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*-TAMING SETS FOR CRUMPLED CUBES.

Ill: HORIZONTAL SECTIONS IN 2-SPHERES(x)

BY

JAMES W. CANNON

Abstract. We prove that a 2-sphere S in E3 is tame if each horizontal section of 5

has at most four components. Since there are wild spheres in £3 whose horizontal

sections have at most five components, this result is, in a sense, best possible. Much

can nevertheless be said, however, even if certain sections have more than five com-

ponents; and we show that the wildness of a 2-sphere S in E3 is severely restricted by

the requirement that each of the horizontal sections of S have at most finitely many

components that separate S.

1. The main theorem. Suppose S is a 2-sphere in P3. We shall study the

restrictions imposed on the embedding of S in P3 by the requirement that each

horizontal section of S have only finitely many components that separate 5.

Surprisingly, the restrictions are severe enough to allow us to catalogue fairly

completely the possible wildness of S. Our results are summarized in Theorem 1

below. Our main tool will be the following theorem from the preceding paper of

this series [6, Theorem 3].

Theorem 0. If X is a closed subset of P3 and no horizontal section of X has a

degenerate component, then X is a *-taming set.

C. E. Burgess indicated in conversation that Theorem 0 could be used to prove

that a 2-sphere in P3 is tame if each of its horizontal sections has at most three

components. He conjectured further that a sphere is tame if each of its horizontal

sections has at most four components. This paper is the result of our (successful)

attempt to verify Burgess' theorem and conjecture. We again express our indebted-

ness to Burgess for his instruction, friendship, and encouragement. These results

generalize earlier sphere-slicing theorems of Eaton [7], Hosay [10], Loveland [12],

and Jensen [11].

Theorem 1. Let S denote a 2-sphere in E3.

(1) If each horizontal section of S has at most finitely many components that

separate S, then the wild set W(S) of S lies in a closed 0-dimensional set of horizontal

levels, hence is tame (by [6, Theorem 2]) and therefore at most l-dimensional.
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(2) If in addition, each horizontal section of S has at most countably many

degenerate components, then the set Y of nonpiercing points of S is countable and the

closure cl Y of Y is equal to WiS). In particular, if Y= 0 then S is tame.

(3) If the hypothesis of '(2) is satisfied and S has local horizontal-separation index

less than 5 at each degenerate component of each horizontal section of S isee §2 for a

definition), then the set Y of nonpiercing points of S is empty and S is tame.

(4) If there is a positive integer n such that each horizontal section of S has at

most n components that separate S, then each horizontal section of S has at most

finitely many components and (2) applies.

(5) If, in (4), n < 5, then (3) applies and S is tame.

(6) If, in (4), n = 5, then S u Int S is a 3-cell and S is tame modulo two points.

The proof of Theorem 1 will be given in this section but will follow some defi-

nitions and a remark. The proof will rely on the theorem from §2 as well as on the

results of [3], [4], [5], [6]. §3 contains counterexamples to most of the obvious

extensions of Theorem 1.

In general we rely on the terminology and notation of [5], [6]. If r e R (R = reals)»

then P(r) denotes the horizontal plane {(x, y, z) e E3 \ z = r}. If X<=E3 is any set,

then X(r) denotes the set P(r) n Y and is called the horizontal section of Y at

level r. If /is an interval of real numbers (finite, infinite, open, closed, or half-open),

then XI denotes the set [J {X(r) | re/} (e.g., X[a, b) = {J {X(r) | a^r<b}). If

D^P(r) (for some r) and / is a set of real numbers, then Dxl denotes the set

{(x, y, z) e E3 \ (x, y,r)e D and z e /}.

Remark. Suppose objects S^E3, re(a,b)<=[a,b]<=R,peS(r), and D^P(r)

given such that

(i) S is a 2-sphere and

(ii) D is a disk such that/? e Int D and (Bd D)x[a, b]^E3-S.

Define C=Dx[a, b]. Then C is said to be a cylinder at p which respects S. We say

that Cis an £>cylinder if Diam C<e. If {p} is a degenerate component of S(r) and

e > 0, then there is an «-cylinder Catp which respects S. (This is a simple exercise in

plane topology.)

Proof of Theorem 1(1). Let B={b e R \ S(b) has a degenerate component}.

We proceed in two steps.

Step 1. The set B is countable and nowhere dense in R. For suppose not. Then

there is an infinite subset B' of B, each point of which is the limit of both an

increasing and a decreasing sequence from B'. Fix a number b e B', an open interval

(a, ß) which contains b, and a positive number e. We claim that there is a b' e B',

an open interval (a, ß') which contains b', with [a', ß']^(a,ß), and an e'>0, such

that each section S(r) (r e [a, ß']) has a component K which separates S and

satisfies e' < Diam K< e. Suppose that we can establish this claim. Then an iteration

yields sequences ex>e2> .. .>0 and [0=1, j8i]=>[o£2,/32]=> • ■ • such that for any

ref|r=i [at, ßi], Sir) has components Klt K2,... which separate S and satisfy
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ex>Diam Kx>e2>Diam K2>e3> • ■ ■, an obvious contradiction to the hypothesis

of our theorem. Hence, to complete Step 1 we need only establish our claim. Let

{p} be a degenerate component of S(b). By the remark, there is an e-cylinder

C=Dx[x, y] at p which respects S and satisfies a<x<y<ß. If U and F denote

the components of E3 — S (with notation chosen so that U=*(Bd D) x [x, y]), then

there is an arc A in (V u {/?}) n C which is irreducible from the set P(x) u P(y)

to the plane P(b), say A<^P[x, b]. Since b e B', there isab' e B' r\ (x, b). Choose a

and ß' such that x<a <b'<ß'<b. Note that A[a, ß']<= V, hence that

P(A[a',ß'],S)>0. Choose e'>0, e'<p(^[a', ß'], S). Since 5" separates A[a',ß']

from (Bd P) x [x, y], one easily verifies that b', (a1, ß'), and e satisfy the require-

ments of the claim. This completes Step 1.

Step 2. By Step 1, cl P is O-dimensional. By Theorem 0 and [5, Corollary 3.8],

the wild set W(S) of S lies in the O-dimensional set cl P of levels. Hence W(S) is

tame by [6, Theorem 2] and is therefore obviously 1-dimensional at most. This

completes Step 2 and the proof of Theorem 1(1).

Proof of Theorem 1(2). Let Y he the set of nonpiercing points of S and let D

be a disk in 5-cl Y. We show that if U is a component of E3-S, then (cl U) — D

is 1-ULC. It will then follow from any of a number of theorems in the literature that

D is tame, hence that S is tame modulo cl Y. (See [4], for example, for a discussion

of the 1-ULC property.) Let S(r)t be the union of those components of S(r)

having diameter at least l/i. Let S¡ = \J {S(r)t \ re R}. Then S¡ is a *-taming set by

Theorem 0. Hence (cl U)-S¡ is 1-ULC by [5, Theorem 3.1]. Let P¡ denote the set

St n D. It follows that (cl U)-D¡ is 1-ULC. Let A"(r) be the set of degenerate

components of S(r). Then X(r) is countable for each r by hypothesis and empty

for all but countably many r by Step 1 of the preceding proof. Thus D n ((J X(r))

is a countable subset of S-cl Y. Let px,p2,... be the points of D n (\J X(r)).

Then each pt is a piercing point of S, and cl U-{pt} is therefore 1-ULC ([13,

Theorem 1] or [4, (0.2)]). Thus (cl £/)- [lj("=i A u {Pi.Pa, ■ • •}] is 1-ULC by [4,

Lemma 2.3]. We conclude that D is tame (see, for example the introduction to

[4] or see [3, Corollary 5.4]). The set y is countable because Y^-\J X(r) (cf. [3,

Corollary 4.7]). This completes the proof of Theorem 1(2).

Proof of Theorem 1(3). Each point of S is a piercing point of S by Theorem 2.

Hence Y= 0 and S is tame by 1(2).

Proof of Theorem 1(4), 1(5), and 1(6). The conclusion of Theorem 1(4) follows

easily in the manner of Step 1 of the proof of Theorem 1(1). Theorem 1(3) clearly

applies if n < 5 to show S tame. Suppose finally that n = 5. Let p he a nonpiercing

point of S. Suppose that p is neither in the uppermost nor the lowermost section

of S which is nonempty. Note that p is in a degenerate component of S(r) where

P(r) is the level containing/? [3, Corollary 4.7]. Let D he a disk in P(r) containing

p in its interior such that Bd D<=P(r)-S and such that D contains no separating

component of S(r). Then arbitrarily close to the level r there is a level r' such that

D(r')={(x, y, r') \ (x, y, r) e D) contains at least 5 separating components of S(r')
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(Theorem 2). It follows easily from the fact that r is neither the uppermost nor the

lowermost section in S that for r' sufficiently close to r there is a separating com-

ponent of Sir') which does not intersect D(r'). Thus Sir') has at least 6 separating

components, a contradiction. Similarly, if p is a nonpiercing point of S in the

uppermost or lowermost level r of S and Sir) has at least two components, we

obtain a contradiction. We conclude that the set Y of nonpiercing points of S

consists of at most two points p and q, p in the uppermost level of S, q in the

lowermost. Clearly p and q are accessible by tame arcs from Ext S. Since Y contains

at most two points, S is tame modulo p and q by Theorem 1(2). Since S is tame

modulo two points, each of which is accessible by a tame arc (which is a *-taming

set [5, Theorem 3.7]) from S u Ext S, S u Int S is a 3-cell by definition of *-taming

set. This completes the proof.

2. Local horizontal-separation index. Let S denote a 2-sphere in E3. Suppose

that some horizontal section Sia) of S has a degenerate component {/?}. The sphere

S is said to have local horizontal-separation index ¿n atp if there are (i) a disk D

in P(a) with p e Int D and Bd D<= Pia) — Sia) and (ii) a closed interval [a, b] with

a in the open interval (a, b), such that if r e (a, ¿>) and D(r) = {(x, ,y, r) | (x, y, a) e D}

then (iii) Bd Dir)<= E3 — S, and (iv)D(r) n Si/) has at most n components that sep-

arate S.

Theorem 2. Let S andp be as described in the first paragraph o/§2. If S has local

horizontal-separation index ^ 4 at p, then p is a piercing point of S.

Proof. Let U and V be the components of E3 — S. We shall show that p is acces-

sible from both Uand Kby a tame arc. This will imply that/? is a piercing point of

S by [13, Theorem 3].

Let D=D(a) and [a, b] be as promised by the definition of local horizontal-

separation index i= 4 at p. By cutting D and [a, b] down in size and choosing

notation properly, we may require that D —S(a) be connected and lie in U. A tame

arc top from [/can easily be constructed in (D — Sia)) u {/?}; we leave this exercise

in plane topology to the reader.

A tame arc to p from V requires a delicate construction. We first choose an arc

A in V u {p} which has p as an endpoint and satisfies two conditions:

(i) A is locally polyhedral except possibly at p.

(ii) If r is a real number and x and y are points of A which lie in the same com-

ponent of K(r), then the subarc Axy of A from x to y lies either in P( — oo, r] or in

P[r, co).

Such an arc can be obtained by trimming excess vertical folds from an arc A'

which satisfies all requirements made of A except (ii). (Similar adjustments will be

made in more detail as we proceed.) If there is such an arc A which is vertically

monotone, then A is tame and we are finished. Otherwise, we proceed to adjust A.

We identify as follows subarcs Alt A2,... of A — {p} on which there is no vertical

folding. Assume A ordered with p as last point. The maximal straight line segments
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of which A—{p) is the union inherit thereby a direction which we describe as

upward, downward, or horizontal. We choose a sequence A'x, A'2,... of such

segments directed alternately upward and downward iteratively. Let A'x be the

first nonhorizontal segment of A — {p}. Let A[ (/> 1) be the first segment of A— {p}

which follows A't-X in the order on A and is directed oppositely to A't_x. Let At

(i=£ 1) be the union of A[ and the segments of A-{p} between A\ and A'i + X. We

call Ax, A2,... the component arcs of A and observe that each has a natural

designation as increasing or decreasing. We call A¡ and Ai + X adjacent.

We assumed normalized so that, for i ¥=j,At n Ai + xandAj n Aj+X lie in different

horizontal levels. We further assume the interval [a, b] and the arc A shortened so

that A is irreducible from P(a) u P(b) to P(a) and lies, except for p, entirely above

or entirely below Int D, say below Int D (i.e., A^(lnt D) x [a, a]). (This is possible

since D^clU while A<=Vv {p}.) As a consequence, Ax is increasing, A2 is

decreasing, and so forth.

To each level r e (a, a) we assign the integer n(r) equal to the number of com-

ponents of A n P(r). We ignore the countably many levels which contain the sets

AKC\At + x and note that the set of remaining levels falls naturally into a null

sequence Jj, I2,... of disjoint open intervals, each one vertically above the pre-

ceding, and on each of which the function n is constant. We call the constant value

ofn on 7f, «¡, and note that ni + x = nt±2 for each i since no more than one of the

sets Aj n Aj+X lies in any one level. We are now forced to consider cases, all of

which may actually occur (see Figures 1 and 2).

Case 1. There are infinitely many integers i for which nt=l. In this case, let

e>0 be given. Let C= Dx [x, y] bean e-cylinder at /»which respects S (§1, Remark).

Choose an integer / such that n¡= 1 and such that /¡c[x, a]. Choose a level r e It

such that A n P(r) is a single point. Then S0 = Bd (D x [r, y]) is a 2-sphere in P3

such that p e Int S0, Diam S0 < e, and S0 n A is a single point. Thus, it is easily

seen that A is locally peripherally unknotted (see [9] or [5, §4]). This arc also lies

on a 2-sphere since it is tame modulo the point p. We conclude in Case 1 that A is

tame ([9, Theorem VI] or [5, Corollary 4.3]).

Case 2. There are infinitely many integers / for which «¡^7. We show in this

case that A may be adjusted so as to satisfy the hypothesis of Case 1. Choose an

increasing sequence J={jx,j2,. ■.} of positive integers such that for each jeJ,

nt à 7. Require further that, for j, kej and j<k, each component arc of A which

intersects PI¡ precedes (in the order on A) each of those which intersects PIk. For

each jeJ, choose a level r¡ e I¡ such that P(r,) contains no one of the countably

many horizontal segments of A and also contains no one of those subcontinua of S

which separate S into at least three components. (Such subcontinua can occur in

at most countably many horizontal sections of S.) Then D(r¡) n S has at most four

components which separate P(ry) and each of those separates D(r}) into precisely

two components. Since Bd D(r¡)<^ U, D(r,)-S has at most four components in V.

Since (ii) above is satisfied, only adjacent component arcs Ak and Ak + X can intersect
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Figure 1 Figure 2

the same component of Dir,) - S. It follows that «; = 7, that D(/y) - S has exactly

four components Vx, V2, V3, K4 in V, and that, after suitable numbering of the

Vi and of the seven component arcs Ah,..., Ah of A which intersect Dir,), Ah and

AJ2 are adjacent component arcs of A and intersect Vlt AJ3 and Au are adjacent

component arcs and intersect V2, Ah and Ajs are adjacent and intersect V3, and

Ah intersects F4. Remove the arc in Ah u Ah from Ah n Vx to ;áÍ2 n Fi and

replace it by an arc from Ah n Vx to AJ2 n Fi in Vx. Make similar replacements in

AJ3 u y4Í4 and /íís u Aia. Push the resulting new arcs Ah u v4J2, Ah u ,4/4, and

>4Í6 u A,-6 slightly below or above level rt to obtain a new arc A which intersects

level r, in only one point. The procedure, repeated for all j e J, automatically

generates a null sequence of changes in A and yields an arc A satisfying the

hypothesis of Case 1.

Case 3. For each sufficiently large integer i, n{ = 3 or 5. Shortening A, we may
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assume that the pattern of «¡'s is (1, 3, 5, 3, 5,...), exactly as is the case in Figure 3

(wild arc) (see below) and Figure 2 (tame arc). Let /i = (r¡_1, r¡) be one of the

intervals for which «¡ = 5. Let Ah,..., Aib (i'i< • • ■ </5) be the five component

arcs of A which intersect the levels between r<_! and r¡. Then Ah, Ah, and Ais are

increasing while Ah and Ah are decreasing. We see easily that either Ah and Ah

are adjacent, with Ah n Ai2^D(rt), or AH and Au are adjacent, with Ai3 n Ati

cD(rt). Similarly, either A,2 and Ah are adjacent, with Ai2 n ^i3<= D(r¡_x), or yfu

and Ah are adjacent, with Ati n ^¡5c D^.j). All of these possibilities can occur

(Figure 1), but there is an infinite set / of integers such that, for each iej,

AhnAÍ2¿0, Ah n AH^ D(rt), AiinA¡5¥=0, and Au n Ai5<=D(r^x). For

otherwise one could easily identify three disjoint open subarcs of A, each of which

hasp as a limit point, an absurdity. We require that for j, k ej,j<k, Ah,..., Ah

all precede Akl,..., Aks in the order on A. Fix some je J for consideration. By a

proof like that in Case 2, there is a dense set L of levels r in I¡, such that D(r) (~\ V

has at most four components and D(r) n A is a finite set. At such a level r, some

two of the Au must intersect the same component of D(r) n V and, by (ii), be

adjacent. We consider two subcases.

Case 3a. For some r eL, A intersects at most three of the components of

D(r) n V. Then one can proceed exactly as in Case 2 to adjust A so that its inter-

section with D(r) is a single point.

Case 3b. For each r eL, A intersects four components of D(r) n V (i.e., inter-

sects all four components).

We first claim in this case that for no r e I} does AJ3 intersect the same component

of D(r) n V intersected by another Ah (necessarily AJ2 or Au by (ii)). Suppose to

the contrary, for example, that AJ3 and Au intersect the same component of

D(r) n V. Then choose r' eL, r<r'<r¡, such that Ah and AJ2 intersect the same

component of D(r') n V. We obtain a contradiction by showing that AJ3 and Au

intersect the same component of D(r') n V, hence that A intersects at most three

components of D(r') n V. If AJ3 and Au were separated by S in D(r'), then we

could consider, first, a closed curve C formed by adding to the portion of AJ3 U Au

above P(r) an arc B in D(r) n F from A)a n D(r) to /4Í4 n D(r) and, second, a

closed curve C very near S in D(r') which separates AJ3 n D(r') from Au n D(r')

in D(r'). Then Cand C would link although C lies in Fand C is homotopically

close to U, a contradiction (see [2, Theorem 4.7.1]).

Our claim establishes the fact that for each r eL, either Ah and AJ2 intersect the

same component of D(r) n V or ,4)4 and Ah do. In the former case we say that

reL(l, 2), in the latter that reL(4, 5). A proof like the proof of our claim to-

gether with the fact that we are in Case 3b rather than 3a also establishes that if

r e L(l, 2) and r' e L(4, 5), then r' < r. SinceL is dense in /, and since both L(l, 2) and

L(A, 5) are clearly nonempty, we conclude that there is a unique critical level r¡

such that, for each reL(l, 2) and r' eL(4, 5), r' <r¡<r. We may assume that each

Ah has been adjusted so as to be vertical near level r¡.
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Let ax, ce2,... be a strictly decreasing and ßx, ß2,... a strictly increasing sequence

of real numbers from P(l, 2) and P(4, 5), respectively, each sequence converging

to r¡. In level a(, let A¡ be a polygonal arc which misses S and joins the points of

Ah and AJ2. Let Y¡ be a corresponding arc in level ß,. We may assume that the

sequence A",, X2,... converges to a continuum A in (S u V) n D(r,) which

intersects both Ah and AJ2. Similarly, we obtain a continuum Y corresponding to

the F,.

We next claim that X n F= 0. Suppose not. Then choose r e L and let W he

the component of D(r) n K which intersects AJ3. Note that W C\ A=W c\ Ah.

We know that W is simply connected, for otherwise there is a level r' e L near r

such that D(r') — S has at most five components and at least two of them lie in U.

But this leaves at most three components in V. Since W is simply connected, there

is a simple closed curve C very near S in W which contains W n A¡3 but no other

points of A in its interior. Form a simple closed curve C by taking a subarc of A

irreducible from Ah n D(r) to /1J4 n D(r) and joining the two by an arc very near

AH u Au u Au F in D(r) n (V u S). Then if care has been taken, C and C

can be moved by small homotopies into V and U respectively although they link

by construction, a contradiction [2, Theorem 4.7.1]. Thus X n F= 0.

Finally, since An F= 0, since (Au Y) n ^J3= 0 (a consequence of our first

claim in the discussion of Case 3b), and since each Ait is vertical near level r¡, it is

possible to choose an integer i so large that the three sets

P[ß„ «,] n [Xi+1 u Ah u Aia],

P[ßhat]n[Yi + xvAuvAJ5]   and   P\ßt, «J n Ah

have vertical projections in D(r¡) which are contained in disjoint disks Dx, D2, and

P3 in D(r,). Replace the segment in Ah U AJ2 which joins the ends of X{ + x by Xi + X.

Similarly, insert Yi + X in A. Consider the disk

Py = [D(r,)-Dx- D2] u (Bd Dx x [r¡, «¡]) u (Dx x {at})

U(BdD2x[ßi,rj])KJ(D2x{ßi}).

Then E, intersects the new A in just one point. It is easy to see that by a sequence of

such changes in A one obtains a new arc A which, for essentially the same reason as

given in Case 1, is tame. This concludes the proof of Theorem 2.

3. Examples. The first two figures show 2-spheres having local horizontal-

separation index ¿4 at a point p. The first shows the situation which arises with

Cases 1 and 2. The second isolates the problems of Case 3, which are the most

difficult problems to handle.

Figure 3 shows a 3-cell wild at two points such that each horizontal section of the

boundary has at most five components that separate the boundary. The example

is borrowed, of course, from [8]. The example shows that the results of Theorem

1(3) and 1(4) are best possible. The example also gives an indication of why the
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Figure 3 Figure 4

proof of Theorem 2 is so tedious; indeed, the arc A from Figure 2 and the arc A

from Figure 3 follow precisely the same vertical folding pattern although the first

is tame and the second wild.

Figure 4 shows the Alexander Horned Sphere S [1] embedded so as to satisfy

the hypothesis of Theorem 1(1). This shows that the hypotheses of Theorem 1(2)

are necessary since every point of 5" is a piercing point of S.

As a last example we indicate how a sphere S can be constructed in E3 so as to

satisfy the hypotheses of Theorem 1(2) and yet have a wild set of dimension >0.

We leave it to the reader to produce more sophisticated examples. Each horizontal

section of our example will have at most six components. Using cylindrical co-

ordinates, start with the tame sphere

ÜP, 6, z) | (p = 1 and \z\ £ 1) or ij> á 1 and |z| = 1)}.

Consider the spiral

A = {(p, 9, z) | p = 1, 1 è 0 < oo, z = 1-0/0)}.
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Pick a sequence of points px,p2,... from A converging monotonically in z-

coordinate to 1, and having closure which contains the circle

c = {(p,e,z)\p = i,r- i}.

Insert near each p{ a knotted feeler like the upper half of the sphere in Figure 3.
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