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*-TAMING SETS FOR CRUMPLED CUBES.

I: BASIC PROPERTIES*;1)

BY

JAMES W. CANNON

Abstract. Is a surface in a 3-manifold tame if it is tame modulo a tame set ? This

question was answered by the author through the introduction and characterization

of taming sets. The purpose of this paper is to introduce and establish the basic

properties of the more general and more flexible, but closely related, *-taming set.

1. Introduction. A crumpled cube is the union of a 2-sphere and one of its

complementary domains in P3. If C is a crumpled cube in P3, then the closure

cl (P3 — C) of P3 — C is also a crumpled cube which is said to be complementary to

C and is denoted by C* (with C=(C*)*). We write Bd C ( = Bd C*) for the

2-sphere C n C* and Int C for the set E3 — C*. A crumpled cube in E3 is said to be

a 3-cell if it is homeomorphic either with the solid round ball B of radius 1 centered

at the origin in P3 or with the complementary crumpled cube B* of P. (This non-

standard terminology allows us the descriptive advantages of having well-defined

interiors and exteriors for all 2-spheres and of having horizontal and other

geometrical-linear objects, as in P3, while having a complementary crumpled cube

for each crumpled cube, as in S3.)

A *-taming set X in P3 is a closed subset of P3 having the following property:

if C is a crumpled cube in P3, I<= C, and Bd C is locally tame at each point of

Bd C-(X n Bd C), then C* is a 3-cell. Speaking roughly, a *-taming set X in C

"tames" C*.

The concept of *-taming set arises naturally as one seeks the underlying principle

which unifies theorems of the following sort:

Example 1. A 2-sphere S in P3 which contains a tame arc A and is locally

tame modulo A is tame [14]. (A set which shares this "taming" property with tame

arcs has been called a taming set [9]. We shall show that the notion of *-taming

set is a true generalization of the notion of taming set (Corollary 3.8).)

Example 2. If a crumpled cube C has boundary which is tame modulo a point

p and if p is accessible with a tame arc A from Int C, then C* is a 3-cell. (This is an

easy consequence of [22, Theorems 3 and 1] and [2].) For the person intent on
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understanding and remembering the content of the *-taming set definition, this is

a particularly good example. (See the Figure.)

The tame arc A in both Example 1 and Example 2 plays the "taming" role of a

*-taming set. The unification of such results as Examples 1 and 2 provides a tool

which is surprising in its flexibility. As examples of this, we mention two new

theorems which are both corollaries to the same *-taming set theorem [11, Theorem

21.
Example 3 [11, Corollary 3]. If S is a 2-sphere in E3 and no horizontal

section of S has a degenerate component, then S is tame.

Example 4 (Corollary 4.6 and [11, Corollary 5]). If S is a 2-sphere in

E3, U and V are the components of E3 — S, and S can be touched from V at each

point of S with a pencil, then S is tame from U. (That is, cl U is a 3-cell if, in the

terminology of analysis, cl U satisfies an exterior cone condition.)

In this first paper of a series (see also [11] and [12]) we set up the basic machinery

for studying *-taming sets. Our main theorems are Theorems 3.1, 3.4, 3.7, and

3.10. We give a number of examples of *-taming sets in §4. In later papers we

extend the list of *-taming sets and find what information one can obtain about

the tameness of a 2-sphere from the structure of its horizontal sections.

Loveland has announced applications of *-taming set theory [20], [21]. Burgess

[4], [6] authored two early papers which contain what can easily be recognized as

*-taming set theorems. One of Burgess' lemmas (our Lemma 3.3), which we

obtained independently before we realized the connection of our work with that of

Burgess, will play a key role in Theorem 3.4. We are deeply indebted to Burgess

for his instruction and friendship.

We remark that by standard procedures (see [8, §11]) one can generalize all of
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our results in more or less obvious ways to cover embeddings of arbitrary 2-manifolds

in 3-manifolds.

2. Local homotopy properties near surfaces. We use A to denote a standard 2-

simplex. A loop (in P3) is a map/: Bd A -* P3; a simple closed curve is a homeo-

morphism J: Bd A -> p3. A singular disk is a map g: A -> P3; a disk is a homeo-

morphism P: A -+ E3. We shall at times purposely ignore the distinction between

a loop (or singular disk) and its image in P3. A singular disk g is bounded by

g|Bd A. A simple closed curve is unknotted if it bounds a disk (in P3).

We use p for the Euclidean distance function and Diam for diameter. We use

A(X, e) to denote the «-neighborhood of X (e > 0). If Diam X< e, then X is called

an e-set. Let Ic£3 and let e: X^- [0, oo) be a map. If g: X-> E3 is a map such

that x=g(x) if e(x) = 0 and p(x, g(x))<e(x) if e(x)>0, then g is called an e(x)-map

or e-map.

Let A and B denote sets in E3 and x a point in E3. Then A is 1-LC in B at jc if

for each e > 0 there is a 8 > 0 such that each loop in N(x, 8) n A bounds a singular

disk in N(x, e) n P. If A is 1-LC in B at each point x of cl A and if for each e > 0

the corresponding 8 can be chosen to be independent of x, then A is said to be

1-ULC in P. If A is 1-ULC in itself, then we say simply that A is 1-ULC. We

define A to be weakly 1-ULC in P at x if small unknotted curves in A near x bound

small singular disks in P. Weakly 1-ULC is defined in a natural manner.

The following easy and, for the most part, well-known lemmas are very useful.

Lemma 2.1. If C is a crumpled cube in P3, X is a closed subset of C, and Int C*

is l-LC in E3-X (alternatively: weakly \-LC in E3-X; l-LC in C*-X) at each

point of X n C*, then Int C* is l-ULC in E3-X (respectively: weakly l-ULC in

E3-X; l-ULC in C*-X).

Proof. One uses the Lebesgue number of an open covering of X n C*.

Lemma 2.2. If C is a crumpled cube in E3, X is a subset of C (not necessarily

closed), and Int C* is l-ULC in C*-X, then C*-Xis l-ULC.

Proof. Since Int C* is also 0-ULC [24, p. 66], Lemma 2.2 is a consequence of

[15, Theorem 4]. The reader is advised however to devise his own proof of this

simple fact.

Lemma 2.3. Let S be a 2-sphere in P3, and let {XJfL x be a family of closed subsets

of S such that, for each i, (S u Int S)-Xt is l-ULC. Then (S u Int S)-(Ji" i *i

is l-ULC.

Proof. This is Lemma 2.3 of [10].

Lemma 2.4. If C is a crumpled cube in E3 and X is a closed subset ofC, then there

are an open set U in E3 — X which contains C* — X and a retraction

r: t/u X^C*u X

such that r(U) = C*-X.
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Proof. This is an immediate consequence of the fact that Bd C is an absolute

neighborhood retract.

Lemma 2.5. Let C be a crumpled cube in E3, U an open subset of E3, and

e(x) : Bd C —> [0, co) a continuous function with e(x) ^ r¡ • pix, E3 — U) for some

constant r¡ (0^ij<l). If h; Bd C—^/s3 is an eix)-homeomorphism, then h(Bd C)

separates two points of E3—U if and only if Bd C does. In particular, if p e (Int C)

— U and V is the component of E3 — /¡(Bd C) which contains p, then V^ U u Int C.

Proof. Note that Bd C and h(Bd C) are homotopic under a homotopy whose

image lies in (Bd C) u U. The result thus follows from [18, p. 97].

3. Basic properties of *-taming sets. Our first theorem is a preliminary charac-

terization of *-taming sets and corresponds to Loveland's preliminary character-

ization of taming sets [19, Theorem 16].

Theorem 3.1. A closed subset X of E3 is a *-taming set if and only if for each

crumpled cube C in E3 which contains X, C* — X is l-ULC.

Proof. Suppose that C is a crumpled cube in E3 which contains a given closed

set Xand suppose that Bd C is tame modulo X. If C*— Y is l-ULC, we claim that

Int C* is also l-ULC, hence that C* is a 3-cell [2]. Indeed, (Bd C)- X may be

expressed as a union IJi" i Pu where each Ft is closed in Bd C. Since Bd C is tame

modulo X, C*-Ft is clearly l-ULC for each i. Thus C*-(X u Ui°°=i /7i) = Int C*

is l-ULC by Lemma 2.3. It follows that if C* — Y is l-ULC for each such crumpled

cube C, then Y is a *-taming set by definition. Note that in this half of the theorem

we do not need the full strength of the hypothesis.

Suppose conversely that Y is a *-taming set and that C is a crumpled cube in E3

which contains X. Let x be arbitrarily chosen from X r\ C*. Since X n C* is

compact, in order to show that C* — X is l-ULC it suffices to show that Int C*

is 1-LC in C* — X at x (Lemmas 2.1 and 2.2). The strategy in capsule form is to

approximate C by a crumpled cube whose boundary is a 2-sphere that is tame

modulo X, apply the definition of *-taming set, and then use a retraction (Lemmas

2.4 and 2.5) to obtain information about C.

Step 1. Suppose e>0 given. We seek a 8>0 such that any loop in (Int C*)

n Nix, 8) bounds a singular disk in iC* — X)n Nix, e). By Lemma 2.4, there is

a retraction r: Yu £/"-»■ lu C*, where U is an open subset of E3—X which

contains C* — X, such that riU) = C* — X. We choose a So>0 such that

r: Un Nix, 80)^ic*-X) n N(x, e) and a S>0 such that

(1) 0<S<80/3and

(2) any 3-subset of a S-approximation 5 to Bd C lies in a S0/3-disk on S.

We show in two further steps that a loop J: Bd A -> (Int C*) n N(x, 8) bounds

a singular disk in (C* - X) n TV(x, e).

Step 2. We now carefully choose a crumpled cube K in E3 which contains X

and whose boundary is tame modulo X. Let
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f(y) = min {8, (1/2)-p[y,(E3-U)\J J(Bd A)]}       (yeBdC).

Let h: Bd C-> P3 be an/(j)-homeomorphism of Bd C such that «(Bd C) is tame

modulo X [1, Theorem 7]. Let K be the crumpled cube in P3 bounded by «(Bd C)

and not containing /(Bd A). Then IcX and /(Bd A)<=Int K*<=[U-J(Bd A)]

u Int C* = U by Lemma 2.5. The crumpled cube K* is therefore a 3-cell because

X is a *-taming set in K.

Step 3. We use the crumpled cube K* and the retraction r to contract Jtoa point.

Since J is a S-loop in Int K*, since S-sets in Bd K* lie in 80/3-disks in Bd K* by (2),

and since K* is a 3-cell, it is easy to see that Jbounds a singular 2S0/3-disk in Int K*.

One simply cuts off a singular disk bounded by / near Bd K*. If D0: A -> P3 is

such a singular disk, then

D0(A) c (Int P*) n A(x, S0) c f/ n ^(^ 80)

and

D = r° D0: A -> r[U n N(x, 80)] c (C*-A) n A(x, e).

Since 7=P0|Bd A = r ° P0|Bd A = P|Bd A, we conclude that J bounds a singular

disk in (C*-X) n N(x, e). This completes the proof that C*- A^ is 1-ULC.

Proposition 3.2x. Per C be a crumpled cube in E3 and e a positive number. Then

there is a 8 > 0 such that if X is any *-taming set in C and J is any 8-loop in C* — X,

then J bounds a singular e-disk in C* — X.

(Note. If X= 0, then Proposition 3.2i reduces to the well-known result that

C* is 1-ULC.)

Proof. Choose 8 > 0 such that S-subsets of Bd C lie in e/2-disks in Bd C. Let X

he a *-taming set in C and ./: Bd A -> C* — X a S-loop. Then J bounds a singular

S-disk D0: A -> E3. The set D0(A) n Bd C lies in an e/2-disk P in Bd C. By the

Tietze extension theorem, D0 can be cut off on P so as to form a singular disk

Dx: A^(D0(A) u P) n C*. Then Dx is clearly a singular e-disk. Since C*-X

is 1-ULC by Theorem 3.1, we may apply [10, Lemma 2.2] to conclude that Dx may

be adjusted slightly, with J=Bd Dx fixed, so as to form a singular e-disk D bounded

by Jin C*-X.

Essentially the same proof can also be used to prove the following proposition.

Proposition 3.22. Let C and e be as in the statement of Proposition 3.2i. Then

there is a S>0 having the following properties:

(1) If X is any *-taming set in C, possibly with X= 0, and if a>0, then any

unknotted 8-loop in Int C* bounds an e-disk in (E3— X) n A(C*, a).

(2) If C* is a 3-cell, then 8-loops in Int C* bound singular e-disks in Int C* and

unknotted 8-loops in Int C* bound e-disks in Int C*.

The following technical lemma is an easy adaptation of [4, Theorem 3] and is

used in the proof of Theorem 3.4. We omit the proof.



434 J. W. CANNON [November

Lemma 3.3. Suppose C is a crumpled cube in E3, X is a closed subset of C which

has no component of diameter less than l/i>0, R is a disk in Bd C, and D is a disk

such that

(1) Ris locally polyhedral at each point of R — X,

(2) D^E3-X,
(3) BdDcintC*,

(4) D n Bd C^lnt R, and

(5) 3Diam(Z>u/?)<l//.

Then for each positive number e there is a disk D' such that

(6) Bd/)' = Bd D,

il) D'<=intC*,and

(8) D' is in an e-neighborhood of Du R.

Theorem 3.4. Suppose that C is a crumpled cube in E3, that X is a closed subset

of C which has no degenerate components, and that Int C* is weakly l-ULC in

E3-X. Then C*-Xis l-ULC.

Proof. Let Y¡ (/'= 1, 2,...) denote the closed subset of X whose components are

the components of X of diameter equal to or greater than l/i. Note that Int C*

is weakly l-ULC in E3-X¡ for each /'. If C* — Xi were l-ULC for each /, then C*

— A1 would be l-ULC by Lemma 2.3 since Ar=(Ji™1 Y¡. Hence it suffices to prove

our theorem under the special assumption that Y= Xh where / is some positive

integer which we assume fixed for the remainder of this proof.

By [10, Theorem 2.6], it suffices to prove that Int C* is weakly l-ULC in C* - X.

To this end, assume e>0 given. We suppose that e< l/i. Choose 8, 0< 8< e/9, such

that each S-subset of Bd C lies in an e/9-disk in Bd C. We claim that each unknotted

S-simple closed curve in Int C* bounds a singular e-disk in C* — X. A proof of this

assertion will complete the proof of this theorem.

Let J be an unknotted S-simple closed curve in Int C*. Then / bounds a S-disk

D in E3 such that D is locally polyhedral at each point of D—J [1, Theorem 7].

If D n Bd C= 0, we are done. Otherwise, there is an e/9-disk R in Bd C such that

D n Bd Cc Int R and Diam (üu D)-¿ Diam R + Diam D < e/9 + 8 < e/3. It follows

from [10, Lemma 2.5] that there is a map h: D -> Int C* u Int R such that A(D)

is a singular e/3-disk, h is the identity in a neighborhood of J, A(D) n Bd C is

0-dimensional, and h\D — h~1iBd C) is a homeomorphism.

There is an a, 0<a<8, such that TV(A(D), a) n Bd Ceint R, PiR,J)>a, and

Diam NihiD) u R, «)<e/3. Using the hypothesis that Int C* is weakly l-ULC in

E3 — X, we find a ß, 0<ß<<x/2, such that each unknotted jS-simple closed curve in

Int C* bounds a singular a/2-disk in E3 — X.

Because /z(D) n Bd C is 0-dimensional, there is a finite collection Ju...,Jk of

disjoint simple closed curves in D such that {Jk=1Jj separates J from /z-1(Bd C)

in D and such that each hiJ,) is a /Moop in a /3-neighborhood of the set A(Z)) n Bd C.

We assume that no proper subcollection of J1}..., Jk separates J from A_1(Bd C)
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in D. Because «|P-«_1(Bd C) is a homeomorphism and Jj<=D—h~1(Bd C), it

follows from Dehn's Lemma [23] that each h(J,) is an unknotted /S-simple closed

curve in Int C*. Hence by the way in which ß was chosen, there is a map

«! : D -*■ E3 — X such that hx agrees with « on that component of D — \Jfm x J¡

which contains J and such that hx takes the disk in D bounded by // into an a/2-

subset of P3 - X. We note that hx(D) n Bd C<= Int P, that hx(D) has no singularities

near/, and that Diam (P u hx(D))<e/3. Hence by Dehn's Lemma, we may replace

hx(D) by a nonsingular disk E bounded by J such that E n Bd C<= Int P,

Diam (P u P) < e/3, and E<=E3-X. We may further require that P be locally

polyhedral at each point of E—J.

By Lemma 2.4, there are an open set U in P3- X containing C* — X and an

e/3-retraction r:U-*C*-X. Define /: Bd C ̂  [0, e/3] by the formula /(x)

= min{e/3, (l/2)-p(x, (E3-U)kjJ)}. It follows from [1, Theorem 7] that there

is an/(x)-homeomorphism g: Bd C-> P3 such that g(Bd C) is locally polyhedral

at each point of g(Bd C— X). We may clearly require that g be so near the identity

that P n g(Bd C)^g(lnt R) and that Diam (P u g(P)) < e/3.

We now apply Lemma 3.3 in order to conclude that J bounds an e/3-disk F in

the complement of g(Bd C). Here we use our disk P in place of the disk D of

Lemma 3.3, g(R) in place of P, and g(Bd C) in place of Bd C. By Lemma 2.5 and

our choice of g, the disk P lies in U.

Finally rF is a singular disk in C* — X bounded by J since r\J= identity and

F<=U=r~1(C* — X). The singular disk rPhas diameter less than Diam P+2e/3<e

since P is an e/3-disk and r is an e/3-retraction. This completes the proof that J

bounds a singular e-disk in C* — X and thereby completes the proof of Theorem

3.4.

Corollary 3.5. Suppose that C is a crumpled cube in P3, that X is a closed

subset of C which has no degenerate components, and that Int C* is weakly l-ULC

in E3-X. Then if Bd C is tame modulo XnBdC, C* is a 3-cell.

The following technical lemma is an easy adaptation of [9, Lemma 3.3] and is

used in the proof of Theorem 3.7, condition (2). Since our proof of Theorem 3.7,

condition (2) will refer to the proof of [9, Theorem 1.2], we omit the definitions

which are found in [9] and are necessary for a complete understanding of Lemma

3.6.

Lemma 3.6. Let M denote a subcontinuum of a circular disk D in E2 = E2x{0}

CP3 such that M contains Bd D and M— Bd P<=C, where C is a crumpled cube in

P3. Let H denote a polyhedral handlebody (cube-with-handles) formed by thickening

a disk-with-holes D0 in E2 which has the following properties:

(1) M^lntD0.

(2) No two components of E2 — D0 lie in the same component of E2 — M.

Then given e > 0, there is a set generator G for ttx(H) such that G — A(Bd D, e) is a

subset of Int C.
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Theorem 3.7. A closed subset X of E3 is a *-taming set if either of the following

two conditions is satisfied:

(1) X is a countable union of*-taming sets.

(2) X has no degenerate components and lies on a tame 2-sphere in E3 (z'.e., X is a

taming set [9]).

Proof. Suppose that Y=(jr=i Xu where each Y¡ is a *-taming set. Let C be any

crumpled cube in E3 which contains Y. By Theorem 3.1, C* —Y¡ is l-ULC for

each /. Hence by Lemma 2.3, C*- Y=C*-Ur=i X¡ is l-ULC. We conclude from

Theorem 3.1 that Ais a *-taming set. This proves that condition (1) is sufficient.

Suppose now that X has no degenerate components and lies on a tame 2-sphere

in E3. The fact that Y is a *-taming set if it is a countable union of *-taming sets

allows us to assume first that Y is not a 2-sphere, hence without loss of generality

that it lies in the plane E2 = E2x{0}'=E3, and second that Y has no component of

diameter less than l/i for some positive integer i (since Y= Ut°°= x Xh where Y¡ is the

union of the components of X having diameter at least 1//). That is, the general

case of condition (2) will follow from the special case Y= Xi<=-E2 = E2x{0}r^E3

by condition (1).

Let C be a crumpled cube in E3 which contains X and let xe C* n X. By

Theorems 3.1 and 3.4 and Lemma 2.1, in order to show that Y is a *-taming set it

suffices to show that Int C* is weakly 1-LC in E3 — Y at x. That this actually is the

case follows from Proposition 3.22(1) (applied to the empty *-taming set), Lemma

3.6, and [9, Lemma 3.2] as the corresponding fact in the proof of [9, Theorem 1.2]

followed from [9, Lemmas 2.4, 3.3, and 3.2]. This completes the proof.

Corollary 3.8. If X is a compact subset of a 2-sphere S in E3, then X is a

*-taming set if and only if X is tame and has no degenerate components (i.e., if and

only if X is a taming set [9]).

Proof. If Y is tame and has no degenerate components, then Y is a *-taming

set by Theorem 3.7. Conversely, if Y is a *-taming set and S' is any 2-sphere which

contains X and is locally tame modulo Y, then, by the definition of *-taming set,

S' u Int 5" is a 3-cell (since X^S' u Ext S' and 5" is tame modulo X). Similarly,

5" u Ext S' is a 3-cell. Thus S' is tame, and Y is a taming set by definition. Since

taming sets are tame and have no degenerate components [9], our proof is complete.

Theorem 3.9. If C is a crumpled cube in E3, X is a closed subset ofiC, C*-X is

l-ULC, and e>0, then there is an embedding h: C -> E3 such that h moves no point

as far as e, h\X= identity, and A(C)* is a 3-cell.

Proof. The theorem follows by a standard argument from the following lemma

(see [13, Lemma and the remarks following the proof ofthat lemma]).

Lemma. Given e>0, there exist an e-homeomorphism h' from C into E3, fixed on

a neighborhood of X in C, and a polyhedral 2-sphere S', homeomorphically within e

of Bd C=S, such that h\C) n 5"= 0.
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This lemma contains two obvious changes from [13, Lemma]. The first is the

inclusion of A'in the statement; the requirement that «' be fixed on a neighborhood

of A" in Censures that h'(C)* — X will be 1-ULC, hence that the lemma can be

applied iteratively. The second change is that of requiring only that h'(C) (~\ S' = 0

rather than h'(C)c Int S'\ this simply reflects the fact that, in our case, Cmay be a

noncompact crumpled cube. The proof of [13, Lemma], with minor changes in the

first part of the proof only, suffices to establish our lemma as well. We refer the

reader to the proof of [13, Lemma] and simply indicate the changes that must be

made in that proof [13, pp. 52-53]:

Since C* - A'is 1-ULC, property (*, X, Int C*) is satisfied (see [10, Theorem 2.4]).

All this means is that in Daverman's proof [13] the disks Dx, D2,..., Dm in S may

be chosen to lie in S— X. Choose a connected neighborhood N of XinC such that

cl A<=C— Ur=i Pi- Alter the homeomorphism g on the disks Dx, D2,..., Dm by

(1) using the Tietze's extension theorem (see [5, Lemma 1]) to map g(P() into

[g(D¡) nC*]u Int Pj and (2) using Dehn's Lemma [23] to change the singular

disk thus obtained into a new polyhedral disk g(D¡) very near the old [g(D¡) n C*]

u Int P¡ in P3 — cl A. Use the new g rather than the old to complete Daverman's

proof. The small 3-cell P¡ of that proof, which is formed by thickening, in our case,

the new g(D¡), can therefore be chosen very near the old [g(D{) n C*] u Int P, in

P3 —cl A. If we use the terminology Int g(S) for the component of E3—g(S) which

contains A, then Daverman's homeomorphism «' will move C into Int g(S) and

fix A.

Theorem 3.10. If C and K are homeomorphic crumpled cubes in E3, X is a

*-taming set contained in C, and « : C -> K a homeomorphism, then the following

are equivalent :

(1) K*-h(X) is l-ULC.

(2) X and h(X) are equivalently embedded in E3.

(3) h(X) is a *-taming set.

Proof. (1) implies (2). Note that C*-X is 1-ULC by Theorem 3.1. Hence by

Theorem 3.8, there are embeddings/: C -> E3 and g: P->- E3 such that/(C)* and

g(K)* are homeomorphic 3-cells, f\X= identity, and g\h(X) = identity. Since

/(C)* and g(K)* are homeomorphic 3-cells and ghf'1: f(C) -^-g(K) is a homeo-

morphism, ghf'1 can be extended to a homeomorphism H: E3 ->- P3. But H takes

A'to h(X), and we conclude that A" and h(X) are equivalently embedded in P3.

(2) implies (3). Clear.

(3) implies (1). Theorem 3.1.

4. Miscellaneous examples of Manning sets. The following theorem is

[6, Theorem 2].

Theorem 4.1. ^4 crumpled cube X in P3 is a *-taming set if X* is a 3-cell.
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Proof. Let C denote a crumpled cube in E3 which contains X. If Y* is a 3-cell,

then Int X* = E3-X is l-ULC. Hence Int C* is clearly l-ULC in E3-X. By

Theorems 3.1 and 3.4, Y is a *-taming set.

An arc A in E3 is said to be locally peripherally unknotted (l.p.u.) if for each

p e A and each e > 0 there is a 2-sphere <S of diameter less than e in E3 such that

p e Int S and S n A consists of one point if p is an endpoint of A and two points

otherwise.

Theorem 4.2. A locally peripherally unknotted arc is a *-taming set.

Proof. Let A denote an l.p.u. arc in E3. Let C be a crumpled cube in E3 which

contains A and whose boundary is tame modulo A. As noted in the first paragraph

of the proof of Theorem 3.1, in order to show that A is a *-taming set it suffices

to show that for this special kind of crumpled cube C that C* — A is l-ULC. By

Lemma 2.1 and Theorem 3.4, it suffices in turn to show that Int C* is 1-LC in

E3—A at each point x in A n C*.

We assume therefore that a point xeA n C* and a number oO are given.

We assume x e Int A and leave the other (slightly easier) case where x e Bd A to

the reader. Let J be a simple closed curve in C which contains A. Let B be an arc in

Nix, e) such that x e Int B^B^lnt A. Let 80, 0< 80<e, be such that TV(x, 80) n J

^IntB. Let D be a disk such that x e Int D^ D^ Bd C n Nix, 80), and let 8,

0<S<80, be such that Nix, 8) n Bd C^lnt D. We show in the next paragraph

that a loop /: Bd A ->- Int C* n Nix, 8) bounds a singular disk in Nix, 8) —A.

This will complete the proof.

There is an extension off which takes A into [Int C* u D] n Nix, S0). We call

the extension / also. Since Bd C is tame modulo A and Nix, 8Q) n J<= Int B, we

may require that/(A) n Bd C<=Int S. By the proof to [16, Theorem 1] (since A is

an l.p.u. arc), there is a 2-sphere S in TV(x, e) with (5 u Int S) nj being an arc B'

such that 5' contains B, Int 5' lies in Int S, and £ is polyhedral modulo Bd B'.

Note that since/(A) n J=/(A) n Int 5=/(A) n Bd C^lnt 5" and/(Bd A)c Ext S,

we may assume/to be adjusted so as to be in general position with respect to S.

If J' is a component of/_1(/(A) n S), then J' is a simple closed curve and/(/')

is a loop in iS-Bd B) n Int C*. Since JcC and/(7')c:C*, 7 and/(J') cannot

link [8, Theorem 4.7.1]. Thus /(/') must bound a singular disk in S—A. Let

Jx,J2,...,Jm be the components of/_1(/(A) n 5) which are also boundary

components of that component K of A—/_1(/(A) n S) which contains Bd A.

Let A, be the subdisk of A bounded by /¡. Define g: A -►/(#) u (S-Bd 5')

cNix, e)-A by defining g|Ä=/|.K, and by letting g|A, be any extension off\Jt

which takes A, into S-Bd B'. This completes the proof.

Corollary 4.3 (see [17, Theorem VI]). An arc Ais tame if it lies on a 2-sphere

in E3 and is l.p.u.

Proof. This is a consequence of Theorem 4.2 and Corollary 3.8.
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Theorem 4.4. A compact set X in E3 which has no degenerate components is a

*-taming set if there exists a sequence {M¡} of 3-manifolds with boundary such that

(1) K is uniformly described by {M¡},

(2) each component of each Mt is a polyhedral cube, and

(3) {Mt} is sequentially l-ULC.

Proof. This can be proved by the same methods used to prove Theorem 1 of [7].

(See [7] also for definitions.)

Theorem 4.5. A closed set X in P3 is a *-taming set if it is a union of convex

3-cells.

Proof. Let C be a crumpled cube in P3 which contains X. Let {dk}k=! be a dense

set of directions in P3. For each triple (/',/ k) of positive integers, let A(i,j, k)

denote the family of cones in A" with vertex on Bd X, vertex angle l/i, height i/j, and

direction dk (from the base of the cone to the vertex). If A is such a cone, then we

let A' denote the subinterval of the axis of A which lies in A, has length 1/(2/), and

has the vertex of A as one endpoint. We let B(i, j, k) = (J {A' \ A e A(i, j, k)}.

We observe that B(i,j, k) is a compact subset of C which has no component of

diameter less than 1/(2/').

We claim that C*-B(i,j, k) is 1-ULC. It suffices to show, by Theorem 3.4, that

Int C* is 1-ULC in E3 — B(i,j, k). Let e>0 be given and choose S>0 such that

8-loops in C* bound singular e-disks in C* (Proposition 3.2). Let/: Bd A ->- Int C*

be a S-loop and D: A -> C* be a singular e-disk bounded by /. We choose 8^0

such that A(/(Bd A), S^cIntC* and such that Diam N(D(A), 8X) < e. Let

P: P3 ->- P3 be a translation in the direction dk which moves points a positive

distance less than min {81; 1/(2/)}. We observe that P(P(A)) n B(i,j, k)=0, that

/ is homotopic in A(/(Bd A), 8j)cInt C* to P°/ and that A(/(Bd A), 8X)

u Po D(A)<^N(D(A), 8X)-B(i,j, k). We conclude that / is nullhomotopic in an

e-subset of E3 — B(i,j, k), hence that Int C* is 1-ULC in E3 — B(i,j, k) and finally

that C*-B(i,j,k) is 1-ULC.

We observe that C* — X=C* — (JiJikB(i,j,k) because A" is a union of convex

3-cells. Hence C* —Ais 1-ULC by the previous paragraph and Lemma 2.3. By

Theorem 3.1, A" is a *-taming set.

Our final corollary generalizes a theorem of Bothe [3]. The history of this corol-

lary is discussed in more detail in [11].

Corollary 4.6. A crumpled cube C in E3 is a 3-cell if Bd C can be touched from

C* at each point of Bd C by a pencil, i.e., if for each point p of Bd C there is a

solid right circular cone with vertex at p which lies in C*.

Proof. The hypothesis implies that C* is a union of convex 3-cells, hence a

*-taming set by Theorem 4.5. Thus C is a 3-cell by definition of *-taming set.
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