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A CHARACTERIZATION OF

THE EQUICONTINUOUS STRUCTURE RELATION

BY

ROBERT ELLIS AND HARVEY KEYNESO

Abstract. The main result in the paper is to show that in a large class of minimal

transformation groups (including those with abelian phase groups, and point-distal

transformation groups), the equicontinuous structure relation is precisely the region-

ally proximal relation. The techniques involved enable one to recover and extend the

previously known characterizations. Several corollaries are indicated, among which

the most important is a new criterion (which is easily applicable) for the existence ofa

nontrivial equicontinuous image of a given transformation group.

1. Introduction. A recurrent and interesting problem in topological dynamics

is to determine the equicontinuous structure relation for an arbitrary minimal

transformation group. In [4] and [11], it was shown that in the distal or point-distal

case with a compact metric space, there is a nontrivial equicontinuous factor. In

the case when the group is abelian, it was shown in [6] and independently in [8]

that there are no equicontinuous factors precisely when the transformation group

is weakly mixing. In this paper, we unite all the above results by showing that in a

large class of minimal transformation groups (including all the above cases), the

equicontinuous structure relation is precisely the regionally proximal relation.

This result not only includes the above but provides either easily obtained exten-

sions or alternate proofs of many results concerning this structure relation. For

example, it follows in the metric case (and by an inverse limit argument to the

quasi-separable case) that there is a nontrivial equicontinuous factor if some

proximal cell is not dense.

The above characterization leads naturally to the study of the relationship

between the two known characterizations of the equicontinuous structure relation

found in [2] and [10]. Using the above characterization, one is able to derive a

generalization of the characterization in [10] to the class of transformation groups

considered in this paper. We note in passing that it is a relatively straightforward

matter to show that S=Q with the latter of these characterizations. Moreover, the

discovery of both characterizations is not surprising, since in general there are

relationships between them.
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Finally, we consider an important type of extension of this result—namely, the

"relativized" case (i.e., using relativized relations over a homomorphic image),

and indicate some preliminary results. A future paper will be devoted to further

results in this case.

The main tools of this paper will be the algebraic techniques developed in [2].

Thus, we will use freely throughout this paper the notation and results established

in [2]. All transformation groups will be assumed minimal with a compact Haus-

dorff phase space and discrete group unless otherwise stated. Given (X, T), recall that

the proximal relation is P= f) {aT | a index of X}, the regionally proximal relation

■s Q = H {els (<*T) I a index of X}, and the equicontinuous structure relation S is the

smallest relation RQ such that (X/R0, T) is equicontinuous. It is known [3] that S

is the smallest closed invariant equivalence relation containing Q; hence S=Q is

equivalent to asserting that Q is an equivalence relation.

Finally, for completeness, we give a brief algebraic survey of the essential facts

needed. Thus, M will denote a fixed minimal right ideal in ßT, the Stone-Cech

compactification of the discrete group T. All elements p,q,r,... are in M, and u

will denote a fixed idempotent of M. Also, (X, T) will denote a fixed minimal

transformation group. Hence, (X, T) has a representation as a F-subalgebra

sic<ä(u)={fe<£(ßT) |/22=/}, i.e., (\si\, T)~(X, T), and we fix one such repre-

sentative. We consider the groups G = Mu and A = q(sí) = [a e G \fa=f(fesí)}.

With its t = t((87) topology, G is a compact T, group with unilaterially continuous

multiplication and A is a closed subgroup. We also will have occasion to use the

r(.s/)-topology on G. Finally, we will consider the F-subalgebra

Jf = {feK(u)\fte%(u)(teT)}.

Note that/e Jf ifffutu=fut (t e T).

2. The characterization S=Q. The following lemma is direct and its proof

will be omitted. Minimality is not necessary for its validity.

(2.1) Lemma. If x,y e X, then (x, y)e Q iff there exists zeX such that, given

UeJfz, Ve Jfx, WejVy, then {vt, w/}<= U for some veV,weW,teT.

Note that ^fj., will denote a neighborhood system.

Since ^(M) = 9t(w), si can be regarded as a subalgebra of ^(M) and as such

induces a topology 0~ on M which is compact but not necessarily Hausdorff.

Remembering that M is the universal minimal set for T, S~ may also be viewed

as the topology on M induced by the canonical restriction map -n: (M, T) z>

i\sí\, T). All topological notions such as closure, interior, and continuity will

refer to y unless specified otherwise. Note that ((M, 3~), T) again gives a minimal

transformation group.

(2.2) Definition. Let p,qe M. Then (p, q) e Q* if, given any open set R of M,

LeJ/~p,Ke Jfq, then {It, kt}^R for some leL,keK,teT.
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The relation Q* corresponds to the regionally proximal relation of ((M, ¿T), T).

We thus have

(2.3) Lemma. Let p, qeM. Then (p, q) e Q* iff(p\st, q\sJ) e Q = ß(K|).

Proof. Since ((M, &~), T) is minimal, we can restrict R in (2.2) to be an arbitrary

neighborhood ofa fixed point in M. The proof is completed by applying (2.1) and

noting that n is open.

(2.4) Corollary. Q* is a closed invariant symmetric subset of MxM. Thus,

if(p, q) e Q*, then (pm, qm) e Q* (me M).

Let U, V^T. Then [U, V] will denote the set {p | p e M, Up n V=£ 0}, and

h(U) the set {p \peM, Uep}. Note here that we are using the ultra-filter inter-

pretation of ßT [2, Chapter 8], whence pq={A \ Apeq} and Ap={t \ At'1 ep}.

Since ^open neighborhoods ofpeM have the form 7r_1(Z); it follows by [2,

11.13 and 11.14] that the set of all h(U), where h(U) is an ^-neighborhood of

peM, forms a neighborhood base for p in the ^topology. We will frequently use

these basic sets. Notice that here h(U)<^M always; this is a minor modification of

the notation in [2].

Finally, let peM. Then there exists a unique idempotent v of M with pv =p.

We let Jtp be the collection of sets [U, V], where Vev, and h(U) is a basic ^neigh-

borhood of p. Now Vv=V and v = vee h(V) implies e e Vv= V. Thus q=qe e h(U)

implies q e [U, V] and so h(U)<=[U, V]. Hence, each [U, V] is also a ^neighbor-

hood for p in the case Vv = V.

From this point, the procedure is as follows: We first show that under certain

conditions on si (which are satisfied when sJ<^ jf)> Q* is an equivalence relation

on M. From this, it easily follows that Q is an equivalence relation and hence

S= Q. A key set will be f) {els N \ N e J(q}, forq e M. Since it occurs so frequently,

we denote it by [q]. Now to show that Q* is an equivalence relation, it will suffice

to show that pQ* = [pu] (p e M). As a by-product of this fact, we will later show

that pQ* = [p] (p e M) and then derive a generalization of [10].

To pinpoint what is involved in the proof (and thus to indicate where generaliza-

tions are necessary to prove the result in arbitrary transformation groups), we

consider the following two statements:

I- [p]c(p<»)Q* ipe M,aieJ, the idempotents in M).

II. aQ*c[a]i<xeG).

Then I is always true and with conditions on s/, II holds and Q* is an equivalence

relation.

(2.5) Lemma. Let U, V^TandteT. Then [U, V] = [Ut, Vt].

Proof. Let peM. Then p e [U, V] iff Up n V¿ 0 iff Uptr\Vt^0. Since

Upt=Utp [2, 3 of 8.10],p e [U, V] iff Utp r\ Vt* 0 iff/» e [Ut, Vt].
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(2.6) Lemma. Let veJ and Uev. Then there exists Vev with Vv=V and

h(V)^h(U).

Proof. Set V= Uv. Then U ev = v2 implies that V= Uv e v. Moreover, p e h(Uv)

iff Uv ep iff Uevp=p iff p e «(£/). Thus, h(V)=h(U).

(2.7) Lemma. Let U^Tandp e M with Up=£0. Then Uq± 0 iqeM).

Proof. Let qeM. Then there exists re M with qr=p. Since Uq= 0 implies

Up = iUq)r= 0, the result follows.

(2.8) Lemma. LetpeM. Then [p] = [pw] (tve/).

Proof. Let x e [p], «(IF) a neighborhood of x, h{U) a neighborhood of pw and

Vew. Also, let vtn -> w in the usual topology of M, where pv=p.

Now ptn=pvtn^-pw in the usual topology and hence the ^-topology on M.

Hence vt e h(V) and pt e int h(U) for some t. Then «(C/i_1)=«(£/)/_1 is a neigh-

borhood of p and Vt'1 e v. Thus x e els [{//-1, Fi_1] and consequently 0 ^«(IF)

n [Í/2-1, F/"1]=«(1F) n [U, V] by (2.5). Thus x e [pw], and so [p]<=[pw].

Now replace/7 by/?vv and w by /j in the above argument. This yields [/w]c [pwv]

— [Pv\ = [/"]• The result follows.

The next result is the proof of I.

(2.9) Proposition. LetpeM. Then [p]<=(pw)Q* (weJ).

Proof. We first show that for any r e M, [r]crß*. Let v ej with rv = r, q e [r],

and U, W<= T such that h(U) e jVq and «(IF) e JTr. Since «(IF) is also a neighbor-

hood of r in the ordinary topology, there exists Vev with rh(V)<=h(W). By (2.6),

we can assume Vv=V. Then [W, V]eJtr, and hence h(U) n [IV, V]^= 0. If

«2 e «(£/) n [IF, V], then «2i e «(PF) for some / e F. Since vt e «(F), then rt eh(W).

It then follows by the comment in (2.3) that (r, q) e Q*.

Finally, if weJ, then [p] = [pw]<^(pw)Q*, using (2.8).

We now put a condition on si that together with II will show that Q* is an

equivalence relation. Recall that tf^%(u) is the subalgebra of almost periodic

functions and F its group. Now consider the r(j3/)-topology on G and set 77(G, si)

= fl {els A' | A7 a r(.0-neighborhood of «} (see [2, 11.9-11.11] for the definition of

the T-(jaO-topology). Note the resemblance of H(G, si) to [u]. If E<=H(G,si),

then it follows that given y, 8 e G, then (y, 8) e Q* iff yS'1 e AE [2, 14.17 and

14.18].

(2.10) Theorem. Suppose that E^HiG, si) and aQ*<= [a] (a e G). Then

1. aQ* = [a](aeG).

2. (a, ß) e Q* implies aQ* = ßQ* (a, ß e G).

3.pQ* = (pu)Q*(peM).

4. Q* is an equivalence relation on M.
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Proof. 1. This follows from the hypotheses and (2.9).

2. Let x e aQ*. Then ixu, a) e Q* by (2.4). Thus (xw)«*-1, aß'1 e AE and, since

AE is a group, (xi/)/3_1 e AE. This means that ixu, ß)e Q* whence ßeixü)Q*

= [xu] by 1. If v e7with xv=x, then [xu]^ixuv)Q* = xQ* by (2.9). Hence ß exQ*

and thus x e ßQ* by (2.4). We then have aQ*<^ßQ*; the reverse inclusion follows

similarly.

3. First ipu)Q* = [pu]cpQ* by (2.9). On the other hand, let xepQ*. Then

ixu, pu) e Q* whence pu e xuQ* = [xu]<^xQ*. Thus x e ipu)Q*.

4. It suffices to show that if xeyQ* then xQ*=yQ*. Let xeyQ*. Then

ixu, yu) e Q*, and so xQ* = ixu)Q* = iyu)Q*=yQ* using 2 and 3. The proof is

completed.

The next series of results show that when ■a/cjf then ag*c [a] (a e G). Since

by [2, Proposition 15.13], F=2T(G, ¿f), it follows that si^tf implies F=27(G, ¿f)

<=27(G, j/). Thus, the assumption si<^$C is sufficient to guarantee that (2.10) holds.

Note also that, since [u]nG^uQ* n G=AE<=AHiG, si) = HiG, si), [U, V]eMv

implies [U, V] nG = iU, V) is a r(j/)-neighborhood of u [2, 11.14.1], and the

^topology on G contains the r(j/)-topology by [2, 11.15], then [u] r\ G=27(G, si)

under this assumption.

In the following, a subscript of si will mean the operation with respect to the

r(j</)-topology on G.

(2.11) Lemma. Let si<=- Jf, peM, Ra neighborhood ofp and

L = int^ cls^ (2? O G).

Then pu e cls^ F.

Proof. Since si<^JC, utu\si=ut\si it e T), whence {a|j/|a e G} is dense in \si\.

Hence G is ^dense in M.

Let N be an open subset of M. Then there exists a finite subset F of F such that

NF=M.

Since els G=M,N open implies A^cls (TV r\ G) whence Gc/Vf=(cls (TV n G))F.

Let a eG. Then au=a=gt with g eels (ATi G) and í e F. Hence aw/ ~1=g and so

aut~1u=gu. Now geclst^VnG) implies that gu e cls^ iN n G) [2, 11.15].

Consequently Gc(cls^ (A/ n G))T7 where T7={(w/ -1«)"1 | í e F}. Since T7 is finite

and each set is closed (right multiplication is a T(ja/)-homeomorphism [2, 11.17]),

this implies that int^ cls^ (A7 n G)^ 0.

Now let K he a neighborhood of p and set A^=int^(2t n K). Then

0 ^ int.* clsjtf iNr\G)<^ L.

Hence cls^- iN n G) n Lj= 0 and so N C\ G <~\ Lj= 0 since L is r(¿/)-open. Then

7V<= K implies K(~\L± 0. This implies that p e els F, whence pu ecls^L as before.

The result follows.
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(2.12) Lemma. Let si<^cf, N a r(si)-open subset of G, and L = cls^ N. Then

AEL=L.

Proof. Since E<=H(G;si), then F^cls^F for every T(jaf)-neighborhood R of

y. Since right multiplication is a T(.s/)-homeomorphism, then Ea<=L (a e N).

Thus EN^L. Since F is a normal subgroup of G, EN=NE. Thus if ß e E, Nß<=L

implies Lß<=L, whence LE=EL^L. Moreover, it follows immediately from the

definitions involved that AL=L. Hence AEL = EAL=EL<= L, and the proof is

completed.

(2.13) Theorem. Let sicjT. Then

1. Q* is an equivalence relation on M.

2. Q is an equivalence relation on \si\ = X.

3. Q = S.

Proof. 1. Let a e G. By (2.10), it suffices to show that aQ*^[a].

Let peaQ*, R a neighborhood of p, h(U) a neighborhood of a and Feti.

By (2.11), pu e cls^ L where L = int^ cls^ (R n G). Since (a, pu) e Q*, a e AEpu

cAEclsJS?L=clsJ¡,Lby(2.l2).

Now (U, V) = [U, V] n G is a r(^)-neighborhood of a [2, 11.14]. Let N be a

r(j^)-open set with a e N<=(U, V). Then N n Z,/ 0. This implies that [U, V] n R

^ 0. Hence p e els [U, V], from which it follows that p e [a].

2. Let(x,y), (y,z)e Q. Choose p,q, r e M such that p\si=x,q\si=y, r\si = z.

Then (p\si,q\si), (q\si,r\si)eQ and (p, q), (q, r) e Q* by (2.3). Then (p, r) e Q*

by 1 and (p\si, r\si) = (x, z) e Q by (2.3) again. The result follows.

We now note that, when T is abelian, utu = uut = ut (t e T), whence Jf = 3l(i2),

and thus (2.13) is always applicable. For the nonabelian case, we can apply (2.13)

when si is point-distal [11, p. 481] (for an equivalent algebraic definition, cf. [2,

Notes to Chapter 15, 3.3]). To see this, consider ££={fe 9I(w) | fv=f(v a minimal

idempotent in ßT)} and note that si^g; in fact, SC is the algebra corresponding

to the universal minimal point-distal flow ([7, p. 301], cf. [2, 2 of 15.14]). Now we

claim J^cjf. For let teT. Then (tut-1)2 = tut~1tut'1 = tu2f1 = tut-1, whence

tut'1 is a minimal idempotent. Thus if fie £?, then futut~1=ftut~1=f=fu and

futu=fut. This means that fie $f.

Finally, we discuss the two aforementioned characterizations. In [10, Theorem

1.1], the following was proved: Let T be abelian and for xeX, U eJTx, set

Nix, U) = {t\xte U}.

Then

(A) xS=C\ {els xN(x, U)N(x, U)-1 \UejVx} where xS={y \ (x, y) e S}.

One should note that when (A) holds, a short proof that S= Q is obtained.

(2.14) Proposition. If (A) holds, then S=Q.
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Proof. Let y e xS=f) {els xN(x, U)N(x, U)'1 \ UeJfx}. Then given WeJTy,

U e ATX, there exists w e W, t, s e T for which wt = xs and {xt, xs} = {xt, wt}^U.

Letting z=x and setting v=x in (2.1), we have (x, y) e Q. Since the other inclusion

is obvious, the result follows.

The natural question occurs as to whether (A) is extendable to the case si<=- c%~.

The content of the next few results is to provide this generalization of (A) to a

slightly smaller algebra.

(2.15) Lemma. Let si^tf. Then [p]=pQ* (p e M).

Proof. LetpeM. Then [p] = [pu] = (pu)Q* =pQ* by (2.8), 1 of (2.13), and 3 of

(2.10).
We now let Jf1={fe%(u) \fvtv=fvt (v minimal idempotent in M)}. Note that

if/e 2l(w), then/e Jf iff fat e ^(v) (v2 = veM,te T).

(2.16) Theorem. Let si^J^ andxe X= \si\. Then

xS= O {els xN(x, W)N(x, IF)"1 | WeJTx}.

Proof. Let peM with pv=p, v2=v e M, and p\si=x. Then xS=xQ=ir(pQ*)

=7r([/7])=77([/7i;])cncls7r[l7, V] by (2.10), (2.3), (2.15) and (2.8). Since always

H {els xN(x, W)N(x, IF)-1 | WejVx}<^xS, the assertion will follow if we show

H els -n[U, F]cf| els xN(x, W)N(x, W)'1.

Let We ¿Vx. Then Trh(U)<=W, where h(U) is a ^neighborhood of pv. Hence

pve int h(U) and the fact that the set of h( W) e Jfpv is basic implies that h(L)c int h(U)

with h(L)eJspv. By (2.6), there exists Vev with Vv=V and ph(V)^h(U). Let

<7e[F, V]. Then there exists te F with t e h(L)<= int h(U). Then, Kt^int h(U), Ka

neighborhood of q. Thus K^[U, V] and qeint [U, V}. So 7r[F, F]<=

77 int [U, F]eint7r[G, V], and

c1stt[F, V] c clsint77[C/, V}.

We will complete the proof by showing els int 7r[G, F]<=cls xN(x, W)N(x, W)'1.

Let n(pvsv) e int n[U, V] for some s eT. Then r e [U, V] and -n(r) = TT(pvsv) for

some r e M. Thus, rt e h(U) for some teV. Now t e V= Vv implies vt e h(V) and

thus pvteh(U). Then ■n(rt)=Tt(r)t = tr(pvsv)t = iT(pvs)t = ir(pv)st en(h(U)) and

st e N(x, irh(U)). Moreover, t e N(x, irh(U)). Thus,

tr(pvsv) = n(pvSVt)t _1

= «(pvysty-^xN^trKuyN^Trhtu))-1 c ^x, if)/v(x, if)-1.

Since {n(pvsv) \ s e T} is dense in A", els int ir[U, F]ccls x/V(x, IF)^^, W)'1, and

the desired assertion follows.

If one realizes that when Fis abelian (U, V) = [U, V] n G=h(U)h(VY1 n G, the

conclusion of (2.16) is not unexpected. Indeed, the assumption si<= X[ " abelianizes "

F in the ^topology. Also, the proof given after (2.13) applied to any minimal

idempotent v e M shows that ^f<=jf¡. Moreover, T abelian implies J^ = 9Í(m).
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So (2.16) holds in both the abelian and point-distal case.

We finally recall the characterization of 5due to Ellis [2, 14.23]: If ää^si<=-%(u),

then 0¿(si-M)={(/?|si,q\si) \p,qe M and p\0¡=q\0S}. We frequently write

x, y,..., for p\si, q\si,_Then if £cH(G, si), we have that

S = 0t(si : sin if)
(B)

— iix, y) I ixw, yw) e Q (w2 = we K, K minimal ideal in ßT)}.

With regard to the various implications without restrictions on si, we have

already noted that (A) implies Q = S (2.14). We also have

(2.17) Lemma. IfS=Q, then (B) holds.

Proof. Denote {(x, y) | (xw, yw) e Q(w minimal idempotent in ßT)} by R. Then

Q closed invariant implies Q^R whence S<^R. Now let (x, y) e R. Then yw=y

for some w2 = w e M. Now (x, xw) e P<= S, whence (x, y) = (x, xw)(xw, yw) e S2 = S.

Thus, R<=S.

It is not known if the converse holds. However, a closely related result is true.

(2.18) Lemma. (B) holds iff S=PQ (the product of relations).

Proof. Suppose (B) holds. We need only show S^PQ. Let (x, y) e S=R,

using notation of (2.17). Choose v2 = ve M such that yv=y. Then

(xv, yv) = (xv, y)eQ

by assumption. Moreover, (x, xv) eP. Thus (x, y) = (x, xv)(xv, y) ePQ.

Now suppose S=PQ and (x, y) e S. Then (x, z) e P, (z, y) e Q for some z e \s/\.

Since for some minimal ideal K, z=xw with w2 = weK, then (xw, y)e Q and

(xw„ yw,) = ixw, y)w, e Q for all w2 = we K. Now for any minimal ideal A^ and

w2 = w e N, S closed invariant implies ixw, yw) e S. Applying the above to ixw, yw),

then (xww,, yww,) e Q for all w, = w, in some minimal ideal K. Since ww, = w for

some w2 = w,e K, then (xw,yw)eQ and hence (x,y)eR. The other inclusion

follows as in (2.17), and the proof is completed.

The primary tool used to show that (B) holds is the assumption that F<= 77(C7, si).

The authors conjecture that if E<=H(G,si), then S=Q and all assertions are

equivalent. So if one looks to generalize these assertions by proving F<= H(G, si)

the most natural path would be to use (2.10). However, if (B) could be shown to

hold, then one would have a weaker but still useful characterization of S. To see

one case when (B) does hold, recall that if 01^ si, then si is a proximal extension

of 0i if si <=9t (B) or, equivalently, A=B, where A and 77 are the groups of si and

US respectively. It follows from [2, 13.16] that another characterization is

R(si : @)^P(si).

(2.19) Lemma. If si is a proximal extension of 01, and Q(0t) = S(0i), then S(si)

=P2(si)Q(si).
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Proof. Let (x,y)eS(sJ). Then (x\SS, y\SS) e S(SS) = Q(SS). By [2, 14.2], there

exists (w, z)eQ(si) with w\SS=x\3S, z\SS=y\SS. Then (x, w), (z, y) eP(si) by

assumption, whence (x, y) = (x, w)(w, z)(z, y) e P(si)Q(si)P(si). Since it is direct

to verify that Q(si)P(si)=P(sf)Q(si), the desired result obtains.

One consequence of (2.19) is that if si is a proximal extension of SS<^$f (whence

si<^%(K),K the group of Jf), then S(si)=P2(si)Q(si).

(2.20) Corollary. Suppose that P(si) is closed. Then S(si)=P(si)Q(si).

Proof. If si n 3>=SS, then P(si) closed means that si is a proximal extension

of SS. Since Q(SS) = S(SS) by (2.13), then S(si)=P2(si)Q(si)=P(si)Q(si), noting

that P(si) is an equivalence relation.

3. Consequences of S=Q. In §3, we assume that s/cjf. When X is metric,

the characterization that S=X x X iff xP={y \ (x, y) e P} is dense for some xe X

(or, equivalently, for a comeager set of x e X) follows easily from [6, Remark 3.2].

For if xP is dense for some xe X, then xS = X and S=Xx X; the other way comes

from the above reference. We improve this result considerably by showing

(3.1) Proposition. Let X be metric. Then S=XxX iff xP is dense for every

xeX.

Proof. As noted above, xP dense (x e X) implies S=Xx X; this holds indepen-

dently of the metric assumption. Conversely, if S=XxX, then X=xS=xQ =

H {x(cls (<xF)) | a open index of X} = (~) {els (x(aT)) \ a open index of X} (since

PQ* = [p] by (2.8) and (2.10)). Choosing a countable uniformity base {a¡ | i£ 1} and

noting that x(a{T) is dense and open (/S: 1), then xP=f) x(a{T) is dense.

Recall [5] that si is quasi-separable if T7={/1 fe si and |[f]\ is metric} is dense

in si or, equivalently, X= \si\ =inv lim„ \sia\, \sia\ compact metric.

(3.2) Theorem. If si is quasi-separable, S=XxXiffxPis dense (x e X).

Proof. We need only show S=Xx X implies xP(si) is dense (x e X). Suppose

there exists peM for which p\si=x and els (xP(si))^\si\. Then U=\si\ —

els (xP(si)) is a nonempty open subset of \sf\. Choose a nonempty open subset V

of \si\ such that V<=U, and/esi for which/|F=0,/| cls(xP);=l. There exists

g e H such that g\ V< 1/4, g| els (xP(si)) > 3/4. Let SS=[g], and F= | J^. Then Y

is metrizable and we have ci: (|.s/|, F) ^> (\3ê\, T) induced by Si<^si. We now claim

that els (yP(SS))^\S$\, if y=p\SS. For by minimality, int <f>(V) = (V\SSf ̂  0.

Moreover, geíí(F) with g\</>(V)<X/4, g\yP(SS)>3/A, since xP(si)\3S=yP(SS).

Then c¿(F)0 n j/P(^)= 0 and els (yP(SS))± Y. But 5(JST) = Ix X implies S(F) =

Fx F, as ci x $(Q(X))<=- Q(Y). This contradicts (3.1), and the result follows.

It follows by the remarks after (2.12) and (3.2) that when (X, T) is point-distal

(or distal), there is a nontrivial equicontinuous factor. A slight generalization is

obtained with a local notion of distality, namely, by assuming that some point
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x e X is isolated in xP. One special case, of course, is when xP is finite for some

x e X. Thus, if (|á?|, T) is point-locally-distal with 0J<=Jf, 01 quasi-separable, then

i\£%\, T) has a nontrivial equicontinuous factor. If \0J\ is finite, the assertion is

obvious; if \0>\ is infinite, then minimality of |á?| precludes a locally-distal point x

being isolated in \0J\. Hence, if UeJfx with xP n U={x}, then F=C/-{jc} is a

nonempty open set with V r\xP= 0. The assertion follows by (3.2). Finally, if

\0I\ is metric and xP is meager, then xP is not dense (otherwise comeagerness would

follow), and (3.1) is applicable.

It is known that when T is abelian, (X, T) is weakly-mixing iff (X, T) has no

nontrivial equicontinuous factor [6, Corollary 2.11] ([8, Proposition 1.11] for

nonmetric case). This result also follows immediately from (2.12). For it is a

relatively straightforward matter to show that (X, T) is weakly mixing iff Q = Xx X

[2, 15.15]; the other proofs revolved about showing S= Xx X implies Q = XxX.

But this is now immediate. Extensions to arbitrary si^Cf would follow if one

could prove that Q = Xx A'implies that (X, T) is weakly mixing in this case.

The next result is a collection of observations about X which follow easily from

(2.12).

(3.3) Remark. Let (7, T) be minimal with \3S\ =Y,0)^X. Then

1. S(Xx Y)~S(X)xS(Y)andXx Y/S(Xx Y)~(X/S(X))x(Y/S(Y)).

2.1f<f>: (X, T)Z+(Y, T), then </>SiX) = SiY), with obvious notation.

3. IfiX, F)=inv lim iXaT), then S(JSQ = f| ™Z^(JQ, wherewa: iX, T) z+ iXaT)
is canonical.

Proof. 1. We again have in both cases that the almost periodic points are dense

in the product. With this assumption, it follows that if M(X) is the regionally

syndetically proximal relation [1, Definition 1], then Q(X) = M(X). For choose

(w, z) e Q(X), a an open index and U e¿Víw_2). Then Ut r\ a= F/ 0 for some t.

Choose an almost periodic point (w, z)eU with (w,, z,)t e V. Then iw,, z,)tA

<= F<=a for some syndetic set A, and (iv, z) e MiX). The other inclusion always

holds.

Now Q(X)xQ(Y) = M(X)xM(Y) = M(Xx Y)<=Q(Xx 7) by [1, Theorem 4].

Since Q(Xx Y)^Q(X)x Q(Y) always holds, we have Q(Xx 7) = Q(X)x Q(7)

= S(X) x S(Y) by (2.12). Hence, Q(Xx 7) is an equivalence relation and Q(Xx 7)

= S(Xx Y), from which the result follows.

2. It is shown in [2, 14.2] that </> x tbQ(X) = Q( 7).

3. By 2, we have that S(X)<= Ç) ̂ ^(Xu)). Now it is a straightforward verifica-

tion that fl TT¿\QiXa))<= QiX). The result follows by applying (2.12).

An immediate consequence of 3 of (3.3) is that an inverse limit of weakly mixing

minimal transformation groups with abelian Fis weakly mixing.

Recall [9, §3.4] that (X, T) is almost automorphic if </>: X^- X/S has some point

x with t/>~1</>x=x. It is easy to see that if (X, T) is almost automorphic, then
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4>(xi) = i>(x2) implies (*!, x2)eP, whence S<=P and S=P=Q (i.e., (X,T) is

proximally equicontinuous). We strengthen this by showing

(3.4) Theorem. If (X, T) is almost automorphic with T abelian, then (X, T) is

locally almost periodic.

Proof. Choose x e X with xS=f] els xN(x, U)xN(x, [/)_1={*}- Let U, VejVx

with F<= U. Using the filter base {xN(x, U)N(x, U)~1\xeX}, then

xN(x, W)N(x, W)~1cV

for some open WeJix. Thus, WN(x, WY1^els (xN(x, W))N(x, W)-1<^V^U,

and N(x, W) syndetic with F abelian implies N(x, W)'1 is syndetic. Hence F is

locally almost periodic at x.

Now choose y e X and V e JTy. Then Vt e Jfx for some t e T, and WA <= Vt

for some We Jfx and A syndetic by the above. Finally, Wse JTy for some seT

and (Ws)(s~1At~1)<= V, proving local almost periodicity at y.

The above result has been discovered independently by N. Markley (unpublished).

Note that since si almost automorphic implies si<=^3f the proof of (3.4) shows

that WA ~1czjj with A syndetic even when T is nonabelian. Of course, it is not

known whether ^_1 is syndetic. It would be interesting to know if (3.4) always

holds. Also it is unknown whether proximal equicontinuity implies local almost

periodicity if F is abelian.

One can slightly generalize (3.4). Suppose X is locally connected, T is abelian,

and xSis finite for some x e X. If xS={xu ..., xn} and F open in Jfx with xx e Vt{,

els (Vu) n els (Vt,)= 0 if i<£j, then xN(x, U)N(x, UY1^\jVti with U connected

in Jfx implies that if A={t\Ut<=7}, T=N(x, U)'1^ C={tu..., tn}, then

N(x, UY^AC. Thus

(3.5) Corollary. Let X be locally connected and T abelian. Suppose that xS is

finite for some xe X. Then (X, T) is locally almost periodic.

The following modifications enable us to remove the assumption of local con-

nectivity. Suppose that P is an equivalence relation and xS=xP={xu ..., xn} for

some xe X. If Ue JTX, then since the enveloping semigroup E(X) has a unique

minimal right ideal I, and xxp=x2p= ■ ■ ■ =xnp for some pel, we have xt e Ut

(i= 1,...,«) for some t e T, whence xS<= Ut. Proceeding as in (3.4), we have

(3.6) Corollary. Let T be abelian. Suppose that xS=xP is finite for some

xe X, and P is an equivalence relation. Then (X, T) is locally almost periodic.

For a related result in the nonabelian case, see [la, Theorem 4].

4. The relativized case. In this situation, we are concerned with !F<^si, ¡F a

F-subalgebra. Instead of S and 2, we consider 3F*, the maximal almost periodic
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extension of y and y*, the maximal distal extension of J5"; moreover

R(si: si n y#)

plays the role of 5. Under the assumption a(^#) = F#=H(F,^*)^H(F,si), the

relativized version of (B) is R(si : si n y#)={(/?, ¿7) | (/>«;, 4«,) e g(j/ : &)

(io2 = w e K, K minimal ideal in ßT)} n R(si:&). For details, see [2, 14.23].

(4.1) Theorem. With the above assumptions,

R(si : si O y#) = P(si;3?)Q(si:&r).

Proof. Since R(si : si n J*"#) is a closed invariant equivalence relation con-

taining Q(si:^) [2, 14.22], it follows that P(si:&)Q(si;&)^R(si : si n y#).

Now let (/?, 27) e R(si : si n y#). Choose a minimal idempotent co for which

qio=q. Now p\#'=q\&r=qio\&r=pcü\co. Since (p,peo) eP(si), (p,pw) eP(si:!F)

and (/>, q)=(p,pco)(pio,qio)eP(si:&)Q(si:&r). The result follows.

(4.2) Corollary. With the above assumptions, R(si : si n &r#)=Q(si:&r)2.

Proof. Q(si:Ssr)2<=R(si : si n&#)=P(si:&)Q(si:&r)^Q(si:&:)2.

The questions concerning general conditions when F#<=H(F,si) and when

F(j2/ : si n ^r#) = Q(si:ßr) appear more difficult than in the absolute case. One

case is clear: when iF-^si, i.e., si is a distal extension of ^ For then si^lF*

implies F* = H(F, &*)<^H(F, si), and P(si:&r) = A, the diagonal of |j^| x |j</|,

implies R(si : si r\ßr#) = AQ(s/:^)=Q(si:&r). It also follows by a similar

proof to (2.18) that the relativized version of (B) holds iff

R(si : si C\F*) = P(si:^)Q(si:^).
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