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Abstract. In a recent paper, P. E. O'Neil gave a new criterion for uniform

distribution modulo one in terms of almost-arithmetic progressions. We investigate

the relation between almost-arithmetic progressions and uniformly distributed

sequences from a quantitative point of view. An upper bound for the discrepancy of

almost-arithmetic progressions is given which is shown to be best possible. Estimates

for more general sequences are also obtained. As an application, we prove a quantita-

tive form of Fejér's theorem on the uniform distributivity of slowly increasing

sequences.

1. Introduction. This paper has its origin in a quantitative analysis of a result

given by P. E. O'Neil [3] which revealed the strong relation between almost-

arithmetic progressions and uniformly distributed sequences. The natural approach

to a quantitative study is by means of the concept of discrepancy. As a first step,

we give upper bounds for the discrepancy of almost-arithmetic progressions (§2).

A method is employed which interprets the estimation of discrepancy as a convex

program, and which is described in detail in [2]. Subsequently, we turn to more

general sequences and obtain estimates for their discrepancy based on the decom-

position of such sequences into almost-arithmetic progressions (§3). Thus, the

cumbersome task of computing the discrepancy of a sequence can, at least theo-

retically, be reduced to the following two problems : (i) find a decomposition of the

sequence into almost-arithmetic progressions; (ii) find sharp estimates for the

discrepancy of almost-arithmetic progressions. Problem (ii) is answered here with

optimal accuracy, possibilities for solving (i) were exhibited by P. E. O'Neil [3] in

the context of specific examples. In the last section, the general results of this paper

are applied successfully to estimate the discrepancy of a class of sequences which

includes a number of classical examples of uniformly distributed sequences.

The two definitions and the theorem given below will be fundamental for our

discussion. For an account of the theory of uniform distribution modulo one, the

reader is referred to [1].

Definition 1.1 (O'Neil [3]). For S^O and e>0, a sequence a!<a2< • • • <aN

of points from the interval [0, 1 ] is called an almost-arithmetic progression-(S, e)
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if there exists an tj, 0 < t¡ ̂  e, such that

(1) 0^ai^r, + 8r),

(2) r¡-8r¡^ak+i-akSr¡ + 8vfor l£k£N-l,

(3) l-*)-8r,£aN£l.

Theorem 1.1 (O'Neil [3]). The sequence au a2,..., aN,... of points in [0, 1]

is uniformly distributed modulo one iff the following condition holds: given 8, e, and e

all positive, there exists an N such that, for N>N, the partial sequence au a2,...,aN

can be partitioned into a set of disjoint almost-arithmetic progressions-(8, e) with at

most N0 points left over, N0 < e'N.

Definition 1.2. Given a sequence au a2, ...,aN of points in [0,1], for

A/c[0, 1], let A(M; N) be the number of a¡, l£i£N, contained in M. Then the

discrepancy DN of the given sequence is defined by

DN =   sup
0<agl

A([0,a);N)

N

2. Discrepancy of almost-arithmetic progressions.   We consider a finite sequence

in [0, 1] whose elements are ordered according to their magnitude: O^ûi ^a2^ • • ■

^ aN ̂  1. It was shown in [2] that, in this case, we can write DN in a simpler form :

(4) DN = max   max
= 1.¡V

i

w
i-l
N

In the presence of linear inequalities for the a¡, the problem of estimating the

discrepancy can be viewed as a convex program. Thus, it suffices to evaluate a

certain target function at the vertices of the convex polytope defined by the given

system of linear inequalities (see [2] for a thorough description of this method).

To be more specific, let us consider an almost-arithmetic progression-(8, e), say

au a2,..., aN. We assume 8<1; then the condition ax<a2< ■ ■ ■ <aN follows

automatically from (2). The convex polytope in question is the following: the set P

of all (xu..., xN) e RN satisfying

(5J OZx^+b,,

(52)-(5w) v-Sv^Xi + i-x^V + H IÍJ3N-1,
(5jv + 1)  l-T)-8r)^XN^l.

The target function f(xu.. .,xN)to be maximized is given by

(6) f(xu...,xN)=   max  max (   ~x¡ »    l-rj—x¡   )•
i = l.N \ | J» 1\ \ /

Theorem 2.1. Let au a2,...,aN be an almost-arithmetic progression-(8, e) with

0 ^ S < 1 and e > 0, let t¡ be the positive real number corresponding to the sequence

according to Definition 1.1, and let DN be the discrepancy of the sequence. Then

DN è l/A+8/(l+V(l-

DN ^ min (t,, I/A)

•S2))  for8>0,

for 8 = 0.
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Proof. We write f(xu..., xN) = maxi=1.Ngi(xly ■ ■ -, xN) with

gi(xu ...,xN) = max (\i/N-Xi\, \(i- l)/N-xt\).

The maximum of g¡ is attained at an extreme value of x¡. Therefore, we shall

first maximize and minimize the coordinate x¡ over the convex polytope P, the

extreme values being attained at vertices of P. Note that the boundary of P is

determined by N+1 classes (in fact, pairs) of parallel hyperplanes:

(7i) x1=0,x1=7] + 8t),

(72M7tf) Xj + 1-X, = r,-8r,, Xj + 1-Xj = ri + 8ri, l^j^N-l,

(7W + i)  XN=l-T)-8r], XN=l.

We get all vertices by the following procedure: choose one hyperplane from each of

;V classes (7j),..., (7fc_i), (7fc+1),..., (7N + 1), find the unique point of intersection,

and check whether this point satisfies the remaining defining condition (5k) of P.

To have a shorter denotation, let a stand for one of 0 and r¡ + 8r¡, and let ß stand

for one of 1 — r¡ — 8t¡ and 1. We exclude the case S = 0 for the time being. We distin-

guish four cases in terms of k. The subscript i, l^i^N, is assumed to be fixed,

therefore we take the liberty of suppressing the dependence on /' in some of the

constants.

Case 1. k=l. Using (72)-(7jv+i)» each choice of (elt■.., ^n-i) with ey=0 or 1,

1 £j£N— 1, leads to a point (xl7 ■. -, xN) with

(8') xt = ß-(N-i)1 + 8r1((-iyi+ ■ ■ ■ +(-iy*-i).

Condition (5X) requires

0 í ß-(N-l)r] + 8ri((-iyi+ ■ ■ ■ +(-iy»-i) ^ ri + 87,

or

(90        ^-öt^s(-1y4+...+(_1^.lia^.A

Xi is maximal or minimal according as a maximal or minimal number of e¡, 1 ̂ j

¿N— 1, are zero. Thus, let a be the number of ey, 1 áj'^N— 1, with £y=0, and let

b be the number of eif 1 ̂ j^N-l, with ey=l. Then a-b = (- l)£i+ ■ • • +(- l)s"-i

^B; on the other hand, a + b = N-l, hence a^(B+N—l)/2. Furthermore,

(B+N-l)/2 = (N(7j + 87,)-ß)/28rl^0, since ß = xN£N(ri + 87J). Putting a'

= min (AT-/, [(5+/v'-l)/2]), we have then

(10')  maxxf = ß-(N-i)rj + 8r,(a'-(N-i~a')) = ß+2a'87,-(N-i)(7j + 87l).

In the expressions max xt and min x¡, the maximum or minimum is meant to be

over all vertices of P belonging to the case under consideration, unless explicitly

stated otherwise.

Turning  to the minimum,  we  have a-b^A, or b^(N—l—A)/2. Again,
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(N-l-A)/2=(ß-(N-l)(v-8ri))/28rj^0, since ß=xN^(N-l)(ri-8r,).  Putting

¿>'=min (A-í, [(A-1 -A)/2]), we have

(11') minx, = ß-(N-i)r, + 8r,(-b' + (N-i-b')) = ß-2b'8r,-(N-i)(v-8ri).

The remaining three cases are treated in a completely similar manner. Therefore,

we just list the statements corresponding to (8'), (9'), (10'), and (11') for each of

those cases.

Case 2. l<kgi.

(8") Xi = ß-(N-i)r, + 8r,((-iyi+...+(-iy»-1),

C= (a-ß + (N-l)r,)/8ri-l

(9") g   (-l)£l+...+(-l)£*-2 + (-l)S*+...+(-l)**-l

g (a-ß + (N-l)r,)/8rj+l - D,

max Xi = ß + 2a"8r¡ - (N- i)(r¡ + &,)

U   ' with a" = min (N-i, [(D+N-2)/2\),

náñXi = ß-2b"&t,-(N-i)(7,-b,)

{     > with b" = min (A-i, [(N-2-C)/2]).

Case 3. i<k^N.

(8") X, = a + (/-l)7? + Sr?((-l)»i+...+(-l)^-i),

E= (ß-a-(N-l)r,)/8r,-l

(9") ^ (-l)ei+...+(-l)^-2+(-l)e*+..-+(-1)^-1

^ (j3-<x-(A-1)7?)/8t? + 1 = P,

nrri  max*< = <*+2am8r¡+(i-l)(r]-8rj)

U   J with a" = min (i-1, [(P+A-2)/2]),

min x, = a - 2Z>"8t7 + (/- l)(r, + 8t,)

U   ; with b" = min (/-1, [(A-2-P)/2]).

Case 4. k=N+l.

(8'*') X, = a + (/-l)7? + 87?((-l)»i+... +(-l)*«-0,

ro(4n G = (1-a-At,-Sr,)^ g (-1)£!+••■+(-l)^-i
l"    ' i(l-*-(N-l)r,)/8ri = H,

(W»\    max*i = « + 2a(4)8i7 + (i-l)(Ti-8ii)

{      ' with a<4) = min (i-1, [(//+A-1)/2]),

minx, = a-2è<">87?+(i-l)(t? + 8T,)

11J   ' with bw = min (/ -1, [(A-1 - G)/2]).

Because of D -1 ^ P we have a" ̂  a' ; similarly, C+1 ^ ^4 implies b" ̂  V. Therefore,

Case 2 can be dropped. For similar reasons, Case 3 can be dropped in favor of

Case 4.
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Let us look at (10') and (10<4)).  Putting a' = min(N-i,(B+N-l)/2) and

â<4)=min (i-1, (H+N-1)/2), we have

(12') maxxi è ß + 2ä'87,-(N-i)(7, + 8ri),

(12(4>) max*, g a + 2ä(4)87?+(i-l)(7?-S7,).

It is easily seen that the value of the expression on the right-hand side of (12')

corresponding to |S=1-77-877 is less than or equal to the value of the same

expression corresponding to ß= 1. Thus

(13')     max*, S l + 287¡mm(N-i,(N~l)/2 + (N7¡ + 87¡-l)/287,)-(N-i)(7i + 87¡).

For (12(4)), €£=77 + 877 yields the value which is possibly larger:

max*, Ú 7i + 87i + 287,min(i~l,(N-l)/2+(l-N7,-87i)/287,)
U ' +0-1X7,-87,).

Put T=(N-l)/2+(l-N7i-87¡)/287¡. Using min (c-d, c~e) = c-max (d, e) in

(13'), we can write (13'), (13(4)) in the form:

(14') max x¡ ^ l+2(N- 1)87¡-(N-í)(7¡ + 87I)-28ti max (i-1, T),

(14<4))        max*, ^ 7/ + 87, + (i-l)(7,-S7?) + 287?min(i-l,r).

If i-1 éT, then the right-hand sides of (14'), (14(4>) are both 1(77 + 877); therefore,

(15) max x( ^ 1(77 +S77)   fori-l^r.

If i-\>T, then the right-hand sides of (14'), (14<4)) are both \-(N-i)(7j-Stj);

therefore,

(16) max xt g, 1 - (N- í)(t¡ - 8t,)   for i-1 > T.

In both (15) and (16), the maximum is extended over all vertices of P. Let us now

look at |*,— //JV|. In accordance with the above results, we shall distinguish two

cases :

Case I. i'^r+l=(l-.7V(77-S77))7287;. This case can only occur if T+l^0, i.e.

if JVtj^I/O-S). We have then xt-i/N^i(7] + 87¡-l/N). We can assume 77 + 877

— l/N^O, for otherwise all x¡ — i/N are negative, hence max \xt — i/N\ will occur

at the minimal value of xt. Thus Nt¡ = 1/(1 + 8), hence 1/(1 + 8) ̂ Afy ̂ 1/(1 -8).

Furthermore,

* *•/,_*      1\ <, 1-M,(1-SW     .      1\      2Nt}-\-N2t]2(1-82)
Xl~Ñ = V + *1-Ñ) =        2877        (^-Ñ) = 2N8t¡ -*•

Set Nt) = í, and A(í) = (2í-l-í2(l-82))/2S/. Since h(t) has an absolute maximum

in the interval [1/(1 + 8), 1/(1 - 8)] at r0 = 1/VO - S2), we get

xt-i/N é h(t0) = 8/(l+V(l-S2)).



288 H. NIEDERREITER [November

Case IL i>r+l = (l-A(Tj-8Ti))/287/. This case can only occur if P+lSA,

i.e.ifA7)^l/(l + 8).Wehavex¡-//A^l-(A-/)(7?-8r/)-//A=(A-0(l/A+S7?-7?).

For the same reason as above, we can assume I/A+Stj — 77 2:0, or AtjíS 1/(1 — 8).

Therefore 1/(1 + 8) á At; ̂  1/(1 - 8). Furthermore,

*.-! S <«-o(i+S,-,) =< (.-lÄfi)(i+S,-,)

2At?-1-A2t?2(1-82) 8

2A8tt = l+V(l-82)'

As to the minimum, we have to start from (11') and (11<4>). We get estimates from

below for min x¡ by replacing b', ¿>(4> by b' = min(N—i,(N—l—A)/2) and bw

= min (/— 1, (A— 1 — G)/2), respectively. Working in the same way as above through

the statements corresponding to (13'), (13(4)), (14'), and (14(4>), we finally arrive at

(17) minxj S: (i- l)(v - 8r¡)   for i-l ú U,

(18) minxi ^ l-(N-i+l)(r¡ + 8ri)   for/-l > U,

with í/=(A-1)/2-(1-Atj-8t?)/28t?. The minimum in (17), (18) is meant to be

over all vertices of P. In the same fashion as in Case I and Case II from above we

obtain (1- l)/A-x,^ 8/(1 + V0 -S2)). Therefore

1 8 _±<_JL_
a i+V(i-s2) = *' a=i+v(i-s2)

and

8 _ÍZÍ<I 8
i+V(i-s2) = Xi    X = a+i+V(i-s2)'

hence

l-w-x'\)=h+i+v(i-*) fr***1*'**

which yields the desired estimate for DN.

It remains to consider the case 8=0. We have x¡ = Xi + (i-l)r¡, hence x¡ — (i—I)/N

=x1 + (/-1)(t?-1/A). If TfZl/N, then Oèxi-(i-l)/Nèx1 + (N-l)(T,-l/N)

= xJV-l + l/Agl/A and   -l/Nux(-i/N£.0. If tt<1/A, then r)£xt-(i-l)/N

^x1 + (A-1)(t,-1/A) = xn-1 + 1/A^-t?+1/A and ti-I/A^-i/AS;-•>?. In

any case, we have

max (l/'/A-Xil, |(/- 1)/JV—jcf|) ^ min (t,, 1/A)   for all i, l ú i ^ N,

and so DN^min (r¡, 1/A). The proof is complete.

max
(i-
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The given estimate is, in fact, best possible. This is illustrated by the following

example. The sequence :

2   4   2   8   2   7   11  23 4 5  13   9   14 29  ,
Î5' Î5' 5' IT 3' ÏÔ' 15" 30' 5* 6' B' TO' B' 30' l

is an almost-arithmetic progression-(S, e) with 77 = 1/12, 8 = 3/5, and #=15. We

have l/N+8/(l +-s/(l-82)) = 2/5. On the other hand, \(l/N)A([0, 2/3); TV)-2/3|

is also 2/5.

We may also give an estimate depending solely on the parameters 8 and 77, by

just estimating the number TV of elements in the sequence in terms of 8 and 77:

Corollary. //" 77 -+ S77 < 1, then

DN S (V + 871)/(l-7,-87)) + 8/(l+V(l-82)).

Proof. This follows from 1 - 77 - 877 ̂ xN ̂  TV(tj + 877).

3. More general sequences. Having established a sharp upper bound for the

discrepancy of almost-arithmetic progressions, we now proceed to estimate the

discrepancy of sequences which essentially are obtained by superposition of almost-

arithmetic progressions. To this end, we first prove the following

Lemma 3.1. For Ifíi^k, let tu, be a sequence of TV, elements from the interval

[0, 1] with discrepancy D$t. Let to be a superposition of <*>i,..., ojk, i.e. a sequence

consisting of the elements of the oj, in some order, and set N=NX+ ■ • ■ +Nk. Then,

for the discrepancy DN of o> we have DN Ú 2*. 1 (TVi/TV)/)^.

Proof. For 0<a^l, let A(a; TV¡; co{) (resp. A(a; TV; w)) denote the counting

function A([0, a); TV¡) (resp. A([0, a); TV)) with respect to the sequence to, (resp. w).

Then A(a; TV; cu) = 2íc=i A(a; TV,; tt>¡). Hence

i N-

Theorem 3.1. Let w be a sequence of TV elements from the interval [0, 1] which

satisfies the following condition: œ can be partitioned into k almost-arithmetic

progressions-(8h et), 8, ̂ 8<1, having TV¡ elements, with TV0 elements leftover. Then

the discrepancy DN of w satisfies

n   - k 1 Y Ni        8i        1 ̂ ° - k 1 N~N°        8 1 ̂ °
N = N   AN l+V(l-8f)    N = N       TV     1+VO-S2)    N'

Proof. Let w0 be the sequence having TV-TV0 elements which is obtained by

superposition of the k almost-arithmetic progressions. Then for the discrepancy

-Djpi „0 of w0 we have

A(a; TV; w)

TV

4 TV, (A(a;Ni;wt)     \
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Using the same simplified denotation as in the proof of Lemma 3.1, we have, for

0<a5¡ 1, A(a; A; co) = A(a; A—A0; oj0) + r(a), with r(a) denoting the number of

the A0 remaining elements which lie in [0, a). Then

A(a; A; co)
-Ä-a

f-N0(A(a;N-N0;co0)     \N0(r(a)     \

<N-No A0 ^ k     A Nt 8, Ao

A    "*-*• ' A - A ' &N 1+V(1-S2) ' A'

As to the second inequality, it suffices to note that the function/^) = t/(\ + \/(l — t2))

is monotonically increasing on the interval [0, 1).

Remark. By Theorem 1.1, every sufficiently long initial segment of a uniformly

distributed sequence satisfies the condition of the above theorem with arbitrarily

small A0/A.

4. Application. The results of the previous section can be used to prove a

quantitative form of Fejér's theorem. In addition, we get an estimate for the dis-

crepancy of sequences which are slowly, but not too slowly, increasing. Our method

can be applied to this case in a rather straightforward way, since the decomposition

into almost-arithmetic progressions can be exhibited explicitly.

Theorem 4.1. Let f(x) be a monotonically increasing function defined for x^l

which  has  a  continuous  derivative for  xS:x0.   Furthermore,  limx^xf(x)=oo,

lim^oo x/'(x)=oo, andf'(x) tends monotonically to zero for x->oo. Consider the

sequence (an) = (/(«)), « 2:1. If DN denotes the discrepancy of the partial sequence of

fractional parts {ax},..., {aN}, then DN = 0(f(N)/N+ 1/A/'(A)).

Proof. Let g(x) be the inverse function of f(x). The following facts about g(x)

are pertinent: both g(x) and g'(x) tend monotonically to infinity; lim^,*, g'(x)/g(x)

= lim;c^«:0 l/g(x)f'(g(x))=0; for a fixed real number c, by de l'Hôpital's theorem,

lim ̂ ±f} = lim ̂ ±f} = lim exp(logg(x+c)-logg(x))
r-*oo       5 \X) A-* co       5 V*"/ x-*oo

= lim exp (c^M) = 1    (with exp (y) = ey).

There exists a natural number m^x0 such that/(m + l)-/(m)< 1. Furthermore,

the sequence (/(« + 1) -/(«)) is monotonically decreasing for «ä«i. Put

/0 = [f(m)] +1. The sequence {aj,..., {aN} is decomposed in the following way :

for fixed i, i0 á i Ú [/(A)] -1, collect all {an} with i ̂  an =/(«) < / +1 into a sequence

tu,. We shall first estimate the number A¡ of elements of co¡. If f(r),f(r + 1),.. .,f(s)

are in [/, i+l), then Nt=s-r+l < l//'(f)+l <C//"'(£) with a positive constant

C and r g ( ¿í. Set z =f(£), then A, < Cg'(z) < Cg'(i+1).
For fixed i from above, let a be the largest integer such that/(a) a», and let b be

the smallest integer such thatf(b)^i+1. Put d1=f(a+l)-f(a), d2=f(b)-f(b-\).
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Then a>, is an almost-arithmetic progression with parameters 77,, 8, determined by

77, + 8,77, = dx, and 7]i — 8i7]i — d2. We have d1 = l/g'(u) with f(a)<u<f(a+l), and

d2=l/g'(v) with f(b- l)<v<f(b). Then

s   =di~d* = g'(v)-g'(u)     g'(f(b))-g'(f(a))
1     d, + d2     g'(v)+g'(u) < g'(i)

since b-a^2, hence v>f(b-l)^f(a+l)>i. Since f(b)<i+2 andf(a)>i-l, we

getS,<te'0-+2)-g'0-l))/^'(0.  "
The elements {an} which are not contained in a sequence to, are those for which

either an<i0 (there are B of them, say) or [/(TV)]^an< [/(TV)] +1 which, by the

estimate for TV,, is satisfied for at most Cg'([f(N)] +1) elements. By Theorem 3.1,

we get

n   < LAAQl-io , 1 inN£-" ra,n, ,vg'0 + 2)-g'(/-l)   J?+Cg'([/(TV)] + 1)^ =        TV       +TV  ,4    Q(?+1) FÔ) + *

= 0(£p) + o(±g'([f(N)]+ 1) + I g'([/(TV)]) + i g'([/(TV)]-1))

+ 0Itv/7(tv))

\ TV     Nf'(N))

Remark. Under the same conditions on f(x), Fejér proved only the uniform

distribution modulo one of the sequence (an). This is, of course, contained in the

above theorem because of limx_a>f(x)/x=limx^CBf'(x)/l =0. For a proof of

Fejer's theorem, see [4, p. 237].

The classical examples of functions f(x) satisfying the conditions of Theorem

4.1 are f(x)=ax°, a>0, 0<ct<1, and f(x)=a(logx)a, a>0, a>l. For those

special cases we get

Corollary 1. The discrepancy DN of the sequence of fractional parts {an"},

n=\, 2,..., a>0, 0<ct< 1, satisfies DN = 0(Nt'1) with r = max (a, 1 -a).

Corollary 2. The discrepancy DN of the sequence of fractional parts {a(log n)°},

n=\,2,...,a>0, a> 1, satisfies DN = 0((log TV)1_<7).

Added in proof. The first inequality in Theorem 2.1 can actually be proved by

more elementary means, as will be shown in. a forthcoming book by L. Kuipers

and the author. The strength of the present approach lies in the fact that (10'),

(10(4)), (11'), and (11<4)), together with (4), yield an upper bound for DN which is

attained for all values of TV.
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