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IMPLICITLY DEFINED MAPPINGS IN LOCALLY

CONVEX SPACES

BY

TERRENCE S. McDERMOTT

Abstract. Results on existence, uniqueness, continuity and differentiability of

implicit functions in locally convex, linear topological spaces are obtained, and certain

of these results are applied to obtain results on the existence and continuous depen-

dence on parameters of global solutions for a nonlinear Volterra integral equation.

Introduction. So far, no single theory of differentiation or local linear approxi-

mation of nonlinear mappings between locally convex, linear topological spaces

seems to have clearly established a place of preeminence. In particular, none has

produced an implicit function theorem of anywhere near the comprehensive

character of the results available in the context of Banach spaces (see, for example,

[3]). Results in more general settings can be found in [1], [4], [5], and [6].

In this article, we discuss the problem of implicit functions in locally convex

spaces in light of the ideas and results developed in [11]. In §1 we give conditions

for the existence of an implicit function, then obtain results dealing with its unique-

ness and continuity. In §2 certain results from the first are applied to discuss global,

continuous solutions for a nonlinear, Volterra integral equation. Finally, in §3

we give conditions under which a differentiable implicit function will exist, differ-

entiability being understood in the sense of Sebastiào è Silva [14].

For the convenience of the reader, §0 has been included containing the essential

definitions and results from [11] that are used in the present work.

0. Preliminaries. In this section, we shall state the basic definitions and results

from [11] that will be needed in the present work. Throughout the section, let E

and F denote real, locally, convex, linear topological spaces.

If A is an absolutely convex set in E, we denote by EA the linear subspace of E

generated by A. The functional ||-||A defined on EA by ||jc||A = inf {A>0 : xeXA}

is a norm on EA in case £ is Hausdorff and A is bounded. Further, ||x|[ayl = (l/a)||x||/1

for any a > 0. We assume henceforth that all spaces are Hausdorff.
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Definition 0.1. A class 38 of subsets of E shall be called a bounded covering for

E if the following three conditions hold :

(Cl) Each B e 38 is bounded and absolutely convex.

(C2) If Be 38, then Aß e 38 for all AS 1.

(C3) \JBe#B=E.

Definition 0.2. Let J1 be a bounded covering for E and let x0 be an element of

an open set N<= E. Suppose U is an absolutely convex neighborhood of 0 in £

and «S>0 is a given real number. Further, assume/: N->Fis a not necessarily

linear map. A linear map L: F—s- F will be said to (8, ^-approximate fat x0 on U

if the following four conditions hold:

(Al) Xo+U^N.

(A2) LiB) is bounded in F for every Be 38.

(A3) if-L)ix0 + iB n U))^if-L)x0 + FUBnU) for all Be Si.

(A4) For each Be38,

IK/— L)xx — if— L)x2\\L(Bnm ̂  81|xx — x2¡|BnU

for all xx and x2 in x0 + iB n U).

Theorem 0.1. Suppose E is sequentially complete and 36 is a bounded covering

for E. Let N be an open neighborhood of x0e E and assume f: N -> F is continuous

in N. If for some 8, 0 < 8 < 1, there is an open linear mapping L of E onto F, having

closed null space, which (8, ^-approximates f at x0, then there exists an absolutely

convex neighborhood U of 0 in E such that Xq+U^N, and fix0+U)=>fix0)+ V,

where Visa neighborhood of 0 in F. In fact, V=L(( 1 - k) U/4), k = 2S/( 1 + S).

Definition 0.3. A bounded covering 38 for E is said to be pair-containing if

for each pair of points xx and x2 in E, there is a B e 38 such that xxe B and x2 e B.

Corollary 0.1. In the theorem, ifL is assumed to be infective, and ¿8 is assumed

to be pair-containing, then for each y ef(x0)+ V, there is a unique xex0+U such

that y = fix).

Proposition 0.1. L: E —> F is injective implies that for every bounded absolutely

convex set A<=E,

\\Lxx— Lx2\\L(A) = §xx — x2 \\A

for all xx and x2 in A.

If B is an absolutely convex, bounded set in E, and U an absolutely convex

neighborhood of 0 in E, it is easy to verify that EBnU=EB. This fact is used in the

computations of §2.

1. An implicit function theorem. Throughout this section, let G be an arbitrary

topological space, E a sequentially complete Hausdorff, locally convex, linear

topological space and F a Hausdorff, locally convex, linear topological space.
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Theorem 1.1. Let K be an open subset of G containing y0, Nan open neighborhood

of 0 in E andf: Kx N -*■ F a map satisfying f(y0, 0) = 0. Suppose that for each y in

K, the map fy: E^ F defined by fy(x) =f(y, x) is (8y, S$y)-approximable at 0 on Uy

by an open, onto linear map Ly: E-> F, having closed null space, where 0< 8y< 1,

and 3Sy is a bounded covering for E. Suppose, in addition, that g: K^- F defined by

g(y)=f(y, 0) is continuous at y0. If for each y in K,fy is continuous on N, and the set

(1.1) W= R Ly((l-ky)Uy),       ky = 2oy/(l + c.y),
yeK

is a neighborhood in F, then there is a neighborhood V ofyQ in K and a neighborhood

U of Ci in N and a map rp: V-> Usuchthat f(y,<p(y)) = 0 for ally in V,andtp(y0) = 0.

Proof. From Theorem 0.1, we know that f(y, 0)+Ly((l — ky)Uy/4) is covered

by fy(Uy) for each y e K. Let W=\W. Since g is continuous at yQ, there is a neigh-

borhood V of y0 in K such that f(V, 0)c W'. We conclude that for each y e V,

f(y, 0) + W contains 0, because (y, 0) g V x {0}, and W is balanced, thereby

containing -f(y, 0) as well as f(y, 0). Furthermore, f(y, 0)+ W'^f(y, 0)

+Ly((l — ky)Uy/4) for each ye V. Hence, we can find for each y e V a point

x=<p(y) in Uy such thatf(y, <p(>0) = 0. Setting (p(y0)=0 and U=\JyeV Uy, we have

the result.   □

Corollary 1.1. Carrying over the hypotheses and notation of the theorem,

assume in addition that for each y e K,Ly is bijective, and$y is pair-containing. Then,

there is a unique map <p: F-> U having the property that <p(y) e Uy and satisfying

f(y,<p(y))=o.

Proof. The hypotheses allow us to employ Corollary 0.1 in place of Theorem

0.1, concluding thereby that for each y in V, there is a unique x=<p(y) in Uy with

f(y, <p(y))=0. In particular, then, ^(^o) must be 0.    □

Remark 1.1. We note here for reference that the neighborhood V on which <p

is defined may be taken to be any neighborhood of y0 in K satisfying f(V, 0)c W.

Theorem 1.2. Let K<= G and N<= E be open neighborhoods ofy0 and 0 respectively,

and let f:KxN-+F be continuous with f(y0, 0) = 0. Suppose there is a linear

homeomorphism L: E —> F, a real number 8, 0 < 8 < 1, and a bounded covering Sä for

E such that L (8, ^-approximates fy at x = 0 on U for all y in K, where U is an

absolutely convex neighborhood ofO in E. If 38 is pair-containing, and the set

(1.2) S = {L-\f(y,Q)):yeK}

is a subset of some set BeHfi, then there exists a unique continuous map <p: V-+ U

such that f(y, <p(y)) = 0, where V is chosen according to Remark 1.1.

Proof. The hypotheses of Theorem 1.1 and its corollary are evidently satisfied.

Hence, the existence and uniqueness of <p are automatic. To see that <p is continuous,
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we must refer to the construction of Theorem 3 of [11]. From it we can deduce

easily that for each y e V, <piy) is the limit of the sequence xniy) given by

xxiy) = -L~\fiy,0)),

Xniy) = xn-Xiy)-L~1ifiy, xn_xiy))),       « > 1.

The condition that S be contained in some set B e 38 allows us to apply Remark 2

of [11] to conclude Vy e V,ihatxniy) efin {/for all «2:1. In the proof of Theorem

3 referred to above, the sequence xn is shown to be Cauchy with respect to || • ||BnU.

Since fin U is a bounded set, the sequence xniy) is uniformly Cauchy with respect

to the topology of E, hence uniformly convergent to <p(>>) on V. But the continuity

of/and L'1 implies that each xniy) is continuous. Hence, <p is the uniform limit

of continuous functions and is therefore continuous.   □

The conditions of the last theorem result in <p(F) being a bounded set in E

(since f(F)cfi). The next result is of a different character.

Theorem 1.3. Let K<^ G and N^ E be open neighborhoods ofy0 and0 respectively,

and let f: KxN^t- F be continuous with fiy0, 0) = 0. Suppose there is a base ¿V

of absolutely convex neighborhoods ofO in E so that for each U eJf there exists a

8V, 0 < 8V < 1, such that for every y e K there is a linear homeomorphism Ly: E -> F

and a pair-containing, bounded covering 38yfor E such that Ly (§„, 38y)-approximates

fy at 0 on U. If, for every U e Jf, Wu = C\yeK Ly{U) is a neighborhood in F, then for

each U eJT there exists a neighborhood V of y0 in K and a unique map «p: V'-> U

satisfying fiy, <piy)) = 0. In addition, <p is continuous at y0.

Proof. Choose U e Ji. The hypotheses of Corollary 1.1 are easily seen to be

satisfied with 8y = 8u and Uy=U for all y e K. Hence, there is a unique map

<P : V —> U, F as in the corollary. To see <p is continuous at y0, let S be any neighbor-

hood of <p( v0) = 0 in E. Find U' e Jf such that U'<=S n U. Applying the corollary

again, we find a neighborhood V of y0 and a unique map <p': V -> U' such that

fiy,9'iy)) = 0. But <p(y) = <p'(y) for all y e V r\ V. In fact, if yeVnV, cpiy)

and <p'iy) are in U, and there is a B e 38y containing both cpiy) and <p'(y). But then

we have

ll/Cv, <p'iy))-fiy, 9iy))-Lyi<p'iy)-cpiy))\\Ly{BnU) ú s^'OO-yOOlUt/.

Using the fact that Ly is injective through Proposition 0.1, the fact that 8V < 1, and

that/(>>, <p(y))=f(y, <p'iy)) = 0, we see that <piy) = cp\y). Hence, we can conclude

that <piV r\ F')c U'^S. Hence, <p is continuous at y0.    □

2. An application. We will apply the results of §1 to discuss existence and

uniqueness of continuous solutions to the integral equation

(2.1) xit) + A f K{t, s)fis, xis)) ds = y it)
Jo
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where K, f y are real valued continuous functions and A a real parameter. We

give without proof the nearly obvious

Lemma 2.1. Let h(t) be any real valued continuous function on [0, oo). There exists

a continuously differentiable function k(t) defined on [0, co) satisfying

(i) k(t)^\h(t)\,t^0,
(ii) k'(t)^l,t^0.

We will also need the simple

Lemma 2.2. Let x(t) be continuous and real valued on [0, co), m(t) and £(r) treal

valued, monotone increasing, continuously differentiable and greater than or equal to

1 on [0, co). Then, there exists a continuously differentiable function g(t) on [0, oo)

satisfying

(i) og'(t)ZÇ(t)ni(t)g(t),

(ii) g'(t)^\x(t)\,

for all t ¡t 0, where 8 is any given positive number < 1.

Proof. Let A(r) = max{l, |x(/)|}. Apply Lemma 2.1 to obtain k(t) satisfying (i)

and (ii) of that lemma. Define

g(t) = expi[jjj(r)m(r)k(r)drj-

To show g has the desired properties is straightforward.    □

Let C denote the vector space of continuous real valued functions on [0, oo) with

the topology of uniform convergence on compact subsets. Recall C is sequentially

complete and locally convex as well as Hausdorff. C is, however, not normable

(the fact that C is metrizable we shall not use). We denote the real numbers by R.

Define a map H: (CxR) x C^ C by

(2.2) H(y, X; x)(t) - x(t) + A £ K(t, s)f(s, x(s)) ds-y(t).

Assume K is continuous on [0, co) x [0, oo), and let / be continuous on [0, oo)

x ( — oo, oo). Assume also that/is Lipschitzian, in the sense that

(2.3) 1/(7, xx)-f(t, x2)\ ï m(t)\xx-x2\,       t ^ 0,

for all xx, x2, where m is continuously differentiable, monotone increasing and

greater than or equal to 1.

We now construct a bounded covering for C. Let w > 0 and 8, 0 < S < 1, be given.

Pick 8', 0 < 8' < 1, such that w8' ̂  8. Define

ê = {g e C: g is continuously differentiable and

(2'4 ü'g'it) ̂  at)m(t)g(t), t ï 0},
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where f(/) is a continuously differentiable monotone increasing fonction such that

(2.5) f(r) ^ 1 +       sup        |*(t,j)| ^ 1+ sup  \Kit,s)\.
OgsSÍ;OStSt OSsgt

Define

(2.6) Bg = {xeC:\xit)\^g'it),t^O}

for each ge S. The class 38 given by

(2.7) 38 = {aBg : g e ë, a ^ 1}

is a bounded covering for C, as is easily verified through the use of Lemma 2.2.

Find k, 0< k< 1, satisfying

.       8
ds < —

w
(2.8) Çèis)mis),

Jo

Fix y, an arbitrary positive number, and define

(2.9) U = ¡xeC :   sup   \x(t)\ < y\,
L ostgfc J

an absolutely convex neighborhood of 0 in C. For each iy, A) e Cx R, let Ljy>M be

the identity map / on C. Finally, let e be any positive number and define

(2.10) P = ixeC :   sup   \x(t)\ < el,
I Ogign J

«^ 1 an integer, and let J=( — w, w) be an interval in R.

With CxR = G, C=E=F, H=fPxJ=K, C=N, U=UiyM, 38=38(yM, 8 = 8(yM

and I=LiyM for all iy, A) in P xj, it is only laborious to show that all the hypotheses

of Theorem 1.1 and Corollary 1.1 are satisfied, where y0 is taken to be (0, 0). We

shall carry out just a sample computation to indicate the pattern of things.

The condition A3 of Definition 0.2 takes the form: If B = aBg is in 38, and

iy,X)ePxJ, we need H(y, A; U n aBg)-IiUn aBg)<=Hiy, A; 0)-7(0) + C;(aSg).

That is, we need to show that for x e U n aBg,

A f *(/, í)/(í, *0)) ds-yit) e A f *(/, s)f{s, 0) &-^(i) + CaBg,
Jo Jo

or equivalently, z(r) e CaBj for all x e U n afig, where

z(r) = A £ K(f, í)(/0, *0)) -fis, 0)) &.

But

KOI ú |A| f |*(/, *)| |ifi(5)| |x0)| ds ú \mtMt) f 1*0)1 A,
Jo Jo

using the monotonicity of m and <f. Since xeí/n «Ä9, |*(j)| fZag'is), and so

|z(i)| ^ a\X\at)mit)igit)-giO))

ú a\X\í(t)m(f)g(t) ú i*\\\8/w)g'it) Ú «g'it).

Thus, z(r) e aBg<^ CaBg, and A3 is established.
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The Corollary 1.1 yields, then, a unique map y: M-*■ U (where M is any neigh-

borhood of (0,0) in PxJ satisfying the condition pointed out in Remark 1.1),

such that H(y, X ; <p(y, A)) = 0. That is, for each (y,X)eM, there is a unique

solution, <p(y, A), in U for the equation (2.1). We can, by a judiciously large choice

for y, ensure that PxJ will do for M. But, recall that P and J were themselves quite

arbitrary open basic neighborhoods of 0 in their respective spaces. We have nearly

completed the proof for

Theorem 2.1. If K(t, x) and f(t, x) are continuous real valued functions on

[0, oo) x [0, co) and [0, oo) x (-oo, co) respectively, and iff satisfies (2.3), then given

any y e C and Xe R, the equation (2.1 ) has a unique, continuous solution x defined on

[0, oo).

Proof. Given any y e C, Xe R, choose PxJ sufficiently large to contain (y, A).

The above discussion assures a unique solution, <p(y, A), in U when y defining U is

taken sufficiently large. If xx were any other solution for the given (y, A), it would

be in U also by, perhaps, a larger choice still for y, since U is absorbing in C. This

state of affairs, however, contradicts the uniqueness of the function <p. Thus,

<p(y, X) is the only solution corresponding to (y, X) lying in C.

Remark 2.1. It should be remarked that the restriction that the kernel K in

(2.1) be continuous (and even that/be continuous) is unnecessary for the argument

presented. Any conditions in addition to (2.3) that would insure £(t) satisfying

(2.5) exists and that H is a continuous map of (Cx R) x C into C would suffice.

The restriction to scalar valued functions can also be relieved. Such modifications

are, however, only technical and can easily be investigated by the reader.

The result in Theorem 2.1 is obtainable by other means. A brief discussion with

references can be found in [15]. The present result is of interest in that global

existence, uniqueness—and, as we shall see below, continuous dependence on

parameters—are obtained directly from the iterative construction. Other authors

(for example [12] and [13]) have approached the problem by continuing local

solutions obtained by iteration, or by employing topological methods for existence

and then imposing further restrictions to obtain uniqueness. Corduneanu, [2], has

obtained direct global results (not including ours) with an eye to stability theorems

by employing methods that bear some similarity to those of our example.

Now, suppose A is any absolutely convex and bounded set in C. We may regard

H as a mapping of (CA x R) x C -> C, where CA is given its norm topology under

|| • \\A. Since all the conditions of Theorem 1.2 applying to fixed (y, X) were shown

above to hold for (y, X)eCxR, they a fortiori hold for (y, X) e CA x R. Still using

/ as our linear approximation for all (y, A), W is again trivially a neighborhood.

Since the norm topology of CA is finer than the topology induced on CA by C, H is

easily seen to be continuous on (CAxR)xC. Redefining P of (2.10) to be

P={xeCA : \x\\A<e}, the set

S = {I-\H(y,X;0)):(y,X)ePxJ}
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is clearly bounded in C. But since 38 has the property that every bounded set B'

in Cis contained in some Be 38,it is easy to see that the hypotheses of Theorem 1.2

are all satisfied in this restricted setting. Consequently, the solutions cpiy, A) for

(2.1), iy, X)eCAxR, depend continuously on iy, A) for the norm topology of CA.

We sum up these remarks in

Theorem 2.2. Let A be an absolutely convex, bounded subset of C. For each

iy, A) e CAx R there exists a unique solution <p(_v, A) = x of (2.1) in C. Further, if

*o=<p(j;0' A0) ¿s a particular solution, then for each neighborhood U of x0 in C, there

exists eA>0 such that \\y—yo\\A<eA and |A— A0| <eA implies <piy, A) e U.

3. Differentiability of the implicit function. Throughout this section, we shall

adopt some conventions as to notation in order to avoid tedious repetitions. E,

F and G will denote Hausdorff, locally convex, linear topological spaces. K^G

and N<=E will be open subsets containing O./will be a map defined on Kx N with

values in Fsatisfying/(0, 0) = 0. For each y e K,we shall denote by/y the map from

N to F defined by/„(*) =/(>>, x). These partial mappings will be assumed continuous

in N. L: E-> F will be a linear homeomorphism which for some y, 0<y<l, and

some pair-containing bounded covering 38 for E, iy, ^-approximates every /„ at

x = 0 on U, an absolutely convex neighborhood of 0 in E. The m?p g: K^- F

defined by giy)=fiy, 0) will be assumed continuous at y = 0. It is readily seen that

we have assumed enough to apply Corollary 1.1 to deduce the existence of a unique

map <p: A" -» U, where K' is an absolutely convex neighborhood of 0 in K, and <p

satisfies/(v, <piy)) = 0. We now proceed to find conditions under which <p will be

differentiable.

There have been numerous definitions of differentiability proposed for mappings

between locally convex spaces over the years (see, for example, [10]). We shall use

here essentially the notion of differentiability suggested by Sebastiäo è Silva [14].

We give now the

Definition 3.1. Let H be an open subset of G, s/ a bounded covering for G.

We will say «/«: H-> E is differentiable is/) at y e H if there exists a linear map

Ty: G -y E, bounded on the sets of s/, such that for each A es/ there is an

absolutely convex, bounded set Cy(A)<=-E such that for every e>0, there exists a

8y > 0 so that

W{y + th)-tiy))/t-TyheeCyiA)

for all« e A and / satisfying 0 < \t \ <8y. Ty will be called the derivative is/) of «/«at y.

We remark that if j/ is a bounded covering for G, then the class j/xJ

={A x B : A es/, Be 38} is a bounded covering for GxE. If/is assumed differ-

entiable (j/xJ), with derivative Tyx at iy, *), we will denote by flyx andf2yx the

partial mappings defined by

fivÁh) - Tyx(h,0)   and   f2yxik) = 7^(0, k)

for all « e G, k e E . We are now ready to state our next theorem.
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Theorem 3.1. Let sá be a bounded covering for G and assume the sets in 36 are

sequentially closed. Assume that for every (y, x)e Kx N,f is differentiable (sé x 3$)

at (y, x) with derivative Tyx, and that f2yx is bijective with an inverse that maps

bounded sets into bounded sets. Suppose that for each y e K, given A esé, there is a

Be® such that

(i)f(y,0)e±L(B),

OO fxyx(A) + Ciy¡x)(A xB)<=L(B)for all x e EB n N, where Ciy¡x)(A x B) is as in

the definition of differentiability (sé x 36) as applied to fat (y, x).

Then <p is differentiable (sé) at each y in its domain, and its derivative (sé) at y is

~J2ycp(y) °fly<p(.yy

Proof. Fix y e K' (the domain of <p). For any Ax Be sé x38, we have, by the

differentiability (se x 3S) off at (y, 0), that for every e > 0, there exists a S0 > 0 such

that for all he A,

(f(y + th, 0)-f(y, 0))/t-fly0(h) e eCly,0)(A x B)

providing 0<|r|<80, since, in particular, 0 e B. Given a fixed A ese, find B in

accordance with the hypotheses of the theorem. We then conclude, since we may

take £< 1, that for all |r| sufficiently small,

(f(y + th, 0)-f(y, 0))// efly0(h) + sC(sM(A xfi)c fXy0(A) + Cly¡0)(A xí)c L(B)

for all he A. Thus,

(3.1) f(y + th, 0) ef(y, 0) + tL(B) c L(B),

for all he A, providing |r | <-J. Consequently, L~1(f(y+th, 0)) is in B for all he A

if |r| is sufficiently small. Since B is sequentially closed, we can deduce that

<p(y + th) e B n U by employing Remark 2 of [11] and recalling that <p is the limit

of the sequence (1.3). Furthermore, then,

(<p(y + th)-<p(y))/teEBnU = EB.

In addition, we have

(3.2) f(y + th, x)-f(y, x)e\t\L(B)   if 0 < 11\ < hivM

for each xe EBr\ N. This follows from the differentiability (se x 38) of/at (y, x)

together with (ii) and the fact that L(B) is balanced. For |r| sufficiently small, then,

\\L(<p(y+th)-<p(y))\\UBnU)-\\f(y + th,<p(y + th))-f(y + th,<p(y))\\UBnU)

^ 11/0 +'A, <p(y + th))-f(y+th, <p(y))-L(<p(y+th)-9(y))\\UBnm

í y\\<p(y+th)-<p(y)\\BnU,

using the fact that L (y, ^-approximates fy+th at 0 on U. The fact that the second

term on the left of the first inequality above is defined follows from (3.2) with

x=(p(y). We now can conclude, applying Proposition 0.1, that

(i-Y)\\<p(y+tfi)-<p(y)\\B^u ̂  \\f(y+th,9(y+th))-f(y+th,<p{y))\\uBnm

= \\f(y> 9(y))-f(y+th, <p(y))\\uBnm-



98 T. S. McDERMOTT [November

Since fi is bounded, there exists aï: 1 such that L(fi n i/)=>(2/a)L(fi). Hence, using

(3.2), the last expression above is less than or equal to (a/2)|/|, 0< \t\ <8(y>w(ï)).

Thus, for such r, we have for all he A that

\\i<piy+th)-cpiy))/t\\BnU < a/(l-y),

and consequently that

i<piy+th)-<piy))/teia/(l-y))B.

Let B' = (a/(l - y))B. Then B' e 38, and for each he A, there is a &(«) in B' such that

cpiy+ th) = cpiy) + tkih). Since/is differentiable is/x38) at iy, cpiy)), there is an

absolutely convex, bounded set D in F such that for every ê > 0, there exists a S > 0

with

ifiy+th, 9iy) + tkih))-fiy, <piy)))/t-Tmly)ih, Kh)) e ÎD

as long as 0<|i|<S, uniformly for all he A, kQi) e B'. Let CyiA) =f2yl^iD).

Using the definition of kih), we can write the last inclusion as

fivvwih)+f2y<l,íy)ii<PÍy + th)-cpiy))lt) e ef2y(!¡iy)iCyiÁ)).

From this it easily follows that if he A and |r| is taken sufficiently small, then

iviy + th) - <piy))/t - i -fñlw °fXy^)ih) e tCviA).

Hence, <p is differentiable is/) at y.    □
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