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STUDIES IN THE REPRESENTATION THEORY

OF FINITE SEMIGROUPS

BY

YECHEZKEL ZALCSTEINQ

Abstract. This paper is a continuation of [14], developing the representation theory

of finite semigroups further. The main result, Theorem 1.24, states that if the group

of units U of a mapping semigroup (Y, S) is multiply transitive with a sufficiently

high degree of transitivity, then for certain irreducible characters x of U, x can be

"extended" formally to an irreducible character of S. This yields a partial generaliza-

tion of a well-known theorem of Frobenius on the characters of multiply-transitive

groups and provides the first nontrivial explicit formula for an irreducible character

of a finite semigroup. The paper also contains preliminary results on the "spectrum"

(i.e., the set of ranks of the various elements) of a mapping semigroup.

Introduction. The well-known results of Clifford-Suschkewitch and of Munn

[4, Chapter 5], [14, Section 2] reduce, in principle, the problem of finding the

irreducible representations of a finite semigroup to that of finding the representa-

tions of its maximal subgroups. However, these results are not in readily usable

form. For example, the problem of finding the radical of a semigroup algebra has

been solved only recently, and only for the special case of a 0-simple semigroup

[14, (2.9) and (2.11)]. Most recent research in the field has been concerned with

extending Munn's results to infinite semigroups.

This paper is an attempt to obtain sharper results for finite semigroups. In par-

ticular, we generalize some well-known results about the characters of multiply-

transitive permutation groups (1.16-1.34). The main results, Theorems 1.24 and

1.41, state that if the group of units U of a mapping semigroup (X, S) is multiply-

transitive with a sufficiently high degree of transitivity, then for certain irreducible

characters x of U, y can be "extended" formally to an irreducible character of S.

This yields a partial generalization of a well-known theorem of Frobenius on the

characters of multiply transitive permutation groups and provides the first non-

trivial explicit formula for an irreducible character of a finite semigroup. The paper

also contains some preliminary results on the "spectrum" of a mapping semigroup.

We hope that as the character theory of finite semigroups develops, it will have
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significant applications to problems of structure, as has been the case in group

theory.

This paper is a revised version of Chapter 4 of the author's Ph.D. thesis [18].

The remainder of the thesis, dealing with the group-complexity of finite semigroups,

will appear elsewhere.

1. Representation theory. We assume that the reader is familiar with the

algebraic theory of finite semigroups [4], [8] as well as the elementary representation

theory of semigroups [4, Chapter 5], [14].

1.1. Notation. Throughout this paper, S and T with various subscripts will

denote finite semigroups and G, H and U with various subscripts will denote

finite groups. ^ denotes the symmetric group on n symbols. X= Dn={l, 2,..., «},

and (X, £fn) denotes ¿^ acting in the natural way on X.

If y is a regular ./-class of S, G, denotes a maximal subgroup of S contained in J

and Cj the structure matrix of the 0-simple semigroup J°.

K denotes an algebraically closed field of characteristic zero. All representations

considered are A'-representations, unless stated otherwise. Z denotes the ring of

integers and Q its quotient field, 'r? denotes the field of complex numbers. <p, if) and 9

with various subscripts denote representations and V, W with various subscripts

denote right ATSJ-modules. ls denotes the principal character on S and if there is

no danger of confusion we will denote it simply by 1.

Let <p be a representation of S and let G be a maximal subgroup of S, then <pa

denotes the group representation of G derived from <p\a by discarding null constit-

uents. If x is a character of S, then <p(x) denotes any representation with character y.

All ATSJ-modules considered are right modules. When there is no danger of

confusion we will identify an irreducible representation with its character. If <p and

t/i are representations, y ^ >/j means that every nonnull constituent of y is a constit-

uent of >\i. The same notation is used for characters. If 9 is a nonnull irreducible

representation and </> is an arbitrary representation of S, #(<p, <¡)) is the number of

constituents of ^ which are similar to <p. If Fand IF are the representation modules

of (p and t/i, respectively, then #(V, W) = #(<p, ifi).

All undefined notation follows [8] and [14].

A famous theorem of Burnside [5, (36.1)] states that if a group has a faithful

finite-dimensional complex representation and there is an upper bound m on the

orders of all elements in the group then the group is finite.

This has a partial generalization as follows :

1.2. Proposition. Let S be a (possibly infinite) semigroup such that, for each

se S, <í> is finite and there exists a positive integer m such that the periods of all

elements of S are bounded by m. If S has a faithful finite-dimensional irreducible

^-representation, then S is finite.

Proof. The proof follows by trivial modifications of the proof of Burnside's

theorem in [5]. Let s e S and let r and p be the index and period of s, respectively
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[8, p. 11]. Then sr + p = sr, thus if <p is an «-dimensional representation of S,

(pis)r[<pis)p —1] = 0 and hence the eigenvalues of (pis) are 0 or pth roots of unity.

By hypothesis, the periods of all the elements are bounded by m and thus for all

s e S the eigenvalues of <p(i) are 0 or kth roots of unity, for some k S m. Let x = xif),

then, for all seS, x(i) is a sum of at most n kth roots of unity and thus the set

{y(í) : s e S} is finite.

Now, assume that <p is faithful and irreducible. Then by the Frobenius-Schur

theorem [14, (1.20)] there exist n2 elements sx, s2,.. .,s„? e S such that

{9f,(Jie) : 1 èijân, l^k^n2} are linearly independent over K. For s e S,

xM = 2 ?>W) = 2 <p"i^)<Pnis).
¡ = 1 i,i = l

The right-hand side is a set of n2 linear equations in the n2 unknowns <p"(j), and

the rows of the matrix of coefficients being linearly independent, there is a unique

solution for the <pi;(i). But y takes on only a finite number of possible values, and

hence so does each {py(s) : s e S}. Thus yiS) and hence S is finite.

1.3. Remark. Unlike the group case, the conclusion of Proposition 1.2 does not

hold if <p is reducible even if the bound m is 1 as is shown by the following simple

example.

Let 5 be the semigroup of all nxn lower strictly triangular matrices over cê.

Every element of Sis nilpotent and thus has period 1. The identity map is a faithful

«-dimensional representation. Thus all the hypotheses of 1.2 hold, except the

irreducibility of the representation. However, S is infinite.

The next result is a generalization of a theorem of Schur which states that a

finitely generated torsion group having a faithful finite-dimensional representation

is finite [5, (36.2)].

1.4. Proposition. Let S be a finitely generated torsion semigroup. If S has a

faithful finite-dimensional irreducible to-representation <p, then S is finite.

Proof. As in 1.2, the proof is a slight modification of the standard proof of

Schur's theorem. The idea of the proof is to get a uniform bound on the periods of

all elements of S and then apply 1.2. Let sx, s2,.. .,snbe a set of generators for S.

Let E be the field obtained by adjoining to Q the entries of all the matrices (pist),

l^i^n. Thus each eigenvalue of ¡pis) is 0 or a root of unity which satisfies an

equation of degree /=deg(«p) with coefficients in E. As in the proof of Schur's

theorem (see [5, pp. 252-254]) there are finitely many such roots of unity, thus there

exists a positive integer m such that each eigenvalue of <p(i) is 0 or an wth root of

unity. Then S is finite by the proof of 1.2.

1.5. Fact. Let F be a subfield of K. Let J be a regular J-class of S,

J°~Jt°{G, A, B, C) and let <p e IRR (G). If<p is similar to an F-representation, then

<p~ is similar to an F-representation.
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Proof. Replace "K0[S]" by "F0[S]" in (2.9) of [14]; the proof goes through

except that we have possibly fewer irreducible F-representations than irreducible

^-representations of G. Furthermore, <p(C) is a matrix over F, and thus the matrices

A and B in the proof of [14, (2.7)] are over F. Thus <p~ constructed in [14, (2.11)]

is an F-representation. Finally, the proof of [14, (2.2)] requires finding

xeK[JKJF(J)] such that ç>~(x) = /n. Since this involves only solving linear

equations and <p~ is an F-representation, the coefficients of x are from F and thus

for all s s S the coefficients of xs are from F. Thus <p~ is an F-representation.

1.6. Corollary. All irreducible representations of FB(X) are similar to Q-

representations.

Proof. As is well known (see e.g., [5]), every irreducible representation of Sf^

is similar to a ^-representation and since every maximal subgroup of FR(X) is

isomorphic to £fk, for some k, the corollary follows from Fact 1.5.

1.7. Fact. Every Q-representation of S is similar to a Z-representation (i.e., to a

representation by matrices over Z).

Proof. The standard proof of the corresponding theorem for groups (see e.g.,

[6, (4.1)]) goes over without change.

1.8. Remark. It follows from 1.5 and 1.7 that if G is a maximal subgroup of S,

then Ig is similar to a Z-representation, thus in particular y(1J) is Z-valued.

Further, by Fact 3.13 of [14], the characters of a combinatorial semigroup have

nonnegative integer values. Thus it has been conjectured that the values of y(1g)

are nonnegative integers. Let C be the structure matrix of the ß-class of S con-

taining G. The assertion is trivially true if the rows of l*(C) are linearly independent

since then by (2.16) of [14], 1£ = 1%(RM}). However, it is false in general, as shown

by the following example.

Let S be a chain of 3 ¿/-classes {0}=J0<Jx<J2 with J2~Z2 and Jx

~M°({l},{l,2,3,4},{l,2,3,4},C),

110   0"

0 0    11

1 0   1    0 '

and for the generator g of J2,

0   0 0   r

0   0 10

0    1 0   0

10 0   0

c =

RMj^g)

0    10   0"

10   0   0

0   0   0    1

0   0    10

LMH(g)
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Let G be a maximal subgroup of Jx. Computing 1J by (2.20) of [14] we get

-1   0   01

ioig) = 1    0    1

1    1    0

thus *(!?)(£)=-1.

1.9. Fact. Let S=J°~Jf°iG, {1,2,..., m}, {1, 2,..., «}, C) and let IRR (G)

= {91, <P2, ■ ■ •> <Pk} and 8 the right regular representation of G. Let ¿% be the right

regular representation of K0[S]. Then 38 = y © <p ©• • -©<p («1 times) where

<P=9*iRMJ) = lk=x nwfiRMj), «¡ = deg fa), i=\,2,...,k.

Furthermore, each cpfiRMj) is indecomposable and nonnull and thus a principal

indecomposable representation of K0[S]. Each principal indecomposable representa-

tion of K0[S] is of this form. cpfiRMj) has multiplicity n¡m in 01.

Proof. For s = ig, i,j) e 5#,

@is)iigu h,ji)) = igiCiJu i)g, ix,j) = igx, ix,jx)Cig, i,j)

where the bar denotes the element considered as a matrix over G° and the operation

is matrix multiplication, and the right-hand side equals igx,ix,jx)RMjis). Let

G={e=gi, g2,.. .,gr}, then with respect to the ordered basis

ie, 1, 1),..., igr, 1, 1), ie, 1, 2),..., (g„ 1, 2),..., igr, 1, «)

(«?, i, 1),..., ...,igr,i,n)
:

ie,m,\),..., ...,igr,m,ri),

^ = 9©---©<p. The expression <p = '2i = xniq>fiRMJ) follows from Wedderburn's

theorem.

If cpfiRMj) were decomposable, say x/>x © Jj2 ©■ • •© <¡iu then by [2, (9.2)],

<P*iRMj) would have at least / nonnull constituents. But, by Fact 2.14 of [14],

(pfiRMj) has a unique nonnull constituent. Thus cpfiRMj) is indecomposable and

hence a principal indecomposable representation.

1.10. Corollary. Let J be a regular /-class of S1, J°~Jt\G, A, B, C) and

let q> e IRR (G), then q>*iRMj) is indecomposable. In particular, the action of a right

letter mapping semigroup on its distinguished /-class is indecomposable.

Proof. <p*iRMj)\]uFU) is indecomposable by 1.9, thus <p*iRMj) is indecomposable.

1.11. Definition and Notation. (Y, S) denotes a right mapping semigroup (or

right transformation semigroup), X=Dn = {\,2,.. .,n}, «^2. For ieX, seS,

let i.s = ii)s. For s e S, range is) — X.s = {i.s : i e X}. The rank ofs, denoted by ris),

is I X.s\ and mod is) is the partition induced by s, i.e., ix = i2 mod (s) iff ix.s = i2.s.
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t(í) = |{/£ X : i.s=i}\ is the number of fixed points of i. 5 is null o s does not

belong to a subgroup of S. e(s) denotes the unique idempotent among the powers

of s.

Clearly, r(sk)^r(s) for all kt 1 and Sx ß í2 => r(sx) = r(s2), thus we may speak

of the rank r(J) of a /-class J or r(H) of an J^-class H, which is defined to be the

rank of any element of y or H, respectively. Note, however, that two elements of

the same rank need not be ^-equivalent. Also, Jx^J2 => for any st eJt, i=l, 2,

r(sx)úr(s2).

For se S, let A(s) be the subset of X of highest cardinality such that s\Ms) is a

permutation. s\Ms) is called the permutation part of s and is denoted by PP(s).

PP (s) is well defined by the following lemma.

1.12. Lemma. Let (X, S) be a faithful mapping semigroup and let s e S, then

a. The following are equivalent:

(1) s belongs to a subgroup of S.

(2) r(s2) = r(s).

(3) range (s) is a set of representatives for mod (s), i.e., each equivalence class of

mod (s) contains exactly one element from range (s).

(4) A(s) = range (s).

(5) í|range(s) & a permutation.

b. The following are equivalent:

(1) s2 = s.

(2) i|range(S) Is the identity map.

(3) s is the identity map on some subset of X of cardinality r(s).

(4) r(s) = r(s).

c. For sx, s2e S, sx 28f s2 implies range (sx) = range (s2).

d. Let e(s) be the unique idempotent among the powers of s, then A(s) = A(e(s))

= range (e(s)).

Proof. The proof is elementary, and will be omitted.

1.13. Definition and Notation. Throughout the remainder of the section,

(X, S) will denote a faithful right mapping semigroup with 1^1=« such that S has

an identity element 1 and z'.l =i for all 1 e X. The maximal subgroup U of S con-

taining 1 will be called the group of units of S. (X, U) will denote the group of

units of some mapping semigroup (X, S) even when (X, S) is not mentioned

explicitly.

For i e X, C¡ is the map defined by j.Ct=i for ally e X. C¡ is called the constant

map to i.

The standard representation M: S ->- Jl(K, n) is defined by

(M(s))u = 1    if i.s = j,

= 0   if i.s + j.
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y= ViM) is the representation module of M with basis {vx,..., vn} so that v¡s

= Vj o i.s=j. We say M is fc-transitive iff (Y, S) is A>transitive, i.e., for any two

A>tuples (ij,..., ik), (Ji,.. .,jk) of elements of X such that the /','s and they'm's are

pairwise distinct there exists s e S such that i¡.s=ji for 1=1,2,..., k.

1.14. Fact. If S contains all constant maps, then M is indecomposable.

Proof. /=kernel (S) = {C¡ : ie X} and if 1 denotes the principal character on

the (one-point) maximal subgroup of J, then M=1*(M;) which is indecomposable

by Corollary 1.10.   Q.E.D.

1.15. Notation. Given (Y, S), let G be a maximal subgroup of 5". Let s e G,

then by Lemma 1.12 s |range(s) is a permutation and range is) is independent of the

element s chosen. Thus iX.s, G) is a permutation group. Let Ma be the standard

representation of iX.s, G). By Fact 1.10 of [14], M\G = Ma + null constituents, hence

XÍMG) = xiM\o).
If iX, S) is a permutation group iX, G), then, as is well known, #(1G, M) is equal

to the number of orbits of the permutation representation M, and, in particular,

#(1G, M) = \ iff M is transitive [5, Theorem (32.3)]. This is generalized in Facts

1.16 and 1.18 below.

1.16. Fact. IfJ= kernel (S) and G is a maximal subgroup ofJ, #(ls, M) is equal

to the number of orbits of the permutation representation Ma of G. In particular,

#(ls, M)= 1 iff MQ is a transitive permutation representation.

Proof. By the group-theoretic result quoted above, the number of orbits of Ma

equals #(1G, MG) and since 1G = (1S)G, #(1G, MG) = #(1S, M) by Fact 2.14 of [14].

1.17. Fact. Let T^S1 with 1 e T and let q> be a representation of S such that

«p(l) = /n. Then the number of nonnull constituents of <p is less than or equal to the

number of nonnull constituents of<p\T icounting multiplicities).

Proof. Let cpx, <p2,..., <pn be the nonnull constituents of <p (counting multi-

plicities). Now, q>k\T is not null since 1 e T. Thus <pk\T has at least one nonnull

constituent and the inequality follows.

1.18. Fact. If(X, U) is transitive, #(ls, M)=l.

Proof. By Fact 1.16 U#(ls, M) and by Fact 1.17 #(ls, M)^#(1SK,, M\u)

= #(lrj, Mv) and since Mu is transitive this equals 1 (by the result quoted in the

proof of 1.16). Hence, #(ls, M) = l.

1.19. Remark. If (Y, U) is transitive, /= kernel (S) and G a maximal subgroup

of J, then by 1.16 and 1.18, MG is a transitive permutation representation. The

converse is trivially false since for any mapping semigroup S such that kernel (51)

has rank 1, #(ls, M) = l.

1.20. Notation. Given (Y, S) and seS, let a¡(s), i= 1, 2,..., n, be the number

of /-cycles in the decomposition of PP is) into disjoint cycles, thus the a¡'s are

functions from S into the nonnegative integers and ax=xiM).
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Given (X, S) and a maximal subgroup G of S, if G contains an element s such

that PP (s) is an odd permutation, we define xè '■ G -> {1, — 1} by xgCO = sgn (PP (s)).

Note that yg is defined only if G contains an odd permutation. We refer to xê as the

alternating character of G.

1.21. Remark. As is well known, the irreducible characters of.5^ are in one-to-

one correspondence with the ordered partitions (Xx,..., Xr) of k where Ai^A2

^ • • • ̂  Ar > 0 and k = 2J-i ^¡>tne character corresponding to (Al5..., Ar) is denoted

by xWl.Á,) (see e.g., Littlewood [9]). If Gk is a maximal subgroup of S of rank k

and Gk~yk, we denote the character corresponding to the partition (A1;..., A„)

of A: by Xk1'*2.Ap>-

Given x<Al.Ä'\ the dimension of y(Ai,a2.V is defined to be n — Xx (see Frobenius

[7]).
Our objective is to get information about S from various assumptions about the

transitivity of its group of units. We will need the following theorem due to

Frobenius [7]: If a faithful permutation group (X,G) is 2A>transitive, then for

every irreducible character x of Sfn of dimension ^k, y|G is irreducible.

Tsuzuku [16] has proved the converse of this theorem. Let (X, G) be a faithful

permutation group and let k < n/2. If for every irreducible character x of Sfn of

dimension k, yJG is irreducible, then (X, G) is 2A>transitive. (The cases k=\,2

have been proved by Frobenius.)

Thus in particular (X, G) is 2-transitive oax — 1 is irreducible and (X, G) is

4-transitive o (ax— l)(«i —2)/2—<x2 and ^(ai — 3)/2-r-a2 are irreducible.

If XWl.V is an irreducible character of Sfn and y(Al.V|c is irreducible, we will

denote y(Ai,a2.V|G by xWl.Ap)- For example, given (X, S) and a maximal sub-

group G of rank k, if xé is defined, then xâ = Xfc1"'-

1.22. Fact. Given (X, S), define integer-valued functions pk, k= 1, 2,..., « — 1,

o« S as follows:

Let tt = (Xp, Xv_x,..., A2, Ax) be an ordered partition ofk; i.e., XP^XP_X^ ■ ■ ■ > A2

^A1>0a«t/2f=i K = k. Let a(7r) = (-l)k + p and let ßi=ßi(n), i=\,2,...,k, be the

number of X/s in n such that X¡ = i. Then

where the summation is over all ordered partitions ofk. (Thus

H-i = «l, P2 = ax(ax-l)/2-a2,

p3 = ai (ai— lXon — 2)/6 — a!a2 + a3,    C*C.)

F«e«, />fc is a character of S which vanishes on all elements of rank <k.

Furthermore, ifJ is a regular ß -class of S of rank k and G is a maximal subgroup

of S contained in J, then pk\a = Xa if G contains an odd permutation and otherwise

t^klc — Ig-
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Proof. Let F= V(M) and let Vk be the subspace of skew-symmetric tensors in

V ®* ( v ®k is the ktn tensor power of V, i.e., V1 = V, V ®k +» = ( V ®k) <g> V), 1 g k < n.

(See Curtis and Reiner [5, p. 452].) Vk has a basis consisting of elements of the form

vh.i* - 2 s8n («Kai ® »..«, ® • • -® *w
<7Syfc

where i1(..., ik e X and j'i, ..., ik are pairwise distinct.

Now, it is easy to see that if s e S is a permutation when restricted to

{ix,i2,...,ik}, (rili2...i> = sgn(i|<il>(2,...>()c>)t;(l.s.M and »*" ̂l«i.«a.¡*> is not one"

to-one, (vhti2.íJí=0. Thus Vk is a ÄTSJ-submodule of F ®fc. Let <pfc be the repre-

sentation carried by Vk. Then deg (<pk) = (k) and <pfc vanishes on all elements of

rank <k.

Now, by a somewhat tedious direct verification, p-k=x(<Pk)-

We now prove the second statement. For seG, 2i=i iai(s) = k, thus for any

partition tt of k, 2f=i ioi(i)=2?«i ißM- If» f°r some '» AÍ^Jx^Íí), then

(ai(i)N) = 0.

If, for some/ ßJ(ir)<aJ(s), then by the equality above, for some «', j8,(7r)>a¡(í) and

again

(a'(i)) = 0.

Thus exactly one term in the sum defining pk(s) is not zero, and for that term,

ai(s)=ßi(Tr) for all i^k. Furthermore, a(-n)=l if PP(s) is even and a(n)= -1 if

PP (s) is odd, where w is the partition induced by the decomposition of PP (s) into

disjoint cycles. Thus, pk(s) = sgn (PP (s)). This proves Fact 1.22.

Remark. The subspace of symmetric tensors in V ®k is not a ATSJ-submodule if

S is not a group, hence there is no analog of Fact 1.22 for the symmetric case.

1.23. Definition. Given (X, S), if x is a character of U that can be expressed in

terms of the a¡'s we can extend x to an integer-valued function x* on S by using the

same formal expression for x in terms of the «¡'s. x* is not, in general, a character of

S; in fact, even the restriction of x* to a maximal subgroup need not be a character.

The next theorem states that if the group of units is multiply transitive with a

sufficiently high degree of transitivity, then for certain irreducible characters x

of U, x* is an irreducible character of S. It therefore provides the first nontrivial

explicit formula for an irreducible character of a finite semigroup.

1.24. Theorem. Let (X, U) be 2k-transitive, k^l, and let S contain an element of

rank k+l. Then for all i, 1 < /' ̂  k +1, and all maximal subgroups G¡ of rank i,

o     ^-r'-"-'-2<ft')(;;)-(;:;;)-
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where the summation is over all the ordered partitions of i—l, and where ai-n) and

ßi=ßiiTr) are as in 1.22. In particular,

deg((xâ1D=("ri1)-

Furthermore, (xâ,)~|«j ¡s irreducible.

Proof. We need the following lemma.

1.25. Lemma. Let (Y, (7) be m-transitive, l=m^n-\, then

a. If S contains an element of rank k^m, then for every k-subset AofX,S contains

an idempotant whose range is A.

b. If S contains an element of rank k^m, then S contains elements of all ranks

rgifc.
c. If S contains an idempotent e of rank k^m, then He~Sfk.

Proof, a. Let s be an element of rank k. For all ueU, mod (sw) = mod is) and

by w-transitivity, there exist u e U such that range isu) is a set of representatives

for mod isu) = mod is), thus by Lemma 1.12, rieisu)) = k. Hence we may assume that

s is an idempotent. Now, by w-transitivity there exists ue Uso that range isu)=A,

then u~1su is the required idempotent.

b. Let s be an element of rank k. By w-transitivity, there exists ue U such that

su is null. Thus we may assume s is null. Let range (j)={ix, i2, • • •> 4} and mod is)

={AX, A2,..., Ak}. Since k<n, at least one of the /!¡'s, say Ax, has cardinality > 1.

Pick ue U such that i,.u e A¡ for j—l, 2,..., k— 1 and ik.u e Ax. Then rüsu)2)

= k-\.

c. Without loss of generality, let range (e) = {l, 2,..., k} = Dk. By ^-transitivity,

for all a e Sfk, there exists ue U such that u\Dk = a, thus eue\Dk = a. Now, since u

permutes range (e), i.e =j.e iff /(ewe) =jieue). Thus mod {eue) = mod (e) and clearly

range (e) = range (ewe). Thus ieue)Jte in FS(Y) and so ieue)3#'e in S. Hence

He~yk. This proves the lemma.

1.26. Corollary (of Lemma 1.25). IfiX, U) is m-transitive and S contains an

element of rank kSm, then all elements of rank k are /-equivalent and the /-class

consisting of all elements of rank k is regular.

Proof. Let s and t be regular elements of rank k (these exist by Lemma 1.25).

By the proof of the lemma, there exists ue U such that mod (.«/) = mod is) and

range (jh) = range (r). Thus s 0t isu) in FK(Y) and isu) ¡£ t in FB(Y). Hence by

Proposition 6.2 of [11], s 9i isu) and isu) 3? t in S and thus s / t. The last assertion

is clear. This proves the corollary.

We proceed with the proof of the theorem.

By Lemma 1.25, S contains idempotents of all ranks i&k+l and G¡~^ for

i ;£ k +1. Furthermore, by Corollary 1.26, there is a unique /"-class of rank /, for

iúk+l.
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(X, U) is 2A:-transitive and hence 2-transitive, thus (ax — 1S)|G is irreducible and

so, by 1.17, ax— 1 is irreducible. Let/= apex (ax — 1), then by the ^-minimality of

j} r(J) = 2 and / is in fact the unique /"-class of S of rank 2. Let G be a maximal

subgroup of S contained in J, then G = G2~Z2 and (ax — l)|G2 = xá2> thus by Fact

2.14 of [14], (xG2)xá«i-l, and since ax — \ is irreducible, (xê)~ = ax-l. In par-

ticular

deg(xâ2)~ mn-l =

thus (1) holds for i=l.

We proceed by induction  on  i.  Assume (1) holds for i£k.  Then (xo,)~

-X»",+1,1'",>- Now> by Fact 1-22. f»f|«,-xá,.thus by Fact 2-14 of [14], (xé,T is a

constituent of p¡ and in fact, the only constituent with apex of rank i. Furthermore,

Pi\u = X(n-t + 1-1'~1) + x(n~uli:i- This follows from the formula for j^»-"«' in terms of

the a¡'s which can be proved using the method described in Murnaghan [10, pp.

143-147]. Further, by Frobenius' theorem quoted above, since both characters on

the right-hand side have dimension ^k, they are irreducible. Thus by Fact 1.17, /x,

has at most two constituents. Further, since (xá¡)~ is a constituent and by the

induction hypothesis

deg((xGiF) = (""J < (") - degfi,

it has exactly two constituents, the other constituent <p having degree

(K-XV)
and apex / of rank > i.

To complete the proof we need the following lemmas :

1.27. Lemma. Let (X, G) be 2-transitive. Define the integer-valued function r¡ on G

by 7](o) = sgn (a)ax(a). Then r¡ — sgn ( • ) + X where x w irreducible.

If(X, G) = (X, SQ, then v-^+X0'1"'1*-

Proof, ax— lGisan irreducible character, thus x = sgn (-)[ai —1c] is an irreducible

character. Now,

r, = sgn(-)«i = sgn (-) + sgn (■)[«!-1] = sgn(-) + x-

If (X, G) = (X, SQ, sgn (-) = X<in> and ax-1 =x{n-1-1\ Further, if ¡i is a partition

and A is the partition conjugate to p., x(in> • x(u) = Xw (see Littlewood [9, p. 71]), thus
(2.1n~ l)

x=x        ■

1.28. Corollary. Given (X, S), if J is a /-class of S of rank k+l and Gk + 1

= Gj~Srl+x, then

(,,   \ _   „(2,1*-1)  i   v(lfc+1)
\lMk)Gk+1  — Xfc + 1        +Xfc + 1    •

t!-
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Proof. Since the character pk depends only on the permutation parts of the

mappings involved, we may consider (Y.e, e Se) instead of (Y, S), where e is the

identity of Gk + X. Thus we may assume, without loss of generality, that k = n-\

and so Gk + X = U~S?n. Now, in computing the character pn-x\u we may replace the

standard action of U on Vn_x by the action of U on Fn_i by v¡.u = sgn (w)uiu

(since if m = X—{m}, ivm)u=\vm om.u = m and A=sgn (t/|„-,) = sgn («)). Thus the

corollary follows from Lemma 1.27.

1.29. Lemma. Given (Y, 5), if U contains an odd permutation and

1  _
e = —, > sgn iu)u,

"• uet/

then

a. ForallseS-U,es=0.

b. If <p is an irreducible representation of S with apex J^U, xif\u) does not

contain x{nV as a constituent.

Proof. If s $ U, ris) < n, thus there exists an equivalence class A of mod is) of

cardinality = 2. Let /, j e A, i^j. Then a -> a' = a(ij) is a bijection of the set of all

even permutations in U onto the set of all odd permutations. Thus it is easy to see

that as=a's. Thus in the product es, the terms with the plus sign cancel the terms

with the minus sign, so es = 0.

To prove b, note that eK[U] is the representation module of y(in). Now, by a,

eK[S] = eK[U], and by Lemma 1.28 of [14], eK[U] = ieK[U]f. Thus (viTT

= Xnin) and so, for every irreducible representation q> of S with apex//£/,

#fa (x(«iin>)s) = 0- Hence by the generalized Frobenius reciprocity theorem, [14,

(1.29)], since K[U] is semisimple, #(x(in)> <p|«j) = 0- This proves b and thus Lemma

1.29.

1.30. Lemma. Under the hypothesis of Theorem 1.24, ifjk denotes the /-class of

S consisting of the elements of rank k, then XGkiRMjk) = <pk, where <pk is defined in the

proof of 1.22.

Proof. By Lemma 1.25, for any A>subset A of X, Jk contains an element whose

range equals A. Now, if s, te S^FRiX), by Proposition 6.2 of [11], s Jíf t in

S o s Sf t in FB(Y) o range is) = range (/). Thus the JSf-classes of Jk are in one-

to-one correspondence with the A>subsets of X. Hence

deg(xâ;(JRM/J)=Q=degfa).

Further, by the definition of Vk (see the proof of Fact 1.22), for every element s of

rank ^k, <pkis) = XGkiRMJlc)is) and for every element s of rank <k, <pfc(s)

=Xak(RMj)(s)=0. This proves the lemma.
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1.31. Lemma. Let J be a regular /-class of S, P~Jt\G, A, B, C). Let

<p e IRR (G) and suppose the rows ofcp*iC) are linearly independent. Let e = e2 e S

such that J<Je, then eJe is a regular /-class of e S e and if C is the structure

matrix ofeJe, then the rows of C are linearly independent.

Proof. It is easy to verify that e J e is a regular ,/-class. Without loss of generality

assume that RM,ie) fixes the first i rows and LMjie) fixes the first j columns of C.

Then

C =
C"

where C is ixj. Thus, if deg fa) = «J, <p*(C) is the mixmj submatrix at the upper-

left corner of <p*(C).

Now, by hypothesis, the first m/rows of <p*(C) are linearly independent, thus the

first mi rows of [<f>*(ÄM/)(e)]f*(C) are linearly independent. Thus by the linked

equation (7.2.14(d) of [8]) the first mi rows of <p*(C)[«p*(LAf,)(e)] are linearly

independent. But the last m\A\ —mj columns of <p*(C)[<p*(LM,)(e)] are multiples

of the first mj columns, thus it follows easily that the rows of <p(C') are linearly

independent.   Q.E.D.

We can now complete the proof of the theorem. We claim that ixai)ai+1=x{2'1'~1)-

We know that ixéM+1^dot+1 and, by Corollary 1.28, ipd^^xWi'^+X^P-

ÍX¿i)~\g1+1 is not null. Assume ixGt)ai + 1=Xi1+i1), then if e is the identity element of

G<.+ i, then, in e S e, the representation determined by the alternating character on

a maximal subgroup G of e J¡ e is one dimensional. Thus if C is the structure matrix

of eJi e, C' = xaiC) has row-rank 1. But this is clearly impossible. (By permuting

rows and columns if necessary, assume C'(l, 1)^0. Then since Gi + x~S^+1, and

since the JS?-classes are coded by /-subsets of Y, as in 1.30, there exists / such that

C'ii, 1) = 0. Further, since eJk + x e is regular, the /th row of C is not identically

zero. Thus the first and the last rows of C are linearly independent.) Thus, if the

claim is false, (YG^)G| + 1 = Y(2,1'~1) + Y(lt + 1, = 0¿i)G(+1 and by Lemma 1.30 this equals

Xa'XRMj). Hence the rows of xg\ÍCj) are linearly independent. Thus by Lemma

1.31, the rows of vG(C) are linearly independent. Hence, in e S e, ixG)~ = XGÍRMe ]{e)

=<p| + 1, where <p\+1 is the representation defined in the proof of 1.22, with |^|=n

= /+l. Thus ixêjï=x!2+r,) + XÍVí1)- But by Lemma 1.29 applied to eSe, x\Tily

is not a constituent of (vâ)Gi+1. Hence, our assumption is wrong and the claim is

proved.

Thus (93)G¡ + 1 =xi+'i1). Now, <p is irreducible with apex of rank >/; thus apex fa)

=Jl + 1 and f"=XG1 + 1 and so 9=(xé¡+1)~. Hence Mi = (xGiF+(yG|+1)~.

Finally, since /*,|l, = (jcâir|l7 + 9>|t7, ixèi + 1T\u=xin''^- Now, p, and ixê)~ are

defined by the same formulas in S as in U, thus (yg1 + 1)~ = y* "'•1,). This proves (1).

The last assertion of 1.24 follows from Frobenius' theorem.
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1.32. Corollary. If (X, U) = (X, Sfn) and S contains an element of rank j<n,

then (1) holds for all iúj. In particular, if(X, S) = (X, FR(X)), (1) holds for all i.

Proof. Since (X, U) = (X,SÇ), yC-' + i.i'"1) is irreducible for all iün; thus the

proof of (1) goes through for all i fin.

We note that the partitions corresponding to (xêJT and (xG„_fc + 1P are con-

jugate. This indicates that there might be some kind of duality between characters

whose apexes have rank k and those whose apexes have rank n — k+l.

1.33. Fact. If(X, U) = (X, ¿^n), then S has no irreducible representation of degree

r, l<r<n—l. In particular FR(X) has no irreducible representation of degree r,

1 <r<«-l.

Proof. For «^4, the result follows by direct verification, so assume «>4. Let

<p be an irreducible representation of S of degree r, 1 < r < « — 1, and let J= apex (<p)

and G a maximal subgroup of S contained in J. Then <p\ v is a representation of Sr°n

of degree r. But, for n > 4, £fn has no irreducible representations of degree r, 1 < r

<« —1 (see [3, p. 466]), and only two irreducible representations of degree 1,

namely 1 and Xa"'- Thus <p|rj is a direct sum of copies of 1 and x<ln> and so

kernel (<p\v)2An.

Now, by Lemma 1.25 and Corollary 1.26, the .SP-classes of J are coded by the

subsets of X having cardinality k = r(J) and the structure matrix C of J contains

a 2 x 2 submatrix of the form (J °) where x^O. Let Ct, C¿ be the columns of C

containing (*) and (°) respectively, then the columns of (<psx)*(CiCJ) (QC, is the

«7x2 matrix whose columns are C¡ and C¡) are linearly independent. Now, An acts

transitively on the set of subsets of X of cardinality k, thus there is u e An such

that RM}(u)Ci = C,. Hence restricted to the submodule of W generated by the

columns of (<p^)*(C¡) and ((p^)*(C¡), u does not act as the identity (notation as in

[14, (2.20)]). Thus u $ kernel (<p\ v) which is a contradiction. Hence 51 has no irre-

ducible representation of degree r, 1 < r < « — 1.

1.34. Fact. Given (X, S), let <p be the representation carried by the submodule

W={vx — vt; i—2, 3,..., «} of V=V(M). Then <p is a y-homomorphism (i.e.

one-to-one when restricted to each subgroup of S) and x(<p) = «i — 1 • If, moreover,

(X, U) is 2-transitive, then <p is irreducible and if'J=apex (<p) and G = G,, then Ma is

2-transitive.

Proof. W is clearly a submodule and by an elementary computation, x(<p)=oj — 1.

Let H be a subgroup of S, then M|w is faithful and thus MH is faithful. But MH

is completely reducible, hence MH = <pH ® lH. Thus <p„ and also <p\H is faithful and

so y is a y-homomorphism.

If (X, U) is 2-transitive, then by the proof of Theorem 1.24, at —1 is irreduc-

ible. Furthermore, <pG = 9's' is irreducible, MG is a permutation representation,

and MG = q>^ © 1G- Hence, by the converse of Frobenius' theorem, M0 is 2-

transitive.
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1.35. Remark. By a result of Rhodes, if (X, U) is 2-transitive and S^U, S

contains all constant maps. Hence by Fact 1.14, M is indecomposable. Thus, all

we can hope for are results about the reduction of M.

1.36. Corollary. If S contains all maps of rank 2, then ax —I is irreducible.

Proof. The set of all maps of rank 2 is a ./-class J2 of S and it is easy to see that

S contains all constant maps and thus kernel (S) is the set of all constant maps.

Construct <p as in the proof of Fact 1.34. Then 9>|kernei<s)—0, J2 ¡s the unique minimal

./-class of S-kernel (S) and Gj2 = G2~Z2. Furthermore, (o¡i-1)g2 = (xg2)-

Hence (xaf'^cp. Now, SfiFR(X) and the apex of the representation (x2l2>)~ of

FR(X) is contained in S. Furthermore, the degree of an irreducible representation

depends only on its apex and (xâ2r = (x2l2>ris- Thus deg (Xa2T - deg (x^T

= « — 1 by Theorem 1.24. So deg (xg2)~ = deg (<p) and consequently (xá2)~ = <P and

the result follows by Fact 1.34.

The conclusion of Corollary 1.36 holds if >S contains "sufficiently many" elements

of rank 2. Making this statement precise is rather cumbersome and we leave it as

an exercise to the reader.

1.37. Definition. Given (X, S) let the spectrum of S, Spec (S)={r: there exists

se S such that r(s)=r<«}.

By Lemma 1.25, if (X, U) is fc-transitive and ,S contains an element of rank m,

mfik, then {1,2,..., m} s Spec (S). It seems very difficult to get information about

the spectrum under weaker assumptions about the group of units. One result we

have is that if (X, U) is 2-primitive, then 2 e Spec (S). We proceed to prove this.

We need the following result on primitive permutation groups (see Wielandt

[16, Theorem (8.1)]). Let (X, G) be a primitive permutation group and let

0 c Fc X. Then for any two distinct i, j e X, there exists geG such that i.g e Y

and j.g$ Y.

1.38. Lemma. If(X, U) is primitive and s is a null element of rank k^2, then there

exists ueU such that r((su)2) > 1. Thus any /-class of minimal rank > 1 is regular.

Proof. If r(s2)>l, we are done. Otherwise, let range (s)={ix, i2, ■ ■ -, ik} and

mod (s) = {Ax, A2,..., Ak}. By the result quoted above, there exists u e £/such that

¿i.» e Ax and i2.u $ Ax. Thus not the whole range of su belongs to a single equiva-

lence class of mod (su) = mod (s), and so r((su)2)> 1. The last assertion follows by

Lemma 1.12.

1.39. Fact. Let (X, U) be 2-primitive and let S contain an element of rank k,

l<k<n, then S contains an element of rank 2.

Proof. Let s be an element of minimal rank r> 1. If r=2, we are done. Other-

wise, by Lemma 1.38 (or, alternatively, by Fact 1.34), we may assume that s is

an idempotent. Let range (s )m{i1, i2,..., iT}, and mod (s)={Ax, A2,..., Ar},

i¡ e Aj, j= 1, 2,..., r. By hypothesis, Uh is primitive, thus by the result quoted
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above there exists ueU such that ix.u = ixe Ax, i2.ueAx and i3.u$Ax. Then

1 <riisu)2)<r, contradicting the minimality of r. This proves Fact 1.39.

The conclusion of 1.39 does not hold under the weaker hypothesis that (Y, U)

is 2-transitive. In fact the "gap" between the minimal rank r, re Spec iS)—{1}

and 1 may be arbitrarily large as is shown by the following construction, based

on an idea of N. Ito.

1.40. Fact. For every prime p, there exists a mapping semigroup (Y, S) with

| Y| =p2, (Y, U) 2-transitive and Spec iS) = {\,p}.

Proof. Let F=GF Íp2)=ZPir¡) where r¡ is a primitive element. Let Y=Fand U

the group of affine transformations on F (i.e., transformation of the form

x -> ax+b, a, b e F, a^O). (Y, U) is 2-transitive. Let j be a mapping of X into

itself such that range (j)={0, 1,2,...,/?— l}and mod is)={A0, Ax,..., A„-x} with

A¡={i, i+r¡, i+2r¡,..., i+ip-l)r¡}, /=0, 1,.. .,p-l. Note that any power of s

will have the same range and same partition. Let S—(.s, l/>. Now, the sets range is),

Ai, /=0, 1,..., p— 1, have the property that if x, y are any two elements of the set

and y — x = d, then the set equals {x, x+d, x + 2d,..., x+ip— \)d}. Further, each

element of U, being an affine transformation, maps arithmetic progressions in F

into arithmetic progressions in F. Thus for any ux,u2eU and any k>0

range iuxsku2) and the blocks of mod iuxsu2) have the above-mentioned property.

Further, any element of S is a product of elements of the form uxsku2, and all

elements of this form have rank p. Let tx, t2 be two elements of the above form.

If range Qx) is a set of representatives for mod (?2) then r((/1r2)2)=/>, otherwise,

there are distinct elements x, y e range itx) such that x, y e B where B e mod (r2).

But |range itx)\ = \B\ =p and both range (?x) and B have the property that any two

elements can be extended to an arithmetic progression exhausting the set. Thus

range itx) = B and consequently r((«V2)2)=l. Thus for every element t of S of

rank > 1, either t belongs to a maximal subgroup of rank/? or else t is null and rit2)

= 1. This proves Fact 1.40.

Using Fact 1.39 we can get a sharper form of Theorem 1.24 for k = 2 as

follows :

1.41. Theorem. Let (Y, U) be ^-transitive, then x=fa —l)fa—2)/2 —a2 is

an irreducible character of S. Further, if J= apex ix) and G = Gj then MG is 3-

transitive.

Proof, x vanishes for elements of rank =2. Thus if S does not contain an

element of rank r, 2<r<n, then x=Xu~2'1,1) which is irreducible by Frobenius'

theorem quoted above. Let S contain an element of rank r,2<r<n, then by Fact

1.39, S contains an element of rank 2, and if G2 is a maximal subgroup of rank 2,

G2-Z2. Now, by the proof of Theorem 1.24, ixa2)~ = ai- 1 ̂ 2, and p2 has two

constituents. Let <p be the other constituent then

yfa) = axiax- l)/2-a2-iax- I) = fa- l)fa-2)/2-a2.
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Let k=r(apex (95)). If k = 3 or 4, then G is the corresponding symmetric group by

1.25. Thus, assume k^5, then

x(<p") = («i-l)(«i-2)/2-a2.

Hence by Theorem 3 of Tsuzuku [16], MG is 3-transitive.   Q.E.D.
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