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DEGREE OF SYMMETRY OF A HOMOTOPY
REAL PROJECTIVE SPACE
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H. T. KU, L. N. MANN, J. L. SICKS AND J. C. SUC)

Abstract. The degree of symmetry N(M) of a compact connected differentiable

manifold M is the maximum of the dimensions of the compact Lie groups which can

act differentiably and effectively on it. It is well known that N(M) fídim SO(m + \),

for an m-dimensional manifold, and that equality holds only for the standard m-

sphere and the standard real projective «j-space. W. Y. Hsiang has shown that for a

high dimensional exotic m-sphere M, N(M)<m2ß + \ <($) dim S0(/n+l), and that

N(M) = m2/8 + 7/8 for some exotic «7-spheres. It is shown here that the same results

are true for exotic real projective spaces.

0. Introduction. The degree of symmetry A/(M) of a compact connected

differentiable ra-manifold Mm is the maximum of the dimensions of the compact

Lie groups which can act effectively and differentiably on M. It is well known that

NiMm) S i»(ifi + l)/2,

and that if NiMm)=mim +1 )/2, then M is diffeomorphic to the standard sphere Sm

or the standard real projective space RPm [3]. In [6] W. Y. Hsiang showed that if

Sm is an exotic sphere im ï: 40), then

N(Lm) <w2/8+l.

Hsiang's result is best possible in the sense that

tf(S8*+1) = m2/8 + 7/8

where 2gk + 1 is the Kervaire sphere of dimension m = $k+l.

In this paper we complement Hsiang's result by showing that if M is a homotopy

real projective w-space (/nä72), not diffeomorphic to RPm, then

N(M) < w2/8+l.

Again this bound is best possible, as we exhibit an exotic homotopy real projective

w-space (whose universal covering space is actually Egfc + 1, m = 8k+1) with degree

of symmetry m2ß + 7/8.
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Let us comment briefly on our approach. Suppose M is a homotopy RPm with

N(M) 1 m2ß +1 and let G be a compact connected Lie group of dimension N(M)

acting effectively and differentiably on M. Then the action of G on M can be lifted

to an effective and differentiable action of a covering group G of G on the universal

covering space M of M [9]. Now M is a homotopy m-sphere and

N(M) ^ dim G = dim G = N(M) ^ w2/8 + l.

Hence by the previously mentioned result of W. Y. Hsiang, M must be a standard

sphere. However, although M is covered by the standard sphere Sm the deck

involution on Sm could conceivably be exotic, and hence M might be an exotic

homotopy RPm. Our approach, then, is to establish a structure theorem directly for

actions of compact Lie groups on homotopy RPm's. We show that if Mm is a

homotopy RPm admitting an effective differentiable action of a compact connected

Lie group with Sk (k^l, 3) as principal orbit, then M is diffeomorphic to RPm.

The proof of the structure theorem seems to hinge on the fact that the Whitehead

group of the group Z2 is trivial. Our structure theorem is analogous to one for

homotopy spheres used by W. Y. Hsiang in [6] and with it we are able to establish

our bound for the degree of symmetry of exotic RPm's.

For the sake of clarity we collect some preliminaries in the next two sections.

1. Preliminaries. Let G be a compact connected Lie group acting smoothly on

a compact connected manifold M such that the fixed-point set F(G, M) is non-

empty. Choose a base point x0 e F(G, M), let M be the universal covering space

of M represented as homotopy classes of paths in M starting at x0. Then there is a

natural smooth action of G on M so that the projection map p : M -> M is equi-

variant. It follows that for y e M and x=p(y) e M, we always have Gy<=Gx. But

we can say more. In fact, Gy is normal in Gx and Gx/Gy is isomorphic to a subgroup

of the fundamental group ttx =ttx(M, x0) of M. For if g e Gx, then p(gy)=gp(y)

=gx=x=p(y). Hence there is a unique ag e^ such that gy=yag. (We write the

action of tcx on M on the right.) Then 6: g i->- ag is a homomorphism of Gx into 7ra

with Ker 6 = Gy. In particular, as Gx is compact and ^ discrete, Gx/Gy is finite.

We can decide when Gx = Gy as follows. Since G is assumed to be connected, it is

easily seen that the lifted action of G on M commutes with the action of nx. Hence

ttx acts on the orbit space M/G and the orbit space of this action can be identified

with M/G. Now let y e M and [y] e M/G its orbit. It is easily seen that

("liu/l = 6(ßxlGy).

Therefore Gy = Gx iff [y] e M/G is free under the action of nu and this would always

be the case if Gx is connected. We will be interested in applying this in two extreme

cases :

(1.1) If the principal isotropy subgroup type (H) of(G, M) is connected, then the

action (G, M) also has (H) as principal isotropy subgroup type.

(1.2) Since G is connected, F(G, Ñ)=p~\F(G, M)).
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2. More preliminaries. Let (Z2, X) be a smooth involution where Y is a

contractible «-manifold with boundary 8X such that (Z2, 8X) is free. Then

(2.1) The fixed-point set F(Z2, X) is precisely a single point in the interior of X.

(2.2) The orbit space X\Z2 is contractible.

(2.3) Let 7)"clnt X be a disk around the fixed-point. Then the inclusion

Rpn-i = 8Dn/Z2 -> X-Int Dn/Z2

is a homotopy equivalence.

(2.4) 8X\Z2 is a manifold having the same integral cohomology as RP"'1.

Moreover, if8X is simply connected and « ä 6, then the action iZ2, 8X) is equivalent

to the standard antipodal involution iZ2, Sn~l), and hence 8X/Z2 is diffeomorphic to

RP"-1.

Proof. By P. A. Smith theory F=F(Z2, X) is acyclic over Z2. Since (Z2, 8X)

is free, F is a manifold without boundary. It follows that F can only be a single

point, say x0 e Int X. Let Dn<^lnt Y be a disk around it. Consider the inclusion

8Dn -> X-\nt Dn. From the exact triangle

JÏ*(3D")   -►  H*iX-lntDn)

\      /

H*iX-lnt Dn,dDn)

II

Hm(X, D") = 0

we see that H*i8Dn) -> 77+(Y— Int Dn) is an isomorphism. Also X— Int jD" is

simply connected by the Van Kampen theorem. It follows (e.g. by a spectral

sequence argument) that both

H*idDn/Z2) -* Ti^Z-Int Dn/Z2)

and

TTXi8Dn¡Z2) -+ wxiX-lnt Dn/Z2)

are isomorphisms. Therefore by Whitehead's theorem,

i{P»-i = dDn/Z2 -> Jf-Int Dn/Z2

is a homotopy equivalence.

Now consider the other end 8X of X— Int Dn. We have the exact triangle

H*idX)   ->   77*(Z-Int D")

\       ^

//*(z-int£»",ejr)
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But Poincaré duality gives

H*(X-lnt Dn, 8X) = 77*(A-Int Dn, 8Dn) = H*(X, Dn) = 0.

Thus again H*(dX) -* H*(X-lnt Dn) and hence H*(8X/Z2) -> H„(X-\nt Dn/Z2)

are isomorphisms. Thus Hjf(8X/Z2) = Hjf(RPn-1). If 8Xis simply connected, then

■nx(8X/Z2) -+ ^(A-Int Dn/Z2)

would also be an isomorphism and hence the inclusion 8X/Z2-> X— Int Dn/Z2

is also a homotopy equivalence. But this means X— Int Dn/Z2 is an A-cobordism

between 8X/Z2 and RP"'1. As Wh(Z2) = 0, we conclude by the s-cobordism

theorem that Z-Int Dn/Z2 is diffeomorphic to RPn~1xI when «^6. This com-

pletes the proof of (2.1) through (2.4).

3. The Structure Theorem. Let (G, M) be a smooth action of a compact

connected Lie group on a compact connected manifold. Assume that all the orbits

of the action are of uniform dimension. Then the connectedness of M implies that

all the identity components G° of the isotropy subgroups Gx are conjugate, say of the

same type (H). Let P=F(H, M) be the fixed-point set of H, N=N(H, G) the

normalizer of H in G and K= N/H the quotient group. Then P is a submanifold of

M invariant under A, so we have a natural action of K on P. On the other hand,

there is the natural right translation of K on the homogeneous space G/H. There-

fore we can form the space G/H xKP. This is a smooth manifold (since K acts

freely on G/H) on which G acts naturally via left translations on G/H. It is easily

seen that

G/HxKP^M,       [gH,x]^gx

is a diffeomorphism identifying M with G/H x K P as G-manifolds. With this

representation of M, for a point m=gx with g e G, x e P, let Kx be the isotropy

subgroup of x in the action (K, P), KX<^N the pull-back of Kx under the projection

A -> K. Then

Ggx = gKxg-\

Thus Ggx is of type H iff x e P is free under K. For example if all orbits of G on M

are actually of the same type H, then K acts freely on P and we get M fibered over

P/K with fiber G/H and group A, an observation due to A. Borel. The above

situation, where each Kx is permitted to be a finite group, is discussed in [2].

We shall need a slightly more general case than the above. Namely we assume G

has fixed-point set F=F(G, M) but all other orbits are of the same dimension. Let

(H) be the principal orbit type. We assume that G/H=Slc is a sphere of dimension

k±\, 3. Let U be an equivariant tubular neighborhood of F. Then G acts on

M—Int U with uniform dimensional orbits and we can apply the above to repre-

sent M-Int U by G/HxKP, where P=F(H, M-Int U). Now we put U back in.

We have U -> F a Dp bundle over F with group G acting on D" via normal repre-
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sentation, where p is the codimension of F in M. Thus (G, Dp) is a linear action

with principal orbit type G/H=Sk. According to [4, Lemma 1, p. 425], if k+1, 3,

then p = k+1 and the linear action of G on the unit sphere Sp~1 — Sk is just the

natural translation of G on G/H=Sk. Now on 8U, the diagram

G¡HxK8P = SkxK8P—>8U

8P/K->F

shows that the sphere bundle 3C/->F has 8P-+ 8P/K as its associated principal

bundle. It follows that the disk bundle U -> F can be identified with

Dk + 1xK8P-*8P/K,

and we may represent M as

M = SkxKPu Dk + 1xK8P,

identified along SkxK8P. Notice that from this representation, the orbit space can

be given by

M/G = P/Kv[0,l]x8P/K,

with (1) x 8P/K<=[0, 1] x 8P IK attached to dP/K^P/K. (For more details, see [8].)

We are ready to prove the structure theorem.

Structure Theorem. Let G be a compact connected Lie group acting smoothly

on a homotopy real projective m-space M. Suppose the principal orbit of the action

is a k-sphere Sk with kj=\,3. Then

(i) There are precisely three types of orbits. Namely the sphere Sk, the real

projective k-space RPk, and fixed-points. Moreover there is exactly one orbit of type
RPk.

(ii) The fixed-point set F=FiG, M) has the integral homology of RPn, where

n — m — k—l. If'ttxÍF)=Z2 andn^S, then F is actually diffeomorphic to RPn.

(iii) Let Y=M/G be the orbit space of the action (G, M), y0 e M/G the orbit of

type RPk isee (i)) and V a neighborhood ofy0 in M/G. Then Y is a contractible space

and i Y, y0) a relative manifold of dimension n+l=m — k. More precisely, Y— Int V

is a smooth manifold with boundary <9( Y— Int V) = F U RPn, the inclusion RPn ~* Y

— Int V is a homotopy equivalence and V is a cone over RPn with y0 as vertex.

(iv) 7//w^5, then M is diffeomorphic to RPm.

Proof, (i), (ii), and (iii) are relatively simple. First of all, there must be a fixed-

point. For if not, then since M has no rational cohomology, Theorem 4 of [4]

applies to assert that the orbits of the action have uniform dimension. As mentioned

above, we can write M as

M = G/HxKP = SkxKP.
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Consider the homotopy exact sequence

• • •-> wfc+1(M) -+**(K) -^^k(SkxP) -+7Tk(M) ->••..

Since K acts freely on Sk, it has rank 1 and so irk(K) is finite, for ki= 1, 3 (the iden-

tity component A0 is either S1 or S3). As Trk(SkxP) is infinite, we have 7rfc(M)^0.

This is impossible since k <m and M is a homotopy RPm.

Thus we can apply the results of §1. Let M be the universal covering of M and

(G, M) the lifted action. Since the principal orbit G/H=Sk is simply connected,

His connected, and (1.1) implies that (G, M) also has principal orbit Sk. Of course

M is a homotopy sphere and actions of this kind are completely understood by the

work of W. C. Hsiang and W. Y. Hsiang [4]. For example there are only orbits of

type (H) and fixed-points. Thus the only possible orbit types of (G, M) are (H),

(G) and (Gx) with Gx/H=ttx(M)=Z2, i.e. the only possible orbits are spheres Sk,

fixed-points, and projective spaces RPk.

Let X=M/G be the orbit space of (G, M). We know that 7rx(M)=Z2 acts on X

with orbit space X/Z2 = M/G= Y, and a point [x]=j0 e F has orbit RPk iff xe X

is a fixed-point of Z2. Now by [4], X is a contractible manifold of dimension

m-k = n+l with 8X=F(G, M). By (1.2), F(G, M)=p~1(F(G, M)), hence Z2

acts freely on 8X. We can then apply (2.1) to conclude that F(Z2, X) is precisely

a single point x0 e X. Hence there is exactly one orbit of type RPk.

Let Dn+1 be a disk around x0. Then V=Dn+1/Z2^ Y is a neighborhood of y0

in Fand Fis a cone over RPn = 8Dn+1/Z2 with y0 as vertex. By (2.2), Fisacon-

tractible space and F-Int F is a manifold with boundary 8(Y— Int V) = 8X/Z2

u RPn = Fu RPn. Statements (ii) and (iii) now follow from (2.2) through (2.4).

Now we proceed to prove (iv), which is our main concern. Let U be an equi-

variant tubular neighborhood of F. As we have seen above, we have

M-Int U = SkxKP,        U=Dk + 1xK8P,

and
M = SkxKPu Dk + 1xK8P.

We know the orbit of type RPk is determined by a point x0 eP such that KXQ=Z2,

and this point projects, of course, to the point y0e Y in the orbit space. Now by

the slice theorem, the orbit of x0 in P has a tubular neighborhood WinP given by

W=KxZ2Dn+1. The singular orbit RPk has therefore a tubular neighborhood W

in M given by

W= SkxK(KxZ2Dn+1) = SkxZ2Dn+1

and W projects to W/G = Dn+1/Z2=V, the cone neighborhood of y0 e Y. Hence

Y— Int V is covered by

M-Int W = 5fcxK(P-Int W) u Dk + 1xK8P.

Now consider the principal A-bundle

¿:P-Int W-+(P-lnt W/K) ~ (F-Int F).
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Here "~" means of the same homotopy type, as Y— Int V is obtained from

P-Int W/K by attaching a collar [0, \\x8P\K. Now 8V=RPn<= Y-lnt F is a

homotopy equivalence by (iii). Over 8V, the bundle £ is given by

(\BV: 8W = KxZ2Sn -> Sn/Z2 = RPn = 8V.

This means the bundle Ç\8V has a Z2-reduction. Since dV-*■ Y— Int Fis a homo-

topy equivalence, there is a unique Z2-reduction of £ which extends the reduction of

Ç\8V. That is, there is a principal Z2-bundle ß-> F—Int V, with ß a smooth

manifold with boundary 8Q = Sn u B, over 8V=RPn and fc Y-lnt F respec-

tively, and an identification Kx Z2ß=7J-Int Incompatible with the identification

Ä'xZ25'" = '3H/. We can therefore represent P as

P = KxZ2QKJ KxZ2Dn + 1 = KxZ2R,

where 7?= ß u Dn+1 is obtained from ß by adjoining a disk along 5". Notice 7?

has a smooth action of Z2 with exactly a single fixed-point. Now we can write M as

M = SkxKPu Dk+1xK8P

= SkxKiKxZ2R) u Dk + 1xKiKxZ28R)

= SkxZ2R\J Dk + 1xZ28R = 8iDk + 1xR)/Z2.

The diagram
Sn->Q

RPn—> Y-lnt V

and the fact that RPn<= Y— Int F is a homotopy equivalence implies that 5"c ß

is a homotopy equivalence. Hence 7?=ßu7)n + 1is contractible and so is Dk +1 x R.

Thus we have a smooth action of Z2 on a contractible manifold, which is free on

the boundary. Since 8iDk + 1xR) is necessarily simply connected (e.g. by the Van

Kampen theorem), we conclude from (2.4) that M is diffeomorphic to RPm when

wïï5. This completes the proof of the Structure Theorem.

4. Main results. With the Structure Theorem we are now able to prove the

following theorem :

Theorem. If Mm is an exotic HRPn (m^72), then

N(M) < m2/8 + l.

Proof. Suppose Mm is a HRPm with N{M) ä m2ß +1. We proceed to show that

Mm is standard. Let G be a compact connected Lie group of dimension £ m2ß +1

acting effectively and differentiably on M ; let 77 be a principal isotropy subgroup of

the action. Let Sm be the universal covering space of Mm. The action of G on M

lifts to an effective differentiable action of a covering group G of G on 2m. Now

dim G=dim G.
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Case A. dim G\H=m.

In this case the action of G on M, and hence, G on 2m is transitive. However,

all transitive effective actions of compact connected Lie groups on spheres have

been classified [11], [1], [13]. In all cases 27" is diffeomorphic to Sm. We obtain the

principal Z2-bundle

Sm = Gx/Hx

H0/Hx

T

Mm = Gx/H0

where Gx=SOim +1),St/((m+1)/2)or SpHm+1)/4) and Hx = SOim),SUHm-1)/2)

or Spiim — 3)/4) (respectively) standardly imbedded. Now the free action of H0jHx

on Sm is the restriction of the orthogonal action of NiHx, GX)¡HX on Sm. It follows

that Mm is diffeomorphic to RPm.

Case B. dim G/77=m-l.

Now G acts on Sm with principal orbit also of codimension one. H. C. Wang

has classified the groups acting effectively on spheres with principal orbit of co-

dimension one [14], [6, p. 355]. It follows that G is locally isomorphic to a subgroup

of one of the following :

(i) SOit) x SOÍ2), m = 2t-\,

(ii) [/(f)xt/(2), m = 4t-l,

(iii) Spit)xSpi2),m = St-l.

However in all cases,

dim G = dim G < m2/8 + l,

which is a contradiction.

Case C. dimG/H^m-2.

Now

dim G ^ «j2/8 + 1 ^ ((m2 + 8)/8(m-2))dimG/77.

Hence

(4.1) dim G è r dim G/77

where

(4.2) r = (w2 + 8)/8(m-2).

It follows from results of W. Y. Hsiang [7, Propositions 1 and 2] that there

exists a simple connected normal subgroup Gx of G such that

(4.3) dim Gx ^ r[miGx)],

and

(4.4) dim Gx+dim NiHx, Gx)/Hx ^ r dim Gx/Hx,
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where

(i) m(Gx) = smallest positive codimension of proper subgroups of Gx,

(ii) HX = GX nH,

(Hi) N(HX, Gx) = normalizer of Hx in Gx-

Since m, and consequently r, are large it follows from (4.3) and a knowledge of

the maximal dimensions of proper subgroups of the exceptional Lie groups [8]

that Gx is a classical Lie group. Therefore Gx is locally isomorphic to SO(n), SU(n),

or Sp(n). We consider only the case where Gx is locally isomorphic to SO(n) as the

other two cases are similar and less difficult.

Since m(SO(n)) = n-l, it follows from (4.3) that

n(n-l)/2 = dimSO(n) ^ ((m2 + 8)/8(w-2))(«-l).

and

(4.5) « > m/4

after simplifying. Since we are assuming that «7^72 it follows from (4.5) that

(4.6) (m-1)2^4ot.

Now M has zero first rational Pontrjagin class and with (4.6) we may conclude

that H°, the identity component of Hx, is locally isomorphic to SO(n—k), l^k^n

[5, Theorem 2.1]. We show k^ 4. By the underlying hypothesis of Case C, dim G/H

^m — 2. Hence

«î-2 ^ dim Gx/Hx = dim SO(n)-dim SO(n-k)

and consequently

(4.7) m ^ nk-k(k+l)/2 + 2.

Combining (4.5) with (4.7) yields

(4.8) 4n > nk-k(k + l)/2 + 2

and since « is large it follows that k ^ 4. For k = 3, 4 we may employ (4.4) directly

to obtain an easy contradiction. Consider then k = 2. From (4.4) we obtain

dim 50(«) + dim 50(2) £ ((m2 + 8)/8(w - 2)) dim Gx/Hx

or

(4.9) n(«-l)/2+l ^ ((m2 + $)ß(m-2))(2n-3).

Now it follows from (4.5) and (4.7) that m/4<ng(m + l)/2. Let

/(n) = «(w-l)/2+l-r(2n-3)

where, as we recall, r=(m2 + S)/S(m-2). We proceed to reach a contradiction to

(4.9) by showing that f(n) <0 for m/4<nú(m +1)/2.
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It is easily checked that/((w+l)/2)<0 and/(w/4)<0. Since/(«) is concave

upward, the contention follows.

We are left with k=\. The almost effective action of SOin) on M may be lifted

to an almost effective action of SOin) on M, the universal covering space of M.

Since M is a homotopy sphere and since (« — l)2^4w, it follows from a result of

the Hsiang brothers [5, Theorem 3.1] that SOin) acts on M with principal orbit

5n_1 and with a nonempty fixed-point set. From our considerations in the last

section we know now that SOin) acts on M with a fixed-point. Now the principal

orbit of the action of SOin) on M is either S""1 or RP11'1. However, since SOin)

acts linearly in a neighborhood of a fixed-point of M, it follows that the principal

orbit is actually 5n_1. Finally the Structure Theorem applies and M is diffeomorphic

to RPm.

Example. We employ the Hirzebruch-Brieskorn construction of homotopy

spheres to show that this theorem is best possible. Let M8k + 1 be the intersection

of the complex hypersurfaces

Zx+Z2+ ■ ■ ■ +zik+x+zik+2 = 0

and

l7|2_L.|7|2i...i|7 I2—  I

in Cik+2. It is known that Mak+1 is diffeomorphic to the Kervaire sphere 2gfc + 1

(see, for example, [12, pp. 55-56]). It is easily seen that a standard subgroup 0(4A:+1)

in t/(4A: + 2) leaves M8k + 1 invariant in Cik + 2. In addition there is an S1 action on

M8k + 1 which commutes with the G(4A:+1) action. Namely, if w = eie e S1,

w(Zx, Z2,..., Zik+X, Z4fc+2) = (e   Zx, e   Z2,..., e   Zik+X, e   Z4(c+2).

We obtain an almost effective action of 0(4A:+l)x51 on M. Consider the in-

volution t—eu= -1 in S1. Clearly t acts freely on M. Let A be the group of order

two generated by t and let M8k + 1 = M8k + 1jA. Now Mis a homotopy Rp8'c+1 and,

since its universal covering space M is an exotic sphere, M is not diffeomorphic to

RPBk + 1. On the other hand, the almost effective action of 0(4k+l)xSl on M

can be pushed down to an almost effective action on M. Hence if/w = 8A:-r-l,

N(M) ^ dim [0(Ak+l) xS1] = 8k2 + 2k+l = w2/8 + 7/8.

Remarks. 1. It is possible, by a somewhat more careful argument, to lower the

bound in the preceding theorem to m ̂  59.

2. The statements and proofs of the above results and of the example can be

modified so as to apply to Z3 actions on spheres, since the Whitehead group of Z3

is zero. In particular, if Mm is an exotic lens space arising from such an action,

NiMm) </Ma/8+1. On the other hand, it follows from the main lemma in [10] that,

for a standard simple lens space Z,£, with/?#2, Ar(7.™) = w2/4+w/2 + l/4.
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