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*-TAMING SETS FOR CRUMPLED CUBES.

II: HORIZONTAL SECTIONS IN CLOSED SETSO

BY

JAMES W. CANNON

Abstract. We prove that a closed subset X of E3 is a »-taming set if no horizontal

section of X has a degenerate component. This implies, for example, that a 2-sphere

S in E3 is tame if no horizontal section of S has a degenerate component. It also

implies (less obviously) that a 2-sphere S in E3 is tame if it can be touched at each

point from each side of S by a pencil.

We assume familiarity with the definitions and results from the first paper [5]

of this series in which the basic properties of *-taming sets are developed. We recall

for the reader's convenience, however, our definitions of crumpled cubes, 3-cells,

taming sets, and *-taming sets. A crumpled cube is the union of a 2-sphere and one

of its complementary domains in P3. If C is a crumpled cube in E3, then the

closure cl(P3-C) of E3 — C is also a crumpled cube, which we denote by C*.

We write Bd C for the 2-sphere C r\ C* and Int C for the set P3-C*. A 3-cell

is a crumpled cube homeomorphic with either the standard unit ball P in P3 or

the crumpled cube P*. Suppose that Ais a compact subset of some 2-sphere in P3.

Then one may consider in particular those 2-spheres S in P3 which contain X and

are locally tame at each point of S— X. If each such 2-sphere is tame, then X is

said to be a taming set. According to [4], a compact set A in P3 is a taming set if

and only if it lies on some tame 2-sphere in P3 and has no degenerate components.

In short, the notion of taming set allows one to answer the natural question,

"Is a 2-sphere in P3 tame if it is tame modulo a tame subset A?" The notion of

*-taming set results when one tries to free X from the requirement that it lie in a

surface in P3; i.e., one has the more general question, "Is a 2-sphere S in P3 tame

if it is tame modulo some given set X which is not necessarily a subset of ST'

The most interesting theory results when one requires that A not intersect both

complementary domains of S in P3. A *-taming set X in P3 is a closed (not neces-

sarily compact) subset of P3 having the following property: if C is a crumpled

cube in P3, X<=C, and Bd C is locally tame at each point of Bd C-(X n Bd C),

then C* is a 3-cell.
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If r and s are real numbers with r<s, then we set />(/) = {(x, y, z)e E3 : z = r}

and P [r, s ] = {(x, y, z)e E3 : r ^ z ^ í }. If X is a closed subset of £3 and f a positive

number, then we set Y(r) = Y n/V), Y[r, i] = In />[r, ¿], and Y(r)' = U{A:: K

a component of AY/), Diam K^t}. Note that Y(r), X[r, s], and Y(r)' are closed

sets. We let pir): E3 -> /"*(/) denote the projection map defined by />(r)(x, .y, z)

=(*,>>, r).

A cubical neighborhood of a point (x, y, z) in £3 is a set of the form /j x /2 x /3,

where /i, /2, and I3 are finite open subintervals of the real line R containing x, y,

and z respectively.

Theorem 1. Suppose that X is a closed subset of E3 and that, for some t >0,

Y= (J {Xirf : reR}. Then X is a *-taming set.

Proof. Let C be a crumpled cube in E3 with Ic c. Let p be an arbitrarily chosen

point of Bd C. By [5, Lemma 2.1, Theorems 3.1 and 3.4], in order to show that Y

is a *-taming set it suffices to show that Int C* is 1-LC in E3 - X at p. To this end,

let N denote an open set containing p. We may assume, making N smaller if

necessary, that TV* is a cubical neighborhood of p and that DiamTV<f. Using

[5, Proposition 3.2], we choose a cubical neighborhood TV" of p with N'^N such

that if/is any loop in TV n Int C* and Y is any *-taming set in C, then/bounds a

singular disk in TV— Y. We shall complete the proof that Int C* is 1-LC in E3 — X

atp by showing that ifjis any loop in TV" n Int C*, then ./bounds a singular disk

in N— X. This will complete the proof of Theorem 1.

Let A denote a triangular disk and J: Bd A -> TV' n Int C* a loop. Our plan

to shrink / to a point in N— X proceeds roughly as follows. We first carefully

choose certain planes /""(/i),..., P(r„) (rx< • • • <rn); we then shrink 7 to a point

in TV— U"=i ATX), say by a map D: A ̂ -TV— (J"=i AYX); we put D in general

position with respect to Ur=i^'('"i); and we use portions of J(Bd A) u (D(A)

n Ur=i P(rd)> appropriately adjusted, as a guideline for shrinking J to a point in

TV— X. The procedure is a refinement of the procedures followed in [10] and [11].

Choosing the planes /"(nX • • • > P(rn)- Let M denote a compact connected neigh-

borhood of Jin TV' — X. Let /denote the closed interval

{z : there exist x, y in R such that (x, j>, z) e M}.

Fix re/. There are only finitely many components of Pir) n (A— Y) which

contain points of M since M is compact. It is therefore an easy matter to construct

a compact set Qir) in P(r) n (A—Y) which contains /*(/•) o M, which has pre-

cisely one component in each of the components of Pir) n (A- Y) which contains

a point of M, and which has only arcwise connected components. Given d>0,

examine the set Qir, d)=Qir) u (Af r\P[r-d, r+d]). For some i/(/)>0,

/XOtoí^W^/KO^r-í/í/), r+</(/•)]]= 0. For otherwise we find that

Xt~\Qir)^0, a contradiction. It is therefore possible to find real numbers

rlt..., r„ in /, rx < • -•■ < rn, such that /<= (Jf= ! (r¡ - ¿/(r,), r¡ + ¿ffo)). We may assume
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that there are real numbers sx, ...,sn-x, rx<sx<r2< ■ ■ ■ <rn_1<jn_1<rn, such

that ri + x — d(r¡ + x)<s¡ < rt + d(r¡) (i=l,..., n— 1). (We may have to delete certain

unnecessary rf's to obtain the situation we have just hypothesized.) Then the

planes P(rx),..., P(rn) are the desired planes.

Shrinking J to a point in A— lj?= i X(rd- The set X(rt) is a *-taming set for each i

by [5, Theorem 3.7]. Hence Y={Jf=x X(rt) is a *-taming set by the same theorem.

Since y is a *-taming set in C and / is a loop in A' n Int C*, / bounds a singular

disk in A— Y by our choice of A'. Let D: A -> A— Y denote a singular disk

bounded by the loop /: Bd A -^ A' n Int C*. After a slight homotopy in A— X,

we may assume that D is piecewise-linear and in general position with respect to

P(rx),..., P(rn). The adjustment may be realized in such a manner that the

adjusted / is a loop in M since M is a neighborhood of the original /. It suffices

to show that the adjusted / can be shrunk to a point in A— X.

Finding guidelines near /(Bd A) u (P(A) n (Jf= x P(ri))for shrinking J to a point

in A-A". Examine the set P_1[P(A) n \J?=X P(r,)], which is a subset of A. Since

D and U"=ijP('"i) are in general position, the set P_1[P(A)n U?=i^>(''i)] is a

union of finitely many disjoint simple closed curves in Int A, which curves we

ignore, and of finitely many disjoint spanning arcs Ax,...,Am of A. For each j,

D(Aj) is a path in P(rt) n (A— A") for some i, hence a subset of some single com-

ponent of P(r¡) n (N—X). The endpoints of A¡ are in Bd A, hence are mapped by

D into M. We conclude that the endpoints of At are mapped by D into a single

component of Q(r¡). Since the components of Q(r¡) are arcwise connected, we may

define a map D': (Bd A) u (\Jf=x A,)-* A-X by setting P'|Bd A = P|Bd A=/

and by sending each A, into the appropriate Q(r¡). The map D' will serve as a

guideline for shrinking / in A— X.

Shrinking J to a point in A— X. Notice that the m spanning arcs Ax,..., Am

divide A into m +1 disks A^ ..., Am+1 with disjoint interiors. For each/, the map

D' is defined on Bd Ay and takes Bd A; into A— X. In order to shrink / to a point

in A- X, it suffices to find for each/a map D'¡: Ay -> A— A which extends the map

P'|Bd A,:Bd A,->A-A".

To this end we assume y fixed. We note that there is an integer / (1 fíi^n) such

that D'(Bd Ay)cP[r(, ri + x]. (This is not strictly true; we might have one of the

exceptional cases where D'(Bd A¡)^P[rx-d(rx), rx] or P'(Bd A})<^P[rn, rn + d(rn)],

but we leave the simple adjustments needed to handle the exceptional cases to the

reader.) The existence of such an / follows from the fact that Bd A, lies on the

boundary of a single component of A —P_1(P(A) n (J?=1 P(r¡)). The loop

P'|Bd A; is homotopic in a natural way to the loop/?(í¡) o P'|Bd Ay, where s¡ is the

real number chosen previously such that r<<si<ri+1 and rf + 1-i/(r( + 1)<5i<rf

+ d(rt). The homotopy we have in mind moves a point x along the vertical interval

joining the points D'(x) and p(s¡) ° D'(x). Our choices of the sets Q(r¡), the numbers

d(r¡), and the map D' were dictated precisely by the goal that the track of this

homotopy lie in A- X. The final image of the loop P'|Bd Ay lies in P(s{) n (A-A");
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but this latter set is simply connected since Diam N<t and Y(í¡) has no component

smaller in diameter than t. Thus we are enabled to shrink the loop D'|Bd A, to a

point in N- X and the proof is complete.

Theorem 2. Let S be a 2-sphere in E3, K a compact nowhere dense subset of the

real line R, and SK = {J {Sir) : r e K}. Then SK lies on a tame 2-sphere in E3.

Proof. By [7, Theorem 1.1] and a compactness argument, it suffices to show that

E3 — S is 1-LC in E3 — SK at each point p e SK. The proof of this fact proceeds

exactly as the proof of Theorem 1 until the levels s¡ are chosen. (The set SK of

Theorem 2 corresponds to the set Y of Theorem 1.) In the case of Theorem 2, one

must choose the í¡ in R-K. Then Pis¡) n SK= <Z and the remainder of the proof

proceeds without change.

Theorem 3. A closed subset X of E3 is a *-taming set if for each real number r,

Xir) has no degenerate component.

Proof. Note that for each positive integer i, the set

Xi = \J {Xir)m : r a real number}

is a closed subset of E3 and satisfies the hypothesis of Theorem 1. Hence Y¡ is a

*-taming set. But Y=(jr=i X¡. Thus Y is a *-taming set since a closed set which

is a countable union of *-taming sets is a *-taming set by [5, Theorem 3.7].

Corollary 4. A 2-sphere S in E3 is tame if no horizontal section of S has a

degenerate component.

Proof. The sphere S is a *-taming set by Theorem 3, but a *-taming set which lies

on a 2-sphere is tame (easy exercise or [5, Corollary 3.8]).

Corollary 4 generalizes the principal results of [8], [10], [12], and [11] (with

references listed in chronological order, [8] and [10] announcing the same result

simultaneously).

We say that a set X is unidirectional if there is a straight line L in E3 such that

Y is a union of nondegenerate intervals, each parallel to L.

Theorem 5. A closed subset X of E3 is a *-taming set if it is unidirectional.

Proof. Let L be a straight line in E3 such that Y is a union of nondegenerate

straight line intervals parallel to L. Let P be a plane which contains L. Then if a

coordinate system is chosen for E3 with respect to which P is horizontal, we find

that Y=Ui°=i X, where Y, = IJ {Y(r)1" : r a real number}. As in the proof of

Theorem 3 we conclude that Y is a *-taming set.

The next corollary generalizes recent results of H. C. Griffith [9], L. D. Loveland

[13], and H. G. Bothe [3] and answers questions raised by R. H. Bing [2] and

Loveland [13, Questions 1 and 3] in the affirmative. Griffith [9] proved that a

2-sphere S in E3 is tame if there exists a positive number f such that, for each
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point p of S, there are round balls of diameter t tangent atp and lying except forp

in opposite complementary domains of S. Loveland [13] removed the requirement

that the size of the tangent balls be uniformly large and independent of p. Bothe

[3] in a manuscript written before Loveland's work, but without Loveland's

knowledge, proved a slightly stronger theorem which we shall only paraphrase:

A 2-sphere S in P3 is tame if for each point p of S there is a solid right circular

double cone having p as vertex, having extremely large vertex angle, and being

separated by S into its two halves.

Corollary 6. A crumpled cube C in E3 is a 3-cell if it can be touched at each

point from C* by a pencil.

Proof. One sees easily that C* is a countable union of closed unidirectional

sets, hence a *-taming set by Theorem 5 and [5, Theorem 3.7]. We conclude that C

is a 3-cell by the definition of *-taming set.

We have, of course, looked at horizontal sections for convenience only. We could

look at "horizontal" sections with respect to curvilinear or rectilinear Cartesian

coordinate systems on P3 other than the standard one. Using the ideas we have

illustrated above and the general properties of *-taming sets [5], the reader can

produce any number of theorems concerning spheres which have appropriate types

of cross sections. We include three further examples here. More difficult and

interesting examples will appear in the third paper of this series [6].

Example 1. A 2-sphere S in P3 is tame if there are countably many planes

Px, P2,... in P3 such that, given any point/? of S, there is a plane P in P3 parallel

to some P¡ such that p is in a nondegenerate component of P n S.

Example 2. The Alexander Horned Sphere S [1] can be described in P3 in such

a manner that each horizontal section of 5 u Ext S is connected. It follows from

either Theorem 1 or 3 that S u Ext S is a *-taming set. Hence S u Int S is a 3-cell

by the definition of *-taming set.

Example 3. (This example generalizes Example 2.) A crumpled cube C in P3

is a 3-cell if it is bounded and if, for each real number r, P(r) — C is connected.

For if P(r) n C* has a degenerate component for some real number r, then Int C

separates points of (Int C*) n P(s) for some real number s near r, a contradiction.

Hence C* is a *-taming set by Theorem 3 and C=(C*)* is a 3-cell.
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