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DEGENERATE EVOLUTION EQUATIONS IN

HILBERT SPACE

BY

AVNER FRIEDMAN« AND ZEEV SCHUSS

Abstract. We consider the degenerate evolution equation Ci(?) dujdt+Cz(t)A{t)u

=/(/) in Hilbert space, where Ci^O, c2S0, Ci + c2>0; A(t) is an unbounded linear

operator satisfying the usual conditions which ensure that there is a unique solution

for the Cauchy problem du\dt + A(t)u =f(t) in (0,T], h(0) = u0. We prove the existence

and uniqueness of a weak solution, and differentiability theorems. Applications to

degenerate parabolic equations are given.

Introduction.   Consider an evolution equation

(0.1) Cx(t)^ + c2(t)A(t)u=f(t)   in (0,7/]

in Hilbert space X, where A(t) is an unbounded linear operator satisfying the

standard assumptions which ensure that the Cauchy problem

(0.2) djL+A(t)u=f(t)   in (0,7/],   u(0) = uo>

has a unique solution. If, for each te[0,T], Cx(t)^0, c2(0 = 0. Cx(t) + c2(t)>0,

then we call (0.1) a degenerate evolution equation.

The aim of this paper is to prove existence, uniqueness and differentiability

theorems for solutions of the degenerate evolution equation (0.1) (under suitable

initial conditions).

In §§1-5 we consider the special case where c2= 1. In §1 we define the concept of

a weak solution and prove that it is a classical solution in every interval where

Cx > 0. It is also shown that a weak solution in [0, T] is a weak solution in any

subinterval [a, b] of [0, T]. In §2 we prove that a weak solution exists. In §3 it is

proved that the weak solution is unique. Finally, in §4 we prove differentiability

theorems for the weak solution. In §5 we give another proof of uniqueness, based
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on an a priori inequality for weak solutions. Unlike the first proof, the second proof

extends to degenerate parabolic equations, as well as to equations (0.1) with cx ̂ 0,

c2^0, cx + c2>0.

Degenerate parabolic equations with cx = cx(x, 0 = 0 and c2 = c2(x, t)= 1 are

treated in §6.

In §7 we consider (0.1 ) with cx = 1 and c2 ¡£ 0. We prove existence, uniqueness and

differentiability theorems. The analogous parabolic case is also treated.

The general case of (0.1) is considered in §8.

The results of this paper, when A(t) is specialized to a second order elliptic

operator, overlap with known theorems for second order degenerate elliptic-

parabolic equations. Such equations were first treated by Fichera [1], [2], who

proved the existence of weak solutions and derived V estimates. Regularity and

uniqueness theorems have since been derived by several authors, in particular,

by Oleïnik [7] and, most extensively, by Kohn-Nirenberg [6].

We also mention the paper of Glusko-Kreïn [5] announcing results concerning

the evolution equation (0.1) with c2=l, C!(0)=0, cx(t)>0 if r>0; the operator

A(t), in [5], is a bounded operator.

1. Weak solutions: general properties. Let X be a complex Hubert space with

inner product ( , ) and norm | • |.

Definition 1.1. An operator valued function A(t) on [0, P] is said to belong to

the class 9I0 if it satisfies the following conditions :

(i) The domain DA of A(t) (0 ̂  t ^ T) is dense in X and is independent of t, and

A(t) is a closed linear operator from DA into X.

(ii) For each t e [0, T] the resolvent P(A, A(t)) of A(t) exists for all A with

Re A ̂  0, and || P(A, A(t)) \ ^ C/(l +1 A|) (Re A g 0) where C is some positive constant ;

(iii) For any /, s, r in [0, P],

UA^-AWA'WW Í C\t-r\",

lA-WlAM-Atflxl úC\t-r\"\\x\\       (xeDA);

the constants C, a are independent of t, s, r, and 0<a^ 1.

Definition 1.2. Let c(t) he a real valued function on [0, P] that satisfies the

conditions

(i) c(r) = 0 for all fe[0, T);

(ii) c(t) is continuous and c'(t) is piecewise continuous in [0, T].

Such a function is said to belong to the class #0.

Definition 1.3. Let A(t)eSH0 and satisfy the condition Re (A(t)u, ü)~^y\u\2

for all u e DA, where y>0, y^$c'(t)+r¡, tj>0 for all t e [0, T]. Then A(t) is said

to satisfy the condition (AC0).

Definition 1.4. Let f(t) e C([0, P], X). An Z-valued function u(t) is said to

be a classical solution of

(1.1) c(t)u'(t)+A(t)u(t)=f(t)   in(a,b)<=(0,T)
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if u(t) e Cx((a, b), X), u(t) e DA for all t e (a, b), A(t)u(t) e C((a, b), X) and u(t)

satisfies (1.1) in (a, b).

Definition 1.5. Let <p(t) e ^([a, b], X), <p(t) e DA.m for all t e [a, b], r(b)=0,

and A*(t)<p(t) e C([a, b], X); here A*(t) is the adjoint of A(t) and DA.m is its

domain. We then say that <p is a test function in [a, b].

Definition 1.6. Let u0 be any element of X, let 0f¿a<b¿T, and let

f(t)eL\[a,b],X).

ii) Suppose c(a)>0. A weak solution o/(l.l) in [a, b] with initial condition u0 at

t=a (or with u(a) = u0) is a function u(t) eL2i[a, b], X) such that

(1.2) - (Ho, c(a)<p(a)) + f iu, - ic<p)' + A*it)<p) dt = f (/ <p) dt
Ja Ja

for every test function 95(f) in [a, b].

(ii) Suppose c(a)=0. A function uit)eL2i[a, b], X) is said to be a weak solution

of il.I) in [a, b] if

(1.2') \\u, -iccp)' + A*it)<p) dt = ¡"if, «p) dt
Ja Ja

for every test function <p in [a, b].

For brevity, when we refer to a weak solution in [a, b], we mean a solution given

by either one of the Definitions 1.6(i) or 1.6(ii).

An X-valued function/(i) defined in an interval /is said to be uniformly Holder

continuous on /if \f(t)-f(s)\ ^ C\t- s \ß (0 <ß ¿ 1) for all t, s in /; C, ß are constants.

In the sequel, we shall denote by the same symbol C any one of various different

constants.

Theorem 1.1. Letc{t)e <£0, Ait) e 9J(0 and let (AC0) hold. Then any weak solution

of il A) in [0, T] is a classical solution in any subinterval (a, b) of(0, T) where c(t)>0

for all a<t<b and fit) is uniformly Holder continuous in [a, b].

For the proof we shall need several lemmas.

Lemma 1.1. Ifuit)isa weak solution in [0, T], then it is also a weak solution in

[0,T']foranyO<T'úT.

Proof. Let <p(t) be a test function on [0, T'], and let Ce(t) e C°°[0, T] be such that

U0 = 1   if OS t<T'-e,

= 0   if / > r-e/2,

0a£,(r)Sl otherwise in [0, T], and \Cit)\úC/e.

Define

<pÁt) = UtMt) ifo g isr,

= 0 if í > r.
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Since u(t) is a weak solution in [0, P] and since <pe(t) is a test function in [0, T], we

can apply (1.2) (we assume, for definiteness, that c(0)>0), and get

(1.3) -(«o, c(0M0))+ f (u, -(c<p)' + A*(t)<p) dt = \T(f cp) dt+Is
Jo Jo

where

/.-I" (u,as-i)(c<p)')dt+r a'su,c<p)dt+r (u,(i-tM*(t)<p)dt
Jt'-s Jt'-s Jt'-s

+ Í (f,as-i)?)dt
Jt'-c

=   Tín+n+n+it.
It can easily be seen that \l}\ + \If\ + \If\ -> 0 if e -> 0.

To estimate I2 we note that, since <p(P') = 0 and <pe C1([0, T'], X), we have

\<p(t)\èC\T'-t\ for T'-e^tST', where C is independent of e. Thus

i//i2 ̂  ~ r |M|2a r (p'-o2* = ce.
8    JT'-S JT'-s

Taking, in (1.3), e -> 0, (1.2) follows with [a, b] = [0, T'].

Lemma 1.2. If u(t) is a weak solution o/" (1.1) in [0, P] and c(a)=0 for some

0<a<T, then u(t) is a weak solution in [a, b]for any a<b^T.

Proof. Let £e(i) be a C "-function similar to the one constructed above, with

£e(/)=0for0^/^a+e/2, £E(0=1 for t>a + e. Now apply (1.2) to <p£ = ££<p and use

arguments similar to those used in the proof of Lemma 1.1, together with the

inequality c(t)¿¡C\t-a\. It follows that u(t) is a weak solution in [a, T]. From the

proof of Lemma 1.1 it then also follows that u(t) is a weak solution in [a, b].

Lemma 1.3. If0^a<b%T, c(a) = c(b) = 0, c(t)>Ofor alla<t<b, then there is at

most one weak solution o/(l.l) in [a, b].

Proof. Let u(t) be a weak solution in [a, b] with/=0. We have to show that

«=0 in [a, b]. Let a<ß<b and let <p he the (classical) solution of

(1.4) -(c<p)' + A*(t)<p = h(t)   in(a,ß],       <p(ß) = 0,

for some uniformly Holder continuous function h(t). (Its existence follows by

applying [4] to the equation for $, where y=§ exp [\l (c'/c) dt].) Note that <p(r)

is not necessarily a test function in [a, ß], since it need not be continuously differ-

entiable at t=a. It is, however, in L2([a, ß], X). Indeed, multiplying both sides of

(1.4) scalarly by <p and integrating over [a + e, ß] we get

±c(a + e)\<p(a + s)\2+¡B    [(A*(t)<p,cp)-ic'\<p\2]dt= f    («, <p) dt.
Ja+e Jo+c
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Hence, using (AC0) we get, for any 8 > 0,

P    (y-ic'-S)Harf/^(l/48)f    \h\2dt.
Ja+s Ja+e

It follows that

¡\<p\2dt Û cf\h\2dt.
Ja Ja

We take now a function ££(r) e C°i[a,ß]) such that ££(/) = 0 if a^t^a + e/2,

WO-1 if a + eáfájS, OáWOál otherwise, and |£(f)|SC/e.

Using the fact (which follows from Lemma 1.2) that «(/) is a weak solution in

[a, ß] and noting that <pe = ££<p is a test function in [a, ß], we get

\\u, -ic<ps)' + A*it)<ps)dt = 0.
Ja

Recalling that 93(0 solves (1.4), we deduce that

(m, Csh)dt+\   Ce(u,c<p)dt = 0.
Ja Ja

Since c(t)£C\t-a\, |£(r)c(0|aC. Hence

I/"fl 2        I   /«a + s 12
££(h, C99) dr     = ££(m, C93) i/r

Ja I Ja

S C\      \<p\2dt \u\2dt^0   ife-^0.
Ja Ja

Noting also that

f («, £eA) í/r -> Í («, h) dt   if e -> 0,
Ja Ja

we see that w(r) is orthogonal in L2i[a, ß], X) to any uniformly Holder continuous

function hit). Consequently w = 0 a.e. in [a, ß], for any a<ß<b. It follows that

m=0 a.e. in [a, b].

Proof of Theorem 1.1. Assume first that c(a) = c(r>) = 0 and c(r)>0 for all

a<t<b. For any e>0 let w£(r) be the (classical) solution of cu's+Ait)us=f in

ia+e, b), w£(a+e) = 0. We have, as in the proof of Lemma 1.3,

(1.5) f    \uE\2dtúC
Ja + s

where C is a constant independent of e. Define w£(r) = w£(r) if t>a + e, we(r)=0 if

a^r^a + e.

Because of (1.5), we can extract a sequence {usJ such that üSm —» i> (weak con-

vergence) in L2([a, 6], A'), and J* |t;|2 í/í^C Let o<t0<t0 + A<¿). Denote by

£/(r, t) the fundamental solution of (1.1) in (a, b) (see [4]). We then have, for any

T0 < T < t0 + A, r0 + X<t<b,

Ujt) - l^ft 1-K.W+J   ̂ (i, a)/(CT) <fo,
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provided m is sufficiently large, so that a + em < t0. Integrating with respect to t

over [t0, to + A], we get

(1.6) Aw£m(i) =  P VAU(t, r)uem(r) dr+ P   * f ' U(t, a)f(a) da dr.

It can easily be seen that the right-hand side of (1.6) converges weakly in X. Since

ü6m -» v in L2([a, b], X), a standard argument shows that, a.e.,

Xv(t) =  i'0 *   U(t, t)v(t) dr+ r      i  U(t, <j)f(o) do dr.
Jto J*o      J*

Dividing by A and taking the limit as A ->- 0 (assuming t0 to be a Lebesgue point

of v(t)), we find that

rt
a.e.v(t) = U(t, t0)v(t0)+ f    U(t, o)f(o) do

Jtn

It follows (by [4]) that v(t) is a classical solution of (1.1) in (a, b).

If we show that v(t) is a weak solution in (a, b) then, by Lemma 1.3, v(t) = u(t),

so that u(t) is a classical solution of (1.1) in (a, ¿>). We have

{"" («>', «p) dt+ i""1 (A(t)v, <p) dt = p"" (/, 9>) A,
Ja+e Ja+e Ja+e

for any test function <p(?) in [a, b]. Hence

c(b - e')(v(b - s'), <p(b - e')) - c(a + e)(v(a + e), <p(a + e))

(1.7) +p'" (v, -(C<p)'+A*(t)<p) dt=re (/ <p) a.
Ja+s Ja+s

Since t;(i) e L2([a, b], X), there is a sequence e„\ 0 such that \v(a+en)\^l/el13,

say. For c(i) in [a, a + e] we have the bound |c(i)| = Ce. Consequently,

| c(a + en)(v(a + en), <p(a + en)) | ^ CeB/3 -> 0   if n -> oo.

Similarly

(1.8) Iciè-e^Wè-e^^-e;))!  = Cie^^O    if «-> CO,

for some sequence en \ 0. Here we need not even use the fact that c(b) = 0, since

9(b)=0.

Taking e = e„ \ 0, e' = en \ 0 in (1.7), we find that v(t) satisfies (1.2'). We have

proved Theorem 1.1 in case c(a) = c(b) = 0.

If c(a) > 0 and if there is a point a' such that 0 á a' < a, c(a')=0,c(t)>0 in (a', b),

then again we conclude that u(t) coincides in (a', b) with the classical solution v(t).

Suppose next that no such a' exists. Then c(t)>0 in [0, b). We define v by

cv'+Av =/  in (0, b),      v(0) = u0.
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Since v is continuous in [0, b),

de)ivie),<pie))^ciO)iviO),<piO)).

It follows, by slightly modifying the previous arguments, that vit) satisfies (1.2).

Hence, the weak solution u coincides with v in (0, b) ; u is thus a classical solution

in (a, b).

Finally, the above proof remains unchanged in case c(è) > 0 (see the sentence

following (1.8)).

Theorem 1.2. Suppose c(i) e ^0, Ait) e 9i0, and assume that the condition (AC0)

holds. Let [a, b] be any subinterval of [0, T] and let u{t) be a weak solution o/(l.l)

in [0, T], with initial condition w(0) = «0 in case c(0)>0. Then u{t) is a weak solution

o/(l.l) in [a, b], with initial condition w(a) at t = a in case c(a)>0.

Proof. In view of Lemmas 1.1, 1.2 it suffices to show that w(?) is a weak solution

in [a, T] if a > 0 and da) > 0.

Suppose first that there is a point 0^a<a such that c(a)=0, and c(r)>0 for all

a<t^a. Since m(í) eL2([a, a], X) there is a sequence of points tn \ a such that

(1.9) \uitn)\ â 1/(A-«)2'3.

Let en = tn-a. We have the following equations for any test function 93(0 in [a, T]:

iu, -ic<p)'+A*it)<p)dt =     if,<p)dt   by Lemma 1.2,
Ja Ja

and

r icu'+Ait)u,<p)dt = r if,<p)dt
Ja + en Ja + en

as m(0 is a classical solution in (a, a + s') for some e' > 0. Integrating by parts in the

last equation and then subtracting the two equations, we get

\\u, -ic<p)' + A*it)<p)dt = ¡Tif,9)dt+In
Ja Ja

where

4 = f S\u, ic<p')-A*it)<p) dt+ f "V, 9) dt + ida)uia), <p(a))
Ja Ja

- c(a + en)(w(oí + £„), 9?(a + e„)).

It is easy to see that the last two integrals tend to zero as n -> 00. Next, since

c(a)=0, dt)<Cen if |r-a| ^En. It follows, using (1.9), that

Ic(a+ £„)«(« + £„)I g C-ell3^0   if n-s-oo.

We conclude that /„ ->- c(a)(i/(a), 95(a)). Consequently,

-ida)uia), 9ia))+ f(«, -(c?)'+A*it)9) dt = f (/ <p) dt,
Ja Ja

so that u(t) is a weak solution of (LI) in [a, T] with initial condition u(a) at t=a.
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If a, as defined at the outset of the proof, does not exist, then c(t ) > 0 for 0 á t ¿ a.

In that case, the above proof can, in fact, be somewhat simplified.

2. Existence of weak solutions.

• Theorem 2.1. If c(0e#0, A(t)eSä0 and (AC0) holds, then, for any

f(t) eP2([0, T], X), u0 e X, there exists a weak solution /o (1.1), with initial condition

u0 in case c(0) > 0.

Proof. Put cs(t) = c(t) + e and let ue(t) he the (classical) solution of

(2.1) ce(t)u'e(t) + A(t)us(t) =f(t)   in (0, P],       «,(0) = u0.

An argument similar to the one used in the proof of Lemma 1.3 shows that

(2.2) JoTHaAác{|j/|aA+|«o|a}-

It follows that there exists a weakly convergent sequence {uEJ in P2([0, T], X) with

some weak limit u.

To show that u is a weak solution, we multiply both sides of (2.1) scalarly by any

test function <p in [0, P] and integrate by parts. Passing to the limit, as e„ \ 0, we

get (1.2) (or (1.2')).

3. Uniqueness.

Theorem 3.1. Under the assumptions of Theorem 2.1, the weak solution is unique.

Proof. We have to show that if u(t) is a weak solution of (1.1) with/=0, w0=0

then u = 0.

In any interval (a, b) where c(t)>0 if a<t<b, c(a) = c(b) = 0, the weak solution

is unique (by Lemma 1.3), and 0 is clearly a weak solution. Hence w=0 in such an

interval.

Consider next an interval (0, a) such that c(t) > 0 if 0 g t < a and c(a)=0 (such an

interval may exist only if c(0)>0). Then, by the proof of Lemma 1.3, the weak

solution u in [0, a] is unique, and again we conclude that u=0 in [0, a). Similarly,

if there exists an interval (ß, T] such that c(t) > 0 if ß < t á T and c(ß)=0, then u=0

in this interval.

We have shown that u(t) = 0 in the open subset of (0, P) where c>0. Denote by

A the subset of (0, P) where c = 0. We shall show that u(t) = 0 at all the Lebesgue

points t of u which belong to A and at which c'(t) is continuous. This will complete

the proof of the theorem.

Let tQ he a Lebesgue point of u(t) in (0, P) for which c(to) = 0 and c'(t) is con-

tinuous at t = t0. Then c'(to) = 0. We take now a function £s(r) e Cœ([0, P]) such

that ££(r)=l if |f-r0|<*/2, £s(0=0 if |r-f0|>£, 0^ÇE(/)S1 otherwise, and

|C'„(t)| < C/e. Let<pe(t) = is(t)A*'\t0)u(t0)(note that A*'1(t)isabounded operator).
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Then,

0 - - ¡t0 + \u, c'it)<Peit)) dt- Ç°+\u, c(t)9'E(t)) dt+ f ° \u, lBu(t0)) dt
Jto-e Jtg-s Jto-8

+ f° + V ie(f)[A*(t)-A*(t0)]A*-\t0)u(t0))dt

= -h-h + h + h-
Now,

e~1\Ix\  ^ C    SUp     |c'(09«(Ole_1  i °      \u\dt-*0    ife^O,
l(-iol<e Jta-e

since \<psit)\ è C, c'it) -> c'(t0)=0 as t -+ t0. Next

£-]|/2| g C   sup    \cityp'„it)\e-1 f° e\u\dt-+0   ifE-^0
|í-í0l<£ Jt0-e

since I^ÍOláC/e, c(í)=o(|í-f0|).

Next, we easily deduce that (l/2e)I3 -> m(í0) if e ->■ 0.

The second inequality in the condition (iii) defining the class 9t0 implies that

(3.1) \\[A*(t)-A*(s)]A*-1(r)\\ ^ C|i-i|a       (0 < « ^ 1).

Consequently, as s -> 0,

1 f  i-io + s r i     r-to + e "I

-\h\e-\        \t-t0\a\u\dt SCea\± \       \u\dt   -►O.
e e Ji0-e L2e Jh-e J

We conclude that u(f0) = 0 at any Lebesgue point t0; hence u=0 a.e.

Theorem 3.2. Under the assumptions of Theorem 2.1, there exists a unique

solution u of il.I) and it satisfies the inequality

(3.2) Í \u\2dt ^ctt \f\2dt+\u0\2X,

where C is a constant independent of u, u0 and f; ifc(0) = 0 then the term |w„|2 in

(3.2) is to be dropped out.

Proof. The inequality (3.2) is a direct consequence of (2.2) and Theorem 3.1.

Remark. From Theorems 1.2, 3.1 we deduce the following: If t0 is the first zero

of c(t), and if u, û are two weak solutions in [0, T] with right-hand sides//such

that/(f) =/(f) on [f0, T], then w(í) = k(í) on [í0, T],

Added in proof. Degenerate evolution equations have been considered in [8],

[9]. The methods given there easily yield another proof of Theorem 3.1.

4. Regularity.

Definition 4.1. A function h(î) ë L2([0, T], X) is said to belong to the class

H"([0, T], X) if u(t) has weak derivatives in L2([0, T], X) up to order p (see [4]).

Definition 4.2. A weak solution u(t) of (1.1) in [0, T] is called a strong solution

of (1.1) in [0, T] if for every e>0, ue H\[e, T], X), u(t) e DA for all 0<f¿T,

A(t)u(t)eL2([e,T],X).
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Definition 4.3. An element A(t) e9t0 belongs to the class %x if

(i) for any xeX, the function A(t)A~1(0)x has a continuous derivative

(d/dt)[A(t)A ' \0)x] = A'(t)A '\0)x   for all t e [0, T] ;

(ii) the operator A'(t)A~1(0) is uniformly bounded on [0, P], and

\\[A'(t)A-1(0)-A'(s)A'1(0)]\\ ^ C\t-s\«       (0 < a ^ 1);

(iii) A(t)-c(t)A'(t)A'\t) + c'Ibelongs to 9t0-

Note that the last condition is satisfied whenever ||P(A, A(t))\\ uC/(l + |A|) for

all A with ReXS/J-, where p,>c(t)\\A'(t)A'1(t)\\ + \c'(t)\.

Definition 4.4. An element A(t) e Wx is said to satisfy the condition (ACX) if

Re (A(t)u, u)^yx\u\2 for all u e DA, where yx> \\A'(t)A'1(t)\\c(t) + (3/2)\c'(t)\+ri

for some r¡ > 0.

Theorem 4.1. // c(t)e%, A(t)eS&x, (AQ) holds, u0eX, fe H\[0, T], X),

and if u(t) is a weak solution o/(l.l) in [0, P], with u(0) = uo in case c(0)>0, then

u e C([0, P], X) and it is a strong solution in [0, P].

Proof. Assume first that c(0) > 0.

We give the proof first in case c(t) is twice continuously differentiable.

We first assume that/(?) and/'(0 are uniformly Holder continuous in [0, P].

Since c(0)>0, c(t)>0 in some interval O^r^-r. By the proof of Theorem 1.1,

u(t) is a classical solution in [0, r]. If we prove that u(t) is a strong solution, then

it would follow by Sobolev's theorem [4] that u(t) is also continuous in [t, P], and

the proof of the theorem is complete. To show that « is a strong solution, consider

the system

(4.1) cEu'e + A(t)ue=f

(4.2) ue(r) = u(t),

where cs = c(t) + e. Since the solution ue(t) of the above system is twice continuously

differentiable [4], we can differentiate both sides of (4.1). We find that u's satisfies

the system

(4.3) ce(u'B)' + Ax(t,e)u'e=fx   in [t,P],

(4.4) u's(t) = ux,e

where

Ax(t,e) = A{t)-c¿t)A'{t)A-\t)+c'I,

A'(t)A-l(t) = (AWA-iQMAQVA-Kt)),

fx =f'-A'(t)A'1(t)f(t),

U..s = (l/Cs(r))[f(r)-A(r)u(r)].

It is easily seen that if e is sufficiently small then Ax(t, e) e 9t0 with constants C
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(in the conditions (ii), (iii) of the definition of 9t0) independent of e. Further,

Re (Ax(t, e)u, u) = Re (A(t)u, u)-Re (A'(t)A-\t)u, m)c£ + c'|«|2

1 [yx-\\A'(t)A-\t)\\ce + c']\u\2 ^ y'\u\2 ^ [c'/2 + V]\u\2

for some y > 0 and r¡ > 0 sufficiently small (and independent of e), provided e is

sufficiently small. Thus, Ax(t, e) satisfies (AC0) with constants y, rj independent

of e.

From the proof of inequality (2.2) we find that

^\u's\2 dt ú C^\fx\2 dt+\uz¡,

Since (by Theorem 3.1) uSn^u in L2([t, T], X) for some sequence e„\ 0, it

follows (see, for instance, [4]) that u has a weak derivative u' which is the weak limit

of some subsequence of u'Sn in L2([t, T], X). But then u(t) e Hl([r, T], X). We

have assumed so far that/and/' are uniformly Holder continuous. If/is only

assumed to belong to //1([0, T], X), then we approximate it in the //1([0, T], X)-

norm by smooth functions/, and denote by un(t) the corresponding weak solutions.

Applying the above result to each un(t), and taking the limit as n -+ oo, we conclude

that u, being the weak limit of un, is in Hx([t, T], X).

It remains to prove that u(t) e DA and A(t)u(t) e L2([t, T], X). We shall need

the following :

Lemma 4.1. Ifc(to)=0, 0<toeT, then u(t0) = A-\t0)f(t0).

Proof. If a ú t0 Ú b and c(t )=0 for all f e [a, b], then A ~1(t)f(t) is a weak solution

in [a, b] and by Theorems 1.2 and 3.1, u(t) coincides with A~1(t)fi(t) in [a, b]. If

f0 is an isolated zero of c(t) then, for some S>0, c(f)>0 for all t0-8gt<t0,

therefore, by Theorem 1.1, u(t) is a classical solution in [f0 — S, f0).

The transformation

(4-5) -(0 = f     ̂
maps the interval [t0 — 8, f0) onto [0, oo) and the equation for u(t) into

(4.6) dû(a)/da + Â(a)û(o) = f(o)

where û(a)=u(t), etc. Since fie H\[0, T], X), it is (by Sobolev's theorem) Holder

continuous with any exponent 0 < a < 1.

The function f(o) is uniformly Holder continuous in [0, oo). For, if f0 > t2 > fj

^f0-S, then

f'2 ds        1

where c(s) :£ M; it follows that

|/K)-./W)| = |/(í2)-/(íi)| é C\t2-tx\a è CM"(a2-axr.
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Since also/(oo) = lim<r_oo/(CT)=/(r0) exists, we can apply Theorem 13.1 in [4] and

conclude that îî(oo) = lim(J-.00 û(o) exists and equals ^4(oo)~ V^oo). Since u(t) is

continuous, we conclude that

u(t0) = lim u(t) = lim û(o) = Â'^ao)/^) = /í "JOo)/Oo)-
£/¿0 ff-» 00

Now, let t0 he neither an isolated zero of c(t) nor a point of an interval on which

c(t) vanishes. Then, by continuity of c(t), there exists a sequence of intervals

(an, bn) on which c(t)>0 and c(an) = c(bn) = 0, an->t0, bn->t0. By the above

result, u(bn) = A'1(bn)f(bn). Hence, by continuity of u(t) and of j4_1(r)/(r),

u(t0) = A'1(t0)f(t0).

From Theorem 1.1 and Lemma 4.1 we conclude that u(t) e DA for all 0<r^P.

From the equation (1.2) we then deduce that (1.1) is satisfied a.e. From this and

from the fact that u(t) e //^[e, T], X) it follows that A(t)u(t) eL2([e, T], X).

We have assumed so far that c(0) > 0 and that c(t) is twice continuously differ-

entiable. Suppose now that c(0)>0 but c(t) is only piecewise continuously differ-

entiable. Let tx be the first point of discontinuity of c'(t). We can construct a

sequence {dm(t)} of twice continuously differentiable functions in [0, P] such that,

as m -^ oo, dm(t) -> cm(t) uniformly in [0, P] and d'm(t) -> c'(t) in L\(Q, T)). We

may further assume that dm(t) ̂  0 in [0, T], dm(t) = c(t) if 0 ^ t ^ tx, and (AQ) holds

with c replaced by dm, with yx independent of m. Instead of (4.3), (4.4) we write the

analogous equations for the solution vm¡E corresponding to dm. Then the arguments

following (4.3), (4.4) show that

[ \v'm,s(0\2 dt í LE

where P£ = C{J"f \fx\2 dt+\vmye(T)\2}. We can take t<tx so that vm>E(T) actually

coincides with wT#£ (and is thus independent of m).

As easily seen, the weak limit vE of the vm¡E is a weak solution. Hence, by Theorem

3.1, vE = uE. From the last inequality it then follows that Jf |m£(í)|2 dt^Ls. We can

now proceed as before to complete the proof of the theorem.

It remains to prove the theorem in case c(0) = 0. We extend the definition of

c(t), A(t),f(t) into [— 1, 0) in such a way that the extended functions satisfy all the

assumptions of Theorem 4.1 with respect to the interval [—1, P], and c(—1)>0.

Take a fixed point we X, and denote by û(t) the weak solution in [-1, P] with

û(-\) = w. If we apply the above proof of Theorem 4.1 in [-1, T] and then note,

by the remark following Theorem 3.2, that u = û in [0, P], then the proof of Theorem

4.1 is complete also in case c(0)=0.

Remark 4.1. If c'(t) eLp([0, T]) (1 Sp) but is not piecewise continuous, then

we can still define the concept of weak solution. However a weak solution is

not continuous, in general, as the following example shows :

Let
c(t) = (t0-ty if o ^ t ^ t0, i-i/p < ß < i,

= 0 if t0 < t ú T.
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Define

ûit) = A-\t)fit)   in [t0,T],

= any classical solution «(f) in [0, f0).

Using the transformation (4.5) we get (4.6) in the interval (0, s0), where i0 = a(f0)

<oo. It is easily seen that limVio w(f) exists. Using this, one finds that «(f) is a weak

solution in [0,T]. However, ¡2(f0 + 0) = A ~ 1it0)fiito) is not equal, in general, to

m(ío-0) = w(ío-0).

Definition 4.6. An element Ait) e 9I0 is said to belong to the class 3Sk ik integer

=t2) if

(i) For any xe X, the function Ait)A~1iO)x has continuous derivatives

id'/dt^AiOA-^x] = ^°>(f)^-1(0)x

for all \újúk.

(ii) The operators Aa\t)A'HO) are uniformly bounded for O^tf^T, and, for

any f, t in [0, T],

¡Amit)A-1iO)-AmiT)A-1iO)\\ ^ C\t-r\«       (0 < a ^ 1).

The proof of Theorem 4.1 can be extended to deduce the higher differentiability

of the weak solution. In fact, for any positive integer k, there exist positive numbers

yk, p.k such that if c(0) > 0 and

(a) Ait) etgK and ||/?(A, Ait))\\ ^C/(1 + |A|) (Re X^pk),

(b) c(t) e Cfc_1[0, T] and cik\t) is piecewise continuous in [0, T],

(c) Re(^(f)M,M)^yfc|«|2,

(d)feHk([0,T],X),

then the weak solution belongs to Hk([e, T], X) for any e>0.

Using Sobolev's theorem we can state

Theorem 4.2. Ifc(0)>0 and the above conditions (a)-(d) hold, then for any e>0

the weak solution u(t) satisfies

(i) ueHk([e,T],X),

(ii) A(t)u(t) e Hk-\[e, T], X), and

(iii) u e Ck'\(0, T], X), A(t)u(t) e Ck'2((0, T], X).

Ifiu0 e D(Ak~1), then u e Ck([0, T], X) (by [4]).

Consider now the case where c(0)=0, and assume that (a)-(d) hold. We can

extend A(t),f(t) into [-1, 0) in such a way that (a), (c), (d) continue to hold with

respect to [- 1, T]. As for c(t), we shall assume that either cO)(0) = 0 for 0^j^k— 1

or that cu\0)=0 for 0^j^2h-1, c(2ft)(0)^0, for some positive integer h. Then we

can extend c(t) into [— 1, 0) in such a way that the extended function c(t) belongs

to Ck~1[— 1, T], and c{k)(t) is piecewise continuous in [— l,T] and c(—1)>0.

Denote by m a weak solution in [-1, T\. By the remark following Theorem 3.2,

u = û in [0, T]. Hence, applying Theorem 4.2 to û in [-1, T], we conclude that u

satisfies the assertions (r)—(iii) of Theorem 4.2 with e = 0.
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5. Another method of proving uniqueness. The proof of the uniqueness theorem

given in §3 does not extend to degenerate parabolic equations of the form

(5.1) c(x, t) du/8t+P(x, t, Dx)u = f(x, t)

(except when c(x, t) is independent of x). Therefore, in this section we shall give

another method for proving uniqueness of the weak solution of (1.1). This method

will apply to the degenerate parabolic equation (5.1). However, it will require

some additional assumptions on A(t). These assumptions are satisfied for the

parabolic case.

We shall assume

(Px) The domain of A*(t) is equal to DA and, for every p>0, there exists a

positive number K=K(p) such that the operator B(t) = A(t) — A*(t) satisfies

\B(t)u\-¿p\A(t)u\+K\u\ for all ue DA.

(P2) The operator valued function A*(t)A~1(0) is strongly differentiable, and its

strong derivative, denoted by (/í*(í))'/í"1(0), is a uniformly bounded operator.

(AC) The condition (AC0) holds and y>c'(t) + r¡.

Theorem 5.1. Assume that A(t)e<8.0, ce%, and that (Px), (P2), (AC) hold. If

f(t) eP2([0, T], X), c(0)>0, m0 e Xandu(t) is a weak solution of (l.l) with u(0) = u0,

then

(5.2) \Tc(t)\u\2dt Ú c{k|2+P|/|2^
Jo K Jo J

where C is a constant independent of u, u0, andf.

Proof. Let (pB(t) he the solution of

(5.3) -(Cs9s)' + A*(t)<pE(t) = h(t),       9e(T) = 0,

for cE = c(t) + e and a given uniformly Holder continuous function h(t). Multiplying

both sides of (5.3) scalarly by [A*(t)cpE(t)]/cE(t), we get

rm,-. ,*^_w,, r\A*(t)w2'I Ws,A*(t)9E)dt-l C£(Ve,A*(t)9E)dt + jo ^^¡M-dt
(5-4)

= r (h, A*(t)9E) dt
Jo       ce(t)

For any test function <pe with A*(t)<pE(t) continuously differentiable,

-Re C(<p's,A*(t)<Ps)dt= -$Re(A*(t)<pE,9E) '
Jo 0

+ ¿Re f fa, Ai'iOA-WAQÏto,) dt
Jo

+iRep(?»£,P(0<p£)A.
Jo

By approximation, this relation holds also for any test function ç>£.
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We thus get from (5.4)

Re (yi»(0)9,(0), 9.(0))+JTRe (A*'(t)A'1((í)A(Q,)9E, cpE) dt

CT CT r' PT \A*(t}m I2
(5.5) +      Re(2?(0?„c>;)</f-2      -Re(A*(t)cpE,<pE)dt+2\    |yl umi  dt

Jo Jo cs Jo Cs

ÍJo Ce

We shall now need the following inequalities :

(5.6) Ikl2 Ú C\\h\\\

(5.7) hs/VCsW2 í C||«/Vc£|2,

(5.8) c£|<p£|2 Í (C/cE){\A*<pE\2+\c'<pE\2+\h\2}.

Here,M\\={$T0\<Kt)\2dt}112.

The first inequality is proved like (1.5). Next, multiplying (5.3) by <pE/cE we get

{-iWs\2Y-CA<Pe\2+^Re(9s,A*<pE) = Re%^-
Cs cE CE

Proceeding similarly to the proof of (1.5) we get (5.7); the condition (AC) is hereby

being used. Finally, (5.8) is obtained directly from (5.3).

We now return to (5.5). For any a>0,

KA^tU'WAW^t), <pE(t))\ Ï aCM(í)9>£|2 + (l/4a)|<p£|2

^ 2aC|¿*(r)9>£|2 + C'|9>£|2       (C constant)

by (P2). For any /S>0, p>0 we use the inequality (5.8) and the condition (Px) to

obtain

mte,,v.>\s^B('%?)')l'+ßc,w.i°

Integrating over (0, T) and using (5.7) we get

T I   n \       C1   I  À*n   I2 I,     ||2

—7—\\        (K' constant).
Vea(5.10)    £" |(P«p£, <p'e)\ dt ¿ ({ß + Cßj fo ^^ dt + K'

Note that the constant C in (5.10) is independent of ß, p.

We now use (5.9), (5.10) and the inequalities

Ce ^e ^e ^e ^e

(where C0 is a constant depending on ß) in (5.5).

- (A*<Ps, <Ps)



416 AVNER FRIEDMAN AND ZEEV SCHUSS [November

Choosing ß small and then p sufficiently small, we get, after choosing also a

sufficiently small and using (5.6), (5.7),

(5.11) fMV^cf^;
Jo Ce Jo     Ce

here we have used the obvious inequality \\v\\ SC\\v/\/ce\\ for any v eL2([0, T], X).

From (5.3) we get, upon using (5.7) and (5.11),

l*£*(5.12) f   c£|9>£|2^^ c[
Jo Jo

We now use (1.2) with f = <ps- We find that

(5.13) I f iu, h)dt\ú  f \(f <Pe)\ dt+\(c(0)<pe(0)uo)\ + f |(k, (c-c.)ri)| dt.
I Jo Jo Jo

We have

(5.14) |c(0)o5£(0)|2 = [\\c9e)' dtj Ú cjj 1^ dt,

¡•t r rT -ii/2  r /-r

Jo   |(«, (C-Cs)<p'e)\ dt Ï   [Jo   \(VC- VCS)U\2 dt j      • y o 2c£|<p£|2 dt

' r/T 11/2    r (T |/,|2-|l/2

by (5.12). Using (5.14), (5.15) and (5.6) in (5.13), we find that

cT i fT \i/2//t \i/2 i rT \h\2    X1'2

Jo (u,h)dt   è c(Jo \f\2dt)   (Jo lAI2^]    +cl"o|(Jo ̂ -rfr)
(5.16)

the constant C is independent of h, e.

In the proof of (5.16) we have assumed that h is uniformly Holder continuous in

[0, T]. However, by approximation we conclude that (5.16) holds for any h in

L2((0, T), X). Taking in particular h(t) = c(t)u(t) and then letting e -> 0, we get

rT ( I rT \ 1/2 -\  ( rT \ 1/2

Jo c(f)|t/|2 dt fk C|(j0 l/l2 dt)    + |«io|||Jo c(f)|M|2 <ftj    ,

from which (5.4) follows.

Theorem 5.1 can be used to prove the uniqueness of a weak solution by a method

different from that given in §3. We shall give the details in §6, in the context of

degenerate parabolic equations.

6. Application to degenerate parabolic equations. Let O be a bounded domain

in Rn with ea e C2m. Set Q* = Clx(r, T], Ql = QT. Let

P(x, t, Dx) =   2   ««(*> O^ï
|a|S2m

be a uniformly strongly elliptic operator in Cl (QT) (see [4]).
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Consider the degenerate parabolic system

c(x, t) Bu(x, t)/8t + P(x, t, Dx)u(x, t) = f(x, t)   in QT,

(6.1) ffu/dvi = 0 on 8£lx(0, T]       (0 ^ j ^ m-l),

u(x, 0) = g(x)   for x e Q.

(v is the normal to 8QT), where c(x, t) is a nonnegative function.

We assume that Dxaa(x, t) are continuous in (x, t), uniformly Holder continuous

in f, for all ß^a (i.e., ßiu^ for all i, where ß=(ßx, ■. -,ßn), a = (a1;..., «„))• We

also assume that the function c(x, t) is continuous and that 8c(x, t)/8t is piecewise

continuous. In what follows X=L2(Q,).

Definition 6.1. A test function in QT is a function <p(x, t) such that

D%<p(x, t) e C(Cl (QT)) for 0£ |a| ^2m, 8<p/8t e C(Cl (QT)), <p(x, T) = 0 for x e D,

and 8><p/8Vj = 0 on 8Ü.x(0, T](0^j^m-l).

Definition 6.2. A function u(x, t) e L2([0, T], X) is called a weak solution of

the system (6.1) if, for any test function <p(x, t) in QT,

c(x, 0)g(x)<p(x, 0) dx
Jn0

(6.2) + f  f iu(x, t) - [-c(x, t)<p(x, t)] + u(x, t)P*(x, t, Dx)<p(x, t)\ dx dt

= i   |  fix, t)<p(x, t) dx dt,
Jo Jn

where O0 is the subset of Í2 where c(x, 0)>0, and where P*(x, t, Dx) is the formal

adjoint of P(x, t, Dx). If c(x, t) is independent of x, then we can apply all the

results of §§1-4. The conditions

Re f  u-P(x, t, Dx)u dx ^ y f   |h|2 dx   for all u e C?^),
Jn Jn

("•^) y > ct + 7]   (y, r] positive constants),

\\R(X, A(t))\\ S C/(l + \X\)   if Re A ̂  p   (for a suitable p,)

must be assumed ; all the other assumptions made in these sections are satisfied

(by [4]).

Consider now the case where c(x, t) may depend on x.

The proof of the existence theorem, Theorem 2.1, easily extends to the present

case. The same is true of the proof of Theorem 5.1 (the conditions (Pj), (P2) follow

from standard estimates on elliptic operators [4]). The conditions in (6.3) always

hold for some negative y, p. so that even if (6.3) does not hold we can still apply

the whole theory to P(x, t, Dx) + k, for all k sufficiently large.

The uniqueness of the weak solution follows by combining the results of Theorem

5.1 together with some arguments used in the proof of Theorem 3.1. In fact, if

f(x, t) = 0, g(x) = 0, then from Theorem 5.1 we conclude that the weak solution



418 AVNER FRIEDMAN AND ZEEV SCHUSS [November

u(x, t) satisfies u(x, t) = 0 on the set where c(x, t)>0. Denote by A the set where

c(x, t) = 0. Then at almost each point (xQ, t0) of A, dc(x0, t0)/dt exists, so that

dc(x0, to)/Bt=0. Hence, from (6.2),

u(x, t)P*(x, t, Dx)<p(x, t) dx dt = 0

for every test function y>(x, t) in QT. Now, for all h(x, t) e C0°°(ßr) the function

<p(x, t), which is the solution of

P*(x, t, Dx)<p(x, t) = h(x, t)   in QT,

&<p(x, t)/3Vj = 0   on ÔQ.x(0, P]   (0 ^j ^ m-l),

is a test function. Hence jA J u(x, t)h(x, t) dx dt=0. We conclude that u(x, t)=0

a.e. on A.

Once uniqueness has been established, we can proceed to prove regularity

theorems, analogous to Theorems 4.1, 4.2, assuming that

(6.4) c(x, 0) > 0   for all xeQ.

We begin by noting that the assertion

ut e L2([e0, T], X)   (for any e0 > 0)

can be proved in the same way as in the proof of Theorem 4.1. We then deduce

that u e C([0, P], X). Now apply (6.2) to a test function <p(x, t) = <fi(x)x(t) and take

X = Xn -*■ °(to) where t0 is a Lebesgue point of the function t ->- ut(-, t) from (0, P]

into X, and 8(t0) is the Dirac distribution with unit mass at t = t0. We get

(6.5)

f u(x, t0)P*(x, t0, Dx)t/>(x) dx
Ja

= -     c(x,to)ut(x,t0)<fi(x)dx+\  f(x, t0)</>(x) dx.
Ja Ja

^ C

Note that ut(-, t)eL2(Q) for almost all t e(0, T). (6.5) and the last remark hold

also for the solution uE corresponding to c = ce. Since uE(x, t0) e //"(ß) n H2m(Q),

we can deduce (by [4, Theorem 18.2]) that

f£o k(-, Oil-«)* ¿ c(i+^{\^(-,t) |2+|/(-, i0)l2}*)

where C is a constant independent of e. Since uE —» u in P2((0, P); X) we easily

conclude that uE-^u in H2m(Q) for a sequence of e's tending to zero. Hence

«(•, t) e H2m(Q.) for almost all t e (0, P]. Since the map t -* «(■, t) from [0, P] into

A'is continuous, it easily follows that u(-,t)e H2m(Q) for all t e (0, T].

Using the facts that ue(-, t) e //¿"(Q) and uE -* u in L2((0, P); //m(Q)) one can

also show u(-,t)e //0m(ü) for almost all t (by [3, p. 325, Problem 1]).

Since the function /->«(-,?) from [0, P] into A'is continuous, we easily con-

clude that u(-,t)e //¿"(il) for all t e (0, P].
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We can now differentiate the equation for us once more with respect to t and

show that, for any £0 > 0,

82u/8t2 e L2([e0, T], X),       P(x, t, Dx)8u/8t e L2([e0, T], X),

P2(x,t,Dx)ueL\[e0,T\,X).

Here we assume, of course, that the coefficients aa, c,f are sufficiently smooth, and

that (6.3) holds with suitable y, p. (larger than before).

Proceeding in this way step by step, and using Sobolev's theorem, we obtain

the following result:

Theorem 6.1. Denote by A(t) the operator in L2(il) associated with the strongly

elliptic operator P(t, x, Dx) and the domain //"(ü) n H2m(Q). Let aa, c, f belong

to C° (Cl (QT)). Then, for any positive integer k there exist positive numbers yk, 8k

such that, if (6.3) holds for y — yk, p>=8k, and (6.4) holds, then the weak solution

of (6.1) belongs to Ck(Û x (0, T]).

Remark 6.1. Using the Schauder estimates for parabolic equations [3] one

can obtain regularity theorems for the unique weak solution (constructed in the

proof of Theorem 2.1) in every open set where c(x, t)>0. Such theorems establish

the smoothness of the solution under weaker assumptions than in Theorem 6.1.

Remark 6.2. If c(x, 0) vanishes at some points of D then we can still extend the

regularity theorem under some consistency assumptions. Thus, if ut(x, t) is to

belong to L2(il) at t = 0, then we must have

I* «                                f(x,0)-P(x,0,Dx)g(x)    tafm
(6-6) -dx^)-e L m

If we assume (6.4) then we can indeed show (by the same argument as in the proof

of Theorem 3.1) that ut(x, t) eL2(ü) for any f, and then obtain the other assertion

of Theorem 6.1. Similarly we can prove higher differentiability theorems in case

c(x, 0) vanishes at some points of Í2.

Finally, if c(x, 0) = 0 in Í2, then we extend c,/and the att into Üx[-1,0) and

then apply the regularity theorems derived above for a weak solution û(x, t) in

Qx[-l,r] (with any initial conditions). The proof of Lemma 1.2 shows that

û(x, t) is a weak solution in [0, T]. Hence, by uniqueness, u(x, t) = û(x, t) in QT.

We can thus draw regularity results for u(x, t) in Cl (QT).

1. Another type of degenerate evolution equation. Consider the degenerate

system

(7.1) u' + c(t)A(t)u=f(t)   in(0,r],   «(0) = «o,

where dt) is a nonnegative function.

Definition 7.1. A function w(i)eL2([0, T], X) is a weak solution of (7.1) in

[0, T] if for any test function ç>(f) in [0, T]

il.2) -iu0, 9(0))+ \\u, -<p' + dt)A*it)<p) dt = f (/, <p) dt.
Jo Jo
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It can easily be seen that a weak solution in [0, P] is also a weak solution in

[0, P'] for any 0 < T ^ P. We shall assume that A(t) e 9I0 and that (AC0) is satisfied

for some y >0. Note that the transformation u ->■ exp [k §0 c(s) ds]u replaces A(t)

by A(t) + kl; hence all the results of this section remain true if only A + kl, for any

k^O, is assumed to belong to 3l0, and to satisfy Re ((A + kl)u, u)^y0\u\2 for some

y0 > 0 and for all u e DA.

Definition 7.2. If there is a positive constant y such that Re (A(t)u, «)^y|t/|2

for all u e DA, then we say that the condition (A0) holds.

Theorem 7.1. Assume that A(t) e 2I0, that (A0) holds and that c(t) is a nonnega-

tive Holder continuous function in [0, P]. Then for any u0e X and f(t) eP2([0, P], X)

there exists a weak solution u(t) of (7.1).

Proof. Proceeding as in the proof of Theorem 2.1 we see that

i\uE(t)\2 + Re f (cE(t)A(t)uE, uE) dt = ¿k|2 + Re f (/ uE) dt,
Jo Jo

where uE(t) is the solution of

(7.3) u'e + cEA(t)uE =fi   uE(0) = u0.

Hence

(7.4) k(0l2á c{jjf\2dt+\u0\

where C is a constant independent of e. It follows that uEn —* u in P2([0, P], X) for

some sequence en \ 0, and that u(t) is a weak solution of (7.1).

We shall need, in addition to (Pi), (P2) (of §5), the following condition:

(P3) There   exist   positive   constants   k   and   k   such   that   Re (x, A*'(t)x)

^kRe (x, A*(t)x) + k\x\2 for any x e DA.

Theorem 7.2. Assume that A(t) e 9t0, that (A0), (Px), (P2), (P3) hold, and that

c(t) is nonnegative Holder continuous in [0, T]. Then the weak solution of (7.1) is

unique.

Proof. Let (pE(t) he a solution of the system

(7.5) -<p'E + cE(t)A*(t)<pE = h(t)   in[0,P),   <pE(T) = 0

for some uniformly Holder continuous function h(t).

Introduce t/>B(t) = ektq>e(t), hQ(t) = ekth(t). Then

(7.5') -<l>s + [kI+cE(t)A*(t)]ie = h0(t)   in[0,P),   WP) = 0.

Multiplying both sides of (7.5') scalarly by A*(t)</iE and using (Px), (P2), (P3), we

find, by the method of proof of (5.11), (5.12), that

(7.6) P ce\A*(t)>pE\2 dt g C P ^L! dt
Jo Jo    c6
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where C is a constant independent of h, e. Hence,

(7.6') ¡TcE\A*it)cpe\2dtic\TVfdt.
Jo Jo     ce

From (7.5), (7.6') we get

(7.7) f c£|9>£|2</f = cf ^¿f.
Jo Jo     ce

From the relation <psiO)= -¡l <pé(í) dt and (7.5), (7.6'), we get

|9».(0)| = c|oTJo
Wdt.

Now let u(t) be a weak solution of (7.1). Then, since <pe(f) is a test function in

[0, T],

f (u, h)dt = f (/, <pe) dt+iu0, 9,(0))+ f (u, (c-c£)9£) A.
Jo Jo Jo

Using the last inequality and (7.7), we easily deduce that

j>t»*|i <í>*r(f f *r+«w(Cf *)"
+cv«(/;i»i^<)™g;f*)m

This inequality is the same as (5.16). We now employ the arguments following

(5.16) to deduce that

(7.8) J/(0|m|2 dt = C{[l/|2 ^+l"o|2}-

We conclude that if/=0, u0=0 then m=0 on the set where c(f)>0. Hence, from

(7.2),   jA(u(t), <p'it))dt = 0,   where  9(f)  is  any  test  function   on   [0,T]   and

A={f;c(f) = 0}. Since u = 0 outside A, we conclude that {£ («(f), 9(f)) dt = 0. It

easily follows that «(f)=0 a.e. in [0, T].

Once uniqueness has been established, (7.4) gives the inequality

jTQ\u\2dt ác{jj/|2¿í+|«0|2}

for the unique weak solution «(f).

Remark. From the uniqueness of the weak solution and from its construction

(as a weak limit of the ue) we deduce, by the method of proof of Theorem 1.1, that

the weak solution of (7.1) is a classical solution in every interval where c>0.

Similar results can be established for the degenerate parabolic case

8u/8t+dx, t)Pix, t, Dx)u = fix, t)   in QT,

(7.9) &u/8V) = 0 on3Üx (0, T]   (0 Ú j S m-1),

u(x, 0) = g(x)     in Ü.
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In this case it follows from standard theorems (for instance, by applying the

Schauder estimates to uE [3]) that in every region where c(x, t)>0, u(x, t) is a

classical solution.

Notation.

¥f = 0 if c(t)= |/(0l=o,

= |/(OI2/c(Oifc(0>o,

= oo ifc(0 = 0, 1/(01 ̂ o.

Theorem 7.3. Assume that the conditions of Theorem 7.2 are satisfied and,

furthermore,

(l.lV)¡l(\f\2/c)dt<co,
(7.11) c(t)£0 in any interval (0, t), t>0.

Then, for any-q>0,ue H1^, T], X).

Proof. We can show, by the same proof as that of (7.6), that for any t e (0, P),

(7.12) Jr cE(t)\A(t)uE\2 dt ^ c{Jr ^-dt+Re (uE(r), A(t)ue(t))

Suppose, now, that c(t)>8>0 in some interval t0^t^t0 + A, A>0.

From (7.3) we have

r¥\e(uE(t),cE(t)A(t)ue(t))dt = ik(T0 + A)|2-i|M£(T0)|2 + Re P°+V, ««)</'•
Jto JTo

Hence, by (7.4),

Re (uE(t), A(t)uE(t)) dt ^ j\°     Re (ue, ceAuE) dt
(7.13) Jl° J,°

From inequality (7.12) we get the inequality

(7.14) f T    cE(t)\A(t)ue\2 dt í CÍ P ^ dt+Re (u,(r), A(t)ue(t))
JiQ + h Uo    CS

for any t0 ^ r ^ t0 + A.

Integrating both sides of (7.14) with respect to t over [t0, t0 +A] and using (7.13)

we get

A C    cE(t)\A(t)ue\2 dt í CÍX p s£l dt + j p l/l2 dt+ \u0\
Ji0 + \ i   Jo    cs ° Jo

Since «£=/-c£/4(0w£, the last inequality implies

(7.15)

[-T /T |„'|2

A K|2¿r^C l-^-dt
JtO + A Jlo + A     *-*

c{Ar?'"+ir|/i!'"+w
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We claim that, for any r¡ > 0,

(7.16) £" \u£\2 dt ^ cjjj ^ dt + j* l/l2 dt+ |Wo|2},

where C is a constant depending on r¡. Indeed, from (7.11) and the continuity of

c(t) it follows that there exists an interval [t0, t0 + A] on which c(t)^8 for some

S > 0 and 0 g t0 < t0 + A ̂ r;. But then, (7.16) follows from (7.15).

From (7.16) we conclude that u e H\[q, T], X).

Remark 7.1. Suppose (7.11) is not satisfied and let t0 be such that c(t) = 0 if

0^i^TO, c(f)^0 in any interval (t0, T0 + r¡), rj>0. Then we can repeat the above

proof with t in some subinterval of (t0, t0 + t¡) where c(f)>0, and thus conclude

that u e H\[tq + e, T], X) for any e > 0. Next, u(t) = u0 + fa fis) ds for all 0 ̂  t ̂  t„.

Thus, u e //^([O, t0], X). It follows that u{t) is continuous in [0, t0) u (t0, T],

left-continuous at t0. It remains to consider the right-hand continuity of w(f) at t0.

If

(7.17) M(tK(t)| S C

for some t e [0, t0] and for some constant C independent of e, then we can still

deduce from (7.12) that m' e L2i[r, T], X). This gives the continuity of «(f) at t=r0.

Note that (7.17) holds, for instance, when t=0 and uQ e DA.

Remark 7.2. Theorem 7.3 immediately applies to the system (7.9). Note that

if c(x, f) = 0 in a Cl iQT) neighborhood U of a point (*0, f0), x0 e 8Ü, then no

boundary conditions on the weak solution m(at, /) need to be given in the inter-

section V of U with the lateral boundary of QT. Indeed, along V, uix, f) = w(x, a)

+$lfix, s) ds for some o.

Remark 7.3. Lemma 1.1 clearly extends to the degenerate evolution equation

(7.1). If one a priori knows that the weak solution «(f) is continuous at a point

t=a, then one can also prove that «(f) is a weak solution in [a, T]. Consequently,

under the assumptions of Theorem 7.3, the assertion of Theorem 1.1, for the

equation (7.1), remains valid.

8. General degenerate evolution equations.    We consider now the general case

(8.1) Cxit)v' + c2it)Ait)v = g   in (0, T],    p(0) = v0,

where c1(f)^0, c2(f)^0, C! + c2>0 in [0, T]. A weak solution of (8.1) is a function

v e L2i[0, T], X) satisfying

(8.2) (Cl(0)»0, 9(0))+ ¡\v, -icx<p)' + c2it)A*it)<p) dt = Cig, <p) dt
Jo Jo

for every test function 9(f) in [0, T]. (If ^(0) = 0 then the first term on the left-hand

side of (8.2) is to be dropped.)
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Without loss of generality we may assume that cx + c2 = 1. We can therefore

rewrite (8.1) in the form

(8.3) c(t)v' + (l -c(t))A(t)v = g   in (0, P],   Oácgl,   v(0) = v0.

We assume that A(t) e 9t0 and that (AC) holds. If we substitute v = ektu into (8.3)

(where k > y, y as in (AC)), then we get

(8.4) cu' + [kcl+ (1 - c)A(t)]u = /   u(0) = u0 = v0,

v/heref=e~ktg.

We consider next the system

(8.5) csu'E + [kcEI+(1 - c)eA(t)]ue = f   «,(0) = u0,

where cE = c+e, (1 — c)e= 1 — c+e.

We get, as in the proof of Theorem 2.1,

£" [kcy + (l-c)y-c'-8]\uE\2dt è ¿ JJ |/|2 ̂ +C|m0|2,

so that

(8.6) Pkl2* ^ c|Jj/|2 Ji+|Mo|2V

From (8.6) follows the existence of a weak solution.

To prove uniqueness, we proceed as follows: Assume, first, that c(0)<^. We

denote by tx the first positive point such that c(tx) = \; t2, the first point where

c(ti) = i and 12 > tx ; f 3, the first point where c(t3)=\ and ta>t2. We proceed in this

way to define i4, t5, etc. After a finite number m of such steps, we arrive at a point

tm such that either c(rm) = \ and c(0^\ for all tm-¿f¿T, or c(tm)=| and c(i)^i for

all tmútúT. We set r0 = 0, tm + x = T.

We next construct a function c(t) such that c(0 = c(0 if í is in any of the intervals

[h¡, t2i + x] (where c(i)^i), c(t) is as smooth as c(t) in [0, P], and i^c(0^i if í is

in any of the intervals (t2j-x, t2j).

Now let t belong to an interval (r2/, t2j+x). Since 1 — c(0^i, we can proceed as

in §5 to derive an estimate similar to (5.11). Here <pe is a solution of

- (Cs<Ps)' + [kcE + (1 - c)EA*(t)]<pe = «   in [0, P),   <pE(T) = 0.

Multiplying the equation for <pe by A*cpE/cE we get

(8.7) -((ce9e)', A*9E/cE) + kcE(9s, A*<pE)/cE + (l-c)e\A*9e\2/cE = («, A*9e/cc);

here c£ = c+e.
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(8.8)

Using the second part of the identity

[We, -=-)

= ((<*,)', ^) + (^. A*'Vt) + (| y,, ^*9i)-| (C¿9„ ¿*9.)

= 2Re((C^í)',^£)-|(Apí,9;)

c' c c'
-y iA*<pe, <Pe) + J (<Pe, A*'<pe)—ßice<pe, A*cpe)

Ce Cg Cg

to express the first term of the real part on the left-hand side of (8.7). We get, upon

integrating (8.7) over [t2j; f2j + 1], and using (P^, (P2), (P3),

rhi + i \A*w I2 rhi-n       \h\2 I A*m\  I'az + i

(8.9)  Cl      (1-í^AáC f7i7T^+c^'   í

where C, C" are positive constants independent of e. Note that (1 — c)e, occurring

in the integrands in (8.9), satisfies iá(l — c)£áf if e is sufficiently small.

Next, we consider an interval [f2;_i, t2j\ and proceed as in the proof of Theorem

7.2. Without loss of generality we may assume that k is such that A:c(f)>c'(f)/c(f)

in any interval [f2i-i, t2j]. If we multiply both sides of the equation for 9£ scalarly

by A*<ps/cs, then we obtain (8.7).

We now use the first equation of (8.8) to express the first term on the left-hand

side of (8.7). The second and the fourth terms on the right-hand side of the first

equation of (8.8) are easily estimated ; in estimating the second term we use (P3).

(The k in (8.7) is taken to be sufficiently large.)

As for the third term, we have

(8.10) (c£9£/c£, A*<p'e) = iA*<pe, c£9£)/c£ + (5(i)9£, c£9£)/c£.

The last term on the right can be estimated as before (in the proof of Theorem 7.2).

As for the first term,

(8 11)    ^V^" Ce'p'e">

= -iA*qpe, c'e<ps)/c£ + iA*<ps, [kcs + (1 -c)eA*]<pe)/cs-iA*<ps, h)/ce

by the differential equation for 9£.

We take k such that kce > c'e and then obtain the lower bound — (/1*9£, h)/ce for

the right-hand side of (8.11). Combining this with (8.10), we get a lower bound on

the left-hand side of (8.10). This yields a lower bound for ((c£9£)', A*<pe/cs). We can

now easily deduce from (8.7) the inequality (cf. the proof of Theorem 7.2)

<-> l¥«*st,ÄH*t)
Í2/

tm-i
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Adding up the inequalities (8.9), (8.12), we get

(8.13) P ^^ 1,1*9.1* dtúc[T     W\ dt.
Jo      cE     '     rel Jo cE(\-c)E

Since <p£ is a test function,

\\u,h)dt = p(«, [(i-4-(i-c)]/(V-fe-cWá
Jo Jo

+jV,9>.)* + e.(0)(Ko,%(0)).

The first integral on the right is bounded by

Ü'T \l/2//T I/.I2 \l/2

.**)  (JLjHT±5*)  :
this can be seen by breaking this integral into portions j^+1 and JJj¡J_ , and treating

them as in §§5 and 7 respectively.

We can choose, now, A(0 = c(0(l — C(0M0 and tnen obtain the inequality

^c(\-c)\u\2 dt Û c[^Q\f\2 dt+\u0\

From this inequality we can derive the uniqueness of the weak solution by the

same   argument as in §§6, 7.

In the above proof we assumed that c(0) < \. If c(0) ̂  \, the proof is similar.

We sum up:

Theorem 8.1. Assume A(t) e 9I0, c(t) e %, and (AC), (Px), (P2), (P3) hold. Then

there exists a unique weak solution v(t) of (8.1) for any f(t) e L2([0, T], X) (and

u0 e X, if c(0) > 0). Furthermore,

(8.14) ¡y^dt - c{Jj/l2^+kl2};

in case c(0) = 0, the term \u0\2 in (%.\A) drops out.

Theorem 8.1 can be applied to degenerate parabolic equations in a cylinder

Ü x(0, T] provided c(x, t) is independent of x. If c(x, t) depends on x, then we

have to assume that the set of zeros of c(x, t) has the form {JaeA (O. x {ttt}), where

A is a subset of [0, P].
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