lies in those fins radiating from F, we will make 7(7)=0 with respect to

y by an adjustment of T(m— 1). The manner in which we do this says that/? #7=0

with respect to all y radiating from F and hence for all y making up T(m— 1).

We take a collection of disjoint polygonal arcs from F minus its endpoints to

points of 7 n y such that each arc misses 7' for all 7' --¿7, each arc intersects 7 at

only one point, and each arc lies, except for its endpoint on F, in Int y.

Choose a disjoint collection of neighborhoods N,, N2,..., Nk of the arcs

joining F to 7 n y. We choose the N¡ so that none contains but one such arc, none

contains a point of 7' for any 7'#7, none gets outside of Int (Mm_, — Lm), none

intersects any post other than F, none intersects any yCTm not radiating from F,

none gets outside Int (U {T„ m : Pc Yam}) and none gets outside the £m-neighbor-

hood of the arc it contains. With a homeomorphism of S3, fixed outside Ui^i N¡,

and taking y u y onto y u y (here y' is any other fin from F), we move F so that

all the arcs lie in y . We also want the new y to contain all the old y . This homeo-

morphism adjusts T(m-1) so that 7(7)=0 with respect to y.
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We do the above process to all the 7 of the type under consideration intersecting

that particular y so that no such J has nonzero piercing number with respect to

any fin from P. We do this for every post P. After doing this, no 7 will loop any

post P. In other words, /?#7=0 with respect to any y making up T(m— X) and

for all J'r-m for all HT-

We are now in a position to alter the y so that they miss the 7ri,m. We choose

such a 7 and show how it is done. Let x0 be the point at which 7 is attached to Lm.

Suppose for the time being that 7<=2T,m and K¡" misses all the walls y. Proceed

along 7 to the first point of intersection with a y, say y0. Now proceed to the first

point q0 at which 7 pierces this y0 in the opposite direction and back up to the last

point po at which 7 pierced y0 in the original direction. We would like for the arc

p0q0 to be disjoint from all the y's except for its endpoints p0 and q0. If not we

connect q0 to p0 by an arc A0 lying in y0 and push the resultant simple closed curve

70 off y0. 70 n y0= 0 so that 70 does not link Bd y0 and hence does not link Bd y

for any y radiating from P. Hence there are points pu q1 of p0q0 lying in some fin

yx such that pxqx n yi = {pi,qi}- Continuing in this way we can find two points

pn, qn such that pnqn is a subarc of 7, pn and qn lie on some wall y„, 7 pierces this

wall yn in different directions at pn and qn, and Int (pnqn) misses all the y.

Take a small regular neighborhood R of pnqn in the r„ m containing/?,,^, remove

it from that ra>m and attach it to the Tam which Jn leaves at pn and enters at qn.

Replace the two disks of R n yn with Bd 2? minus the interiors of those disks to

get a new yn (the new yn now has an oriented handle). The number of points at

which 7 hits the (J y is now reduced by two.

We must, of course, take R sufficiently close to pnqn so it misses all of 7—pnqn

as well as all the other J¡-m and lies inside the 77/" containing 7. Note that the size

of a y after a finite number of changes of this sort is not increased as much as 2em.

Now consider the case in which J^HT and KT intersects some wall y. Then

27/" n y = KT n y is a collection of mutually disjoint disks in A/", each of which 7

intersects once in each direction. Since the component disks are linearly ordered

from X0, they may now be treated in a manner similar to the above.

Repeating this process a finite number of times, adjusts the walls y so that no

J}-m hits any of them. Thus a wedge of simple closed curves 7ri,m, r= 1, 2,..., Ri¡m,

lies in the interior of the Tam containing xi¡m (except that xUm lies on Bd Ta¡m).

By choosing a number £;,m>0 close enough to 1 we have that

fim(HT, fj,m) <= r^

and lies so close to (J J'/m that it misses all the walls yai>m of ra¡m. Then

(fTlNTxti.m)-1

pushes all the walls off of 77™, is fixed outside NT, and moves no point more than

diameter Nî,<em. Piecing together all these (fT | NTxZt.mY1'5 we move all the

walls y off all the 77,m by a space homeomorphism fixed outside U*= i NT-
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Naming new Ta¡m. At present, a rff>m is a cube-with-holes with Bd r<jm = a<Tm

u /?„_„ u y„1>m u yff2>m u yCT3,m, where the yaum are disks-with-handles as obtained

in the previous section. The ßa<m is a disk lying in Bd Lm. We want to change ßa,m

to a disk-with-handles by replacing each Ff lying in /?ffim with Bd 77/" — Int F/".

Note that the new j8ff>m lies in rff_m. We remove from Fam the interiors of the 77/"

lying in r„,m to get a new r„>m for which Bd ram = affm u ßa_m u yfflim u y„2,m u yff3>m

where the j8ffiIB is the new ßff>m. Now we have that LUt£-i r«7,m = Mm_i-Int A7m

rather than Mm.1 — lntLm as before. Thus U {r„im : o e T2_,, m = 2, 3,...}

= M,-h(C). Define I\ to be the closure of S3-M,. Then

riu(ijrvm) = s3-A(C).

We wish now to calculate diameter T„ m for m> 1. Clearly, diameter Ta¡m equals

diameter Bd Tam. Recall

Bd rff_m = aa¡m U ßa>m U yffl>m U yff2>m U y^^,

where ue^., and o,, o2, o3 are the 1-faces of o.

(i) diameter aam <4/(m— 1).

diameter affm < mesh Fm_1 +expansion due to Gm + diameter 77/"

+ adjustment to move Qm-, off the F/""1

< l/(«i-l) + 2/«m_i + 2£m + 2£m_1 < 6/(m-l).

We call the reader's attention to the notation change from G„m to Gm and £„m to lm

following the construction of Mm.

(ii) diameter ßa-m <4/(m—l). We have here

diameter/3ffm < mesh Qm + 2em < mesh Qm + 2/(m-l) < 6/(m-l).

The mesh Qm is calculated prior to the first naming of the r„>m.

(iii) diameteryaum<l6l(m —I). We have diameter ct¡<1/(w-1), which is the

mesh Fm_i; each point of the original y„1>m is within l/«m_i of a point of a¡. We

moved y„um by em and em_i, respectively, to get it off of F/" and Ff-1, by 4/(m- 1)

in the disk trading and by em in pushing them off of the 77/". Thus

diameter yff(,m < l/(«2-l) + 2/«m_i + 2em + 2£m_i + 8/(«j-l)-t-2£m

< l/(m-l) + l/(«î-l) + 2/(«i-l) + 2/(«î-l) + 8/(«t-l) + 2/(«t-l)

< 16/(«j-1).

Putting all these parts together, we have that

diameter Bd rffiB < 6/(/M-l) + 6/(m-l) + 3(16/(m-l)) = 60/(m-l).

We see then that diameter Fcm < 60/(m -1) and, thus, diameter rff>m -> 0 as m -> co.

4. Repairing embeddings. The following lemma will be useful in proving

Theorem 1 :
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Lemma 4. Let N be a connected closed 2-manifold and let Klt K2,..., Kn be a

finite collection of disjoint connected 1 -complexes in N. Suppose there is a map «

taking N onto a 2-sphere S whose nondegenerate point inverses are the K¡. Then there

is an extension f of h taking Nx [0, 1] onto Sx [0, 1] such that

(a) f(x, 0) = h(x) for all xeN,

(b)f-1(Sxt) = Nxt,

(c) f\Nx 1 has just one nondegenerate point inverse, K, and K is a connected

l-complex,

(d) each nondegenerate point inverse of fis a connected l-complex,

(e) the image of the nondegenerate point inverses under f is n arcs, disjoint except

a common endpoint f(K).

Proof. Since each K¡ goes to a point in S under «, the K¡ do not separate TV.

Thus there is a collection of disjoint polygonal arcs Au A2,..., An^1 in N such

that Ai joins Kx to Kl+1 and Int At lies in A/-(J"=i Ki- Set 7v = ((J 2Q u (IJ A,).

Then h(K) is a wedge of «-1 arcs in S emanating from h(Kx). Define a pseudo-

isotopy 27: Sx [0, 1] -> S that shrinks h(K) to a point in S. Then

f:Nx[0,X]^Sx[0,l]

defined by

f(x, t) = H(h(x), t)xt

is the required mapping.

The following result is our main theorem. It says that the embedding of a 3-cell

in S3 can be repaired.

Theorem 1. Let C be a (wild) 3-cell in S3 and let « : C -> S3 be an embedding of

C such that h(C) is tame. Then « can be extended to a monotone map f of S3 onto

itself such that f(S3 — C) = S3 —f(C). Furthermore, each nondegenerate point inverse

can be taken to be a finite l-complex.

Proof. We may suppose that «(C) is the round unit ball in S3. Now consider a

sequence of triangulations F¿ of Bd C as given in §3. Then h(T¡) is a sequence of

triangulations of «(Bd C). Let 27 carry BdCx[0, \] homeomorphically into

S3-Int «(C) such that, for all xeBdC, H(x, 0) = h(x), 27(Bd Cx(0, £]) n «(C)

= 0, and T7(Bd Cx t) is a round sphere concentric with «(Bd C). Let C„,m be the

3-cell T7(ax [im + 1, £m]) for each a e T2, m^ 1. Let Cx be the closure of that com-

ponent of S3-T7(Bd Cx\) not containing «(C). We want to map Fam (from §3)

onto Ca_m in such a way as to extend «. First, we define the map on Bd r0im.

Recall from §3 that

Bd r„>m = aff>m U f3„>m U yffl>m U yff2,m U y„3>m.

Each of aa¡m and yaum is a disk-with-handles, so there is a l-complex on each

missing its boundary such that modding out this l-complex gives a decomposition



1971] EMBEDDINGS OF 3-CELLS WITH MONOTONE MAPS OF E3 141

space homeomorphic to a disk. Call these 1-complexes K(aa>m) and K(ya¡m)

(i= 1, 2, 3), respectively.

Since U{Bd aa,m '■ <* e F,2. _ x} is a copy of T±_,, there is a natural homeomorphism

from this set onto H(T1_,xl/2m). This homeomorphism can be extended to a

monotone mapping of U W.m : eeî^-i} ont° 77(Bd Cx 1 /2m) collapsing only

the K(aam) to a point. Piecing together these maps we have an extension of A to

Cu((J {«„,„ : a e F2_i, w = 2, 3, 4,...}). This map is clearly continuous at Bd C

by construction of the aa¡m. Now we have A defined on two disjoint arcs of boundary

of each y„i>m. Extend to all the yaum in such a manner that only the K(y„um) get

collapsed to a point and so that yffl>m gets taken onto 77({7¡ x [l/2m + 1, l/2m]). Thus

A is extended to IJ {Bd Ta%n : ae 72_i, «i = 2, 3,...} u C, because j8„_m is the

union of tv>m+i's.

Now we extend the map to collars in each Ta¡m of the boundary of i\m by using

Lemma 4. On the inside of these collars the map collapses a connected 1-complex

to a point and there is only one nondegenerate point inverse on the inside of the

collar of a TCT m. By Theorem 6.2 of [4], the map can be extended to the rest of

r„>m onto CCT>m in such a manner that each point inverse is a connected 1-complex.

The extension to T, onto Cj is done in the same manner. The extended map is the

required mapping/

Remark. In Theorem 1, if C is locally tame at each point of an open set U of

Bd C, then/can be taken to be a homeomorphism on some neighborhood in S3

of U. Just push Bd C into S3 — C at all points of U and apply the technique of

Theorem 1 to the new 3-cell C so formed.

A crumpled cube C is a space homeomorphic to the union of a 2-sphere and its

interior in E3. If C is a crumpled cube, Int C means the set of all points having a

neighborhood homeomorphic to E3 and Bd C means C-Int C. Thus Bd C is a

2-sphere and Int C is homeomorphic to the interior of Bd C under some embedding

in E3. If Ci and C2 are crumpled cubes and A is a homeomorphism of Bd C, onto

Bd C2, then C=C, \Jh C2 is the space C, u C2 with xe Bd Cx identified with

h(x) e Bd C2. Ci and C2 are said to be sewn along their boundary by A and C is

called the sum of C, and C2. The following theorem is an immediate corollary to

Theorem 2 and a result due to Hosay [11] and to Lininger [14], which says that

any crumpled cube may be sewed to a 3-cell in such a way that the sewing gives S3.

(For a relatively easy proof of this theorem, the reader is referred to [7].)

Corollary 1. If C is a crumpled cube and A is a 3-cell, then any homeomorphism

of Bd C onto Bd A can be extended to a monotone mapping f of C onto A such that

faint C) = Int K andfaBd C) = Bd A.

Proof. Sew C, A to 3-cells C, A', respectively, to get two copies of S3. Then

use Theorem 1 to get a map of S3 onto itself taking C to A' extending the given

homeomorphism. The restriction of this map to C is the required extension.

Corollary 2 says any embedding of a 2-sphere in S3 can be repaired:
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Corollary 2. If Si and S2 are 2-spheres in S3, S2 tame, and « is a homeo-

morphism of Sx onto S2, then h can be extended to a monotone mapping f of S3 onto

itself such thatf(S3-S1) = S3-S2.

Proof. Consider S3 as the sewing of two crumpled cubes, Ct and C2, along Sx

and also as a sewing of two 3-cells, Kx and Tv2, along S2, and use Corollary 1.

Professors Daverman and Eaton have pointed out that the following theorem,

which says that the embedding of any disk in S3 can be repaired, is easily proved

using a result of theirs and Theorem 1 :

Corollary 3. T/A and D2 are disks in S3, D2 is tame, and h is a homeomorphism

of A onto D2, then there is an extension of h to a monotone mapping f of S3 onto

itself such thatf(S3-D1) = S3-D2.

Proof. We may suppose that D2 is the disk {(x, y, 0) : x2+y2 = 1}. Let C be the

cell {(x,y, z) : x2+y2 + z2^ I}. In Theorem 7 of [8], Daverman and Eaton have

shown that there is a 3-cell K in S3 and a monotone mapping g of S3 onto itself

such that g(K) = Dx, g|S3-Tv is a homeomorphism of S3 — K onto S3 — D1, and

the following diagram commutes for some homeomorphism «! :

»i
K^^C

g\K gi

h

where gx: C -» D2 is given by g1(x,y,z)=(x,y,0). By Theorem 1, hx can be

extended to a monotone mapping «2 of S3 onto itself such that h2(S3 — K) = S3 — C.

Clearly, gj can be extended to a mapping g2 of S3 onto itself such that g2\S3 — C

is a homeomorphism of S3 — Conto S3 — D2. Set f=g2 ° «2 °g_1. Then/is the

required monotone mapping.

In general, it is not known whether an embedding of an arc or a simple closed

curve in S3 can be repaired. However, Theorem 3 of the previously mentioned

paper of Daverman and Eaton says that, if C is a 3-cell in S3, there is a map/of

S3 onto itself such that/(C) is an arc and/|5'3-Cis a homeomorphism of S3-C

onto S3-f(C). Since this can be done for wild 3-cells C in such a manner that/(C)

is also wild, then it follows that certain wild arcs in S3, namely those obtained by

squeezing a 3-cell in S3, can be repaired. However, a converse of this result does

not exist so that the following question is still open: Can an embedding of an arc

(simple closed curve) in S3 be repaired?

The above theorems completely repair an embedding. But are questions such as

the following also true? If 5 is a wild sphere in S3 and U an open subset of S, is

there a monotone map/: S3-> S3 such that/|S is a homeomorphism, f(S) is

made locally tame only at each point of f(U), and f(S3-S) = S3-f(SY And if
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so, does such a map change the wildness of points on 5 that are well away from Ul

The proof of Theorem 1 required the extension of the map to Ti, the closure of the

complement in S3 of acube-with-handles. For surfaces in 3-manifolds or for spheres-

with-handles in S3, we do not give the theorem analogous to Theorem 1 because

of the difficulty of extending a map of Bd Y, into a 3-manifold other than a cell.

See Lambert [13] and Jaco and McMillan [12].

These results enable us to extend monotone upper semicontinuous decompositions

of the following variety. Let 5 be a wild 2-sphere in S3. Let Gi be an upper semi-

continuous decomposition of S into continua not separating S. By a well known

theorem of R. L. Moore [16], S/G, is homeomorphic to S. By Corollary 2, there is

a monotone decomposition G2 of S3 whose nondegenerate elements are disjoint

from S, S3/G2 = S3, and S goes to a tame 2-sphere in S3. If G is the decomposition

whose nondegenerate elements are those of G, together with those of G2, then,

by [9, Theorem 8], and the preceding statement, S3/G = S3 and S goes to a tame

2-sphere in S3/G. For an example of a decomposition in S3 that cannot be ex-

tended to a decomposition of S3 giving back S3, the reader is referred to §8 of [4].

For a theorem analogous to Corollary 2, in the sense that it shows how to unknot

simple closed curves in E3 see Theorem 5 of [10].
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