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ENDOMORPHISM RINGS OF TORSIONLESS MODULES

BY

ARUN VINAYAK JATEGAONKAR

Abstract. Let A be a right order in a semisimple ring 2, MA be a finite-

dimensional torsionless right ,4-module and MfA be the injective hull of M.

J. M. Zelmanowitz has shown that g = End MA is a semisimple ring and 5 = End MA

is a right order in Q. Further, if A is a two-sided order in 2 then 5 is a two-sided

order in Q. We give a conceptual proof of this result. Moreover, we show that if A is

a bounded order then so is S. The underlying idea of our proofs is very simple. Rather

than attacking S = End MA directly, we prove the results for 5= End {MA © AA).

If e: MA © AA -*• MA © AA is the projection on M along AA then, of course, S^eBe

and it is easy to transfer the required information from B to 5. The reason why it is

any easier to look at B rather than S is that MA © AA is a generator in mod-A and a

Morita type transfer of properties from A to B is available. We construct an Artinian

ring resp. Noetherian prime ring containing a right ideal whose endomorphism ring

fails to be Artinian resp. Noetherian from either side.

1. Preliminaries. Throughout this paper, all rings are associative and have

unity, all modules and bimodules are unitary. We always write homomorphisms

on the opposite side of the scalars.

Let A be a ring, UA be a right y4-module, 5= End UA and i/* = Hom (UA, A).

Then U is naturally a (B, y4)-module and U* is naturally a (A, 5)-module. Let E

denote the endomorphism ring of the left ,4-module AU*. Then we have a homo-

morphism 8: B^ £ defined by (x)(6(b)) = xb for all xe U* and be B. The map 9

is called the canonical homomorphism of B into E.

From the module UA, we can prepare the usual pre-equivalence data

(B, A, U, U*,fg). We shall usually suppress mention of/ and g while working

with this pre-equivalence data. For details, see [2, p. 67].

As pointed out in the abstract, we shall mainly deal with the case when UA is a

generator in mod-,4 with various further conditions on A and UA and we shall

examine the behavior of B. We shall be particularly interested in the case when UA

is torsionless. Recall that a module UA is said to be torsionless if

(0) = n{ker/|/eC/*}.

Also recall that if UA is a generator in mod-/l then AU* is a generator in ^4-mod

and BU is a finitely generated projective (cf. [2, p. 63]).
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The usual presentation of Morita theorems, i.e. [2], develops a close connection

between right ^-submodules of UA and right ideals of P when UA is a progenerator

in mod-A. Recently, C. Faith has proved that this connection can be retained in

suitably modified form when UA is just a generator in mod-A Since we shall

repeatedly need it, we quote it without proof; for proof see [3].

1.1. Theorem (C. Faith). Let UA be a generator in mod-,4 and P=End UA.

Given a right A-submodule W of U, put p0(W) = {b e B \ bU^W} and p(W)

= Po(W)T where T is the trace ideal of BU. Then P(W) is a right ideal of B, p(W)T

= p(W) and p(W)U= W. The map Wi-> p(W) defines a lattice isomorphism

p: {right A-submodules ofU}-*{K\Ka right ideal of B with KT = K}.

The inverse of p associates a right ideal K of B with KU. The restriction of p yields a

lattice isomorphism

p: {(B, A)-submodules ofU}^{I\I an ideal of B with IT = I}.

Given an ideal J of A, put </>(/) = UJ. Then >/j defines a lattice isomorphism

<\>: {ideals of A) ->{W\ W a (B, A)-submodule of U with TW = W}.

The map S=p ° */> defines a multiplicative semigroup isomorphism of ideals of A

with {I\Ian ideal of B with TIT=I).

The following corollary is immediate.

1.2. Corollary (C. Faith). Per UA be a generator in mod-A. Then

(1) A is semiprime if and only if PA=(0) for every nilpotent ideal X of B. In

particular, if B is semiprime then so also is A.

(2) A is prime if and only if the following holds in B: If J, Kare ideals of B with

JK=(0) then P/=(0) or TK=(0). In particular, if B is prime then so also is A.

We now impose some additional hypotheses on UA and examine the behavior of

P. If MA is a yl-module, d(MA) denotes the uniform dimension of MA.

1.3. Theorem. Let UA be a generator in mod-A. Then the following assertions

hold:

(1) UA is torsionless o 6 is a monomorphism o U* is faithful. If these equivalent

conditions hold then A is prime or semiprime if and only if B is respectively so.

(2) UA is finite dimensional if and only if B is a right finite-dimensional ring. In this

case, d(UA) = d(BB).

(3) A right ideal K of B is essential in B if and only if KU is an essential right

A-submodule of U.

(4) If UA is nonsingular then B is a right nonsingular ring.

Proof. (1) Suppose UA is torsionless. Let b e B with 6(b)=0. Then U*b = (0)

so U*(bU) = 0 so bU=(0) which means b = 0. If 6 is a monomorphism then clearly

Ub* is faithful. Suppose C/| is faithful. Put W=f) {kerf\fe U*}. Evidently, IF is
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a (B, /l)-submodule of U so, by Theorem 1.1, W=IU for an ideal / of B. Now,

(0)=U*W=U*(IU) = (U*I)U yields U*I=(0) so /=0 and W=IU=(0). Thus UA

is torsionless.

Assume that UA is torsionless and that A is prime. Let J, K be ideals of B such

thatJK=(0). By Corollary 1.2, TJ=(0) or TK=(0) where Tis the trace ideal of BU.

By Morita theorems, U* is a finitely generated projective ß-module and

t/ca~n Horn (Ut, B). It follows that Tis the trace ideal of £/| and £/*7= U*. Now

77=(0) yields 0=U*TJ=U*J and faithfulness of i/^ yields J=(0). Similarly,

TK=(0) yields A=(0). Hence B is prime. The converse is contained in the Corollary

1.2. The other assertion is similarly proved.

(2) Let J, K be arbitrary right ideals of B. Then JU n KU=JTU n KTU

= [JT n KT]TU by the lattice isomorphism in Theorem 1.1. Since [JT r\ KT]TU

ç(7n K)UçJU n KU, it follows that /E7 n KU=(J n A)i/.

Now suppose that UA is a finite-dimensional module, say diUA) = n. If possible,

let @?= i1 A~j be a direct sum of n+1 nonzero right ideals of B. If xe KtU

n 2;#j AyC/ then, using the above observation and the lattice isomorphism in

Theorem 1.1, x e (A¡ n 2J#¡ A,)£/=(0). Thus @"=i A"¡t/ is a direct sum of nonzero

^-submodules of UA, contrary to diUA) = n. Thus B is a right finite-dimensional

ring and diBB)<,diUA).

Suppose that BB is finite dimensional, say diBB)=m. If possible, let ©¡"^í1 W¡

be a direct sum of nonzero ^-submodules of UA. By Theorem 1.1, PiWi)U= Wh

so p(IFj) are nonzero right ideals of B. If be piWt) r\^ji:l piW,) then bU

£W¡n 2i*i Wj = iO) so b=0. Thus, 2¡"=V pW) is direct contrary to diBB) = m.

Hence UA is finite dimensional and diUA)^diBB). Combined with the reverse

inequality proved above, we get diUA) — diBB).

(3) Let K be an essential right ideal of B. If NA is a right /t-submodule of UA

such that KU n A=(0) then piN)U=N and the observation in the proof of (2)

shows that (0) = [K n p{N)]U. Thus K n p(Af) = (0) so />(A)=(0) and consequently,

A=(0); i.e., KU is essential in U.

Conversely, let A" be a right ideal of B such that KU is essential in UA. If / is a

right ideal of B with J n .£=(0) then (0) = [/ n K]U=JU n At/ so /t/=(0) which

yield /=(0). Hence Á" is essential in B.

(4) Let b e B and A" be an essential right ideal of B with bK=(0). Then, as shown

above, N=KU is an essential /i-submodule of U. Let x be an arbitrary element of

U and let (x:N) = {a e A | xae N}. The essentiality of N in £/A shows that (x:N)

is an essential right ideal of A. Since b[xix:N)]^bN=bKU=iO) we have

¿(x)-(x: A) = (0). Since UA is nonsingular, we have f)(x)=0, so f) = 0. This completes

the proof of the theorem.

2. A Theorem of Zelmanowitz. Let A be a right order in a semisimple ring E

and A/¿ be a right ,4-module. An element x e M is called a torsion element if

xc = 0 for some regular element c in A. M is a torsion module if every element of
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M is a torsion element. M is torsion-free if no nonzero element of M is a torsion

element.

We begin with some trivialities concerning modules over A.

2.1. Proposition. Let A be a right order in a semisimple ring. If N is an essential

submodule of a right A-module MA then M/N is a torsion module.

Proof. Let xeM. Since A is essential in M therefore (x: A) is an essential right

ideal of A, so (x:N) contains a regular element, say c, of A. Then xceN i.e.

(jc + A)c = (0)inM/A.

2.2. Corollary. If h: MA-^-LA is a homomorphism, L is torsion-free and ker h

is essential in MA then ker h = M and h = 0.

Proof. M /ker h is torsion and sits in P.

2.3. Corollary. If NA is an essential submodule of a module MA then

AM* canon> ¿A* is a monomorphism.

2.4. Proposition. Let A be a right order in a semisimple ring and MA be a right

A-module. MA is finite dimensional and torsionless if and only if MA is isomorphic

with a submodule of a finitely generated free right A-module.

Proof. Let M he finite dimensional and torsionless. Let & be the set of all homo-

morphisms M -> Am for all nonnegative integers n. Choose h: M-> Aim) such that

¿(ker A) = min {¿/(ker/) \fe&}. Put P=ker/i. If P^O, choose a uniform VA^K

and an element O^x e V. Since M is torsionless, we can choose a homomorphism

g: M -»• A such that g(x)#0. Corollary 2.2 shows that g is injective on V. Define

h':M->Aim + 1> by h'(y) = (h(y), g(y)) for all y e M. Since ker h! = K n ker g, it

follows that kerA'n V=(0) so d(ker h')<d(K), contrary to our choice. Thus

h: M —> A{m is a monomorphism. The converse is trivial.

We now prove the following crucial lemma.

2.5. Lemma. Let A be a right order in a semisimple ring 2, UA be a finite-dimen-

sional torsionless right A-module which is also a generator in mod-A, UA be the

injective hull of UA. Put P=End UA and A = End UA. Then

(1) A is a semisimple ring and B is a right order in A.

(2) IfL is simple then so is A.

(3) If A is a two-sided order in 2 then B is a two-sided order in A.

Proof. (1) Since every essential right ideal of A contains a regular element,

therefore UA is a nonsingular module. By Theorem 1.3, B is a right finite-

dimensional, right nonsingular semiprime ring. By Goldie's theorem, P is a right

order in some semisimple ring. Thus every essential right ideal of P contains a

regular element of P.

It is clear that every homomorphism b: UA^- UA can be extended to a homo-

morphism h:UA-^- UA. It is immediate from Corollary 2.2 that b is uniquely

determined by b and that b\->h defines a monomorphism a: P-> A. We shall



1971] ENDOMORPHISM RINGS OF TORSIONLESS MODULES 461

identify B with aiß) by a. This identification is tacitly made in the statement of the

lemma.

It is well known that ÛA is, in fact, the module of quotients of UA, ÛA can be

naturally considered as a right 2-module, diUA) = diÛA) = diÛz) and that the

E-endomorphisms of Û are precisely the ^4-endomorphisms of Û (cf. [7]). Hence

A is a semisimple ring and A is simple if S is simple.

We proceed to show that B is a right order in A. Let b0 be a regular element of B.

If ker/>0^(0) then ker b0 n U^ (0). By Theorem 1.1, we have a nonzero right

ideal I of B with IU=kerb0 n U. So, b0IU=iO) which yields ¿>0/=(0), a contra-

diction. It follows that b0 is a unit in A. Let n = diUA). Choose cyclic uniform

/4-submodules xtA of U, 1 ̂ i^n, such that 2"=i x¡A is a direct sum. Let A be an

arbitrary element of A. Since t/is the module of quotients of U, using the common

denominator property in A, we can choose a regular element c in A such that

À(XjC) e Ufor l^i^n. Since UA is torsion free, x¡c^0 for all /'. Thus N= 2"= i xfc^[

is a direct sum of n uniform submodules of UA. Therefore N is an essential A-

submodule of UA and A(A)ç U. By Theorem 1.3, {b e B \ bU^N} is an essential

right ideal of B, so it contains a regular element of B, say b0. Evidently, A/j0(í/)S Í/

so Xb0 e B. Hence 5 is a right order in A. This proves (1) and (2).

Now assume that A is a two-sided order in 2. Since UA is finite dimensional, we

can choose a finitely generated essential ^4-submodule WA of UA. By Corollary 2.3,

AU* canon> ¿IF* is a monomorphism of left /i-modules. Since WA is finitely

generated, we have an epimorphism A(k) -> WA which yields a monomorphism

AW* ̂  AAlk\ It follows that ¿t/* is a finite-dimensional left /i-module. Let

d=diAU*). If possible, let ©fo1 A¡ be a direct sum of left ideals of B. Since t^

is torsionless, Ug is faithful and so C/*A¡#(0) for all z. If x e U*K¡ n £/*( (/*%■

then UxçUU*Ki n t/(2i#i U*Kj)^TKi n 2i#i ^=(0) where T is the trace

ideal of BU. By Morita theorems, AUg ca£on Horn (Bt/, 5). So, i/x=(0) yields x=0,

i.e. St-i1 c/*Aj is a direct sum of nonzero left ^4-submodules of AU*, contrary to

the definition of d. Hence B is finite dimensional on the left. Since B is already a

right order in A, it is semiprime and has the ascending chain condition on left

annihilators. By Goldie's theorem, B is a left order in some semisimple ring. It is

then trivial to see that B must be a two-sided order in A. This completes the proof

of the lemma.

At this point, it is convenient to recall the following fact.

2.6. Lemma. Let Rbe a right order in a semisimple ring Q and e be an idempotent

in R. There eRe is a right order in the semisimple ring eQe.

Proof. See Lemma 1 in [4] and Lemmas 3 and 4 in [8].

We are now in a position to prove the following theorem of J. Zelmanowitz [9].

2.7. Theorem. Let A be a right order in a semisimple ring X, MA be a finite-

dimensional torsionless right A-module and MA be the infective hull of MA. Put

5=End MA and Q = End MA. Then
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(1) Q is a semisimple ring and S is a right order in Q.

(2) IfL is simple then so is Q.

(3) If A is a two-sided order in £ then S is a two-sided order in Q.

Proof. Let UA = MA © AA, P=End UA and e: UA -* UA be the projection on MA

along AA. Then e is an idempotent in P and Sc!i~n eBe. Let ÂA be the injective hull

of AA. Then ÛA=MA® ÂA is the injective hull of UA. If A = End UA then

(2°a~oneAe. It is now easy to complete the proof using Lemmas 2.5 and 2.6.

3. Bounded orders. A right order A in a semisimple ring is said to be right

bounded if every essential right ideal of A contains a two-sided ideal of A which is

essential as a right ideal. A left bounded left order in a semisimple ring is similarly

defined. A two-sided order A in a semisimple ring is said to be bounded if it is

right bounded and left bounded. It is easy to see that if A is a prime ring which is

an algebra over a commutative Noetherian ring P and if AB is finitely generated as

a module then A is a bounded order in a simple Artinian ring. See also [5]. For

some extremely one-sided examples, see [6].

Let A be a right order in a semisimple ring 2. A module MA is called a totally

torsion module if ann MA isan essential right ideal of A, equivalently, Mc = (0) for

some regular element ein A. Note that, if 2 is simple then MA is totally torsion if

and only if it is unfaithful.

3.1. Lemma. Let A be a right order in a semisimple ring. Then the following con-

ditions on A are equivalent:

(1) A is right bounded.

(2) Every cyclic torsion right A-module is totally torsion.

(3) Every finitely generated torsion right A-module is totally torsion.

(4) If NA is an essential submodule of a finite-dimensional torsionless right A-

module MA then M/N is totally torsion.

Proof. We give a cyclic proof.

(1) => (2). Let / be a right ideal of A such that A/I is a torsion module. Then

there exists a regular element c in A such that (1 +I)c = 0 + I, i.e. eel. Thus / is

essential in A. By hypothesis, we have a two-sided ideal T of A such that Pis essen-

tial as a right ideal of A and Pc I; so, ann (A/1) 2 P.

(2) => (3). Let K=Jt?=xx¡A he a torsion module. Choose two-sided ideals P¡

of A such that each T¡ is an essential right ideal of A and (x¡y4)P¡=(0). Let

T=TXT2- • -Tn. Since each P, contains a regular element of A, T must contain a

regular element of A. Evidently PP=(0) so K is totally torsion.

(3) => (4). By Proposition 2.4, we may assume that MA^AM for some positive

integer n. Choose a submodule P of Ain) such that MnP=(0) and M+L is

essential in A<n). Then A+P is also essential in Aw. By Proposition 2.1, A{n)/(N+L)

is a finitely generated torsion module, so totally torsion. Since M/N

~(M+L)/(N+L) ^ AW/(N+L), it follows that M/N is totally torsion.

(4) => (l). Evident. This completes the proof.
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3.2. Lemma. Let A be a right order in a semisimple ring 2, UA be a finite-

dimensional torsionless right A-module which is also a generator in mod-A and

B = End UA. Then B is a right order in a semisimple ring A. If A is right bounded then

so is B. If A is a bounded two-sided order in 2 then B is a bounded two-sided order in A.

Proof. We have already seen that B is a right order in a semisimple ring A and

that B is a two-sided order in A if A is a two-sided order in 2.

Assume that A is right bounded right order in 2. We proceed to show that B is

right bounded. Let K he an essential right ideal of B. By Theorem 1.3, KU is an

essential right ,4-submodule of UA. By Lemma 3.1, U/KU is totally torsion. Thus,

there exists a two-sided ideal I of A such that / contains a regular element of A and

UI^KU. Let Pbe the trace ideal of BU. By Theorem 1.1, there exists an ideal / of

B such that TJT=J and JU= UI. Now JU^KU yields ZsPPsP. We shall show

that / is an essential right ideal of P. Let P be a right ideal of B such that / n L = (0) ;

so, P/=(0) which gives (TBLT)(TJT) = (0). Now, the map S=</> ° p in Theorem 1.1

is a semigroup isomorphism, / is not annihilated by any nonzero ideal of A and

/=£(/)• It follows that TBLT=(0); so, (0) = TBLTU=TLU; so, PP=(0) However,

by Morita theorems, BPca~on Horn (U$, B) so P is also the trace ideal of U£ and

U*T= U*. Thus, PP = (0) yields U*L = (0). By Theorem 1.3, £/B* is faithful so that

P = (0). We have thus shown that / is an essential right ideal of B. Hence B is right

bounded.

Now assume that A is a bounded two-sided order in 2. We continue to denote

the trace ideal of BU by P. If P n P=(0) for some left ideal P of B then PP=0 so

U*TF= U*F=(0) which yields P=(0). Thus Pis an essential left ideal of B and so

contains a regular element of B since P is now a two-sided order in A.

Let H he an essential left ideal of P. Since Pand //contain regular elements of B,

it follows that TH is an essential left ideal of B. Let v be a nonzero element of U*.

Since i/| is a finitely generated projective and B£/Aca~nHom ([/*, P), therefore

there exists an element ueU such that 0#hi> = 6 e P. Since TH is an essential left

ideal of P, we may assume that <J^uv = b e TH. Choose we U* such that wb^O;

this is possible since C/Jf is faithful. Put a = wueU*U=A. Then 0¿av=wur

= wbe U*H nAv. Thus U*His an essential left ,4-submodule of AU*. Now AU*

is always torsionless and, as in the proof of Lemma 2.5, AU* is finite dimensional.

By Lemma 3.1, there exists a two-sided ideal X of A such that A contains a regular

element of A and XU* £ U*H. So, Z/2 TH= UU*H=> UXU* = S(X)UU* = S(X)T

= S(X), where S(X) is the unique ideal of B given by the semigroup isomorphism

S=i/i o p in Theorem 1.1. As above, S(X) contains a regular element of B. Hence

B is bounded. This completes the proof.

3.3. Lemma. Let Abe a right bounded right order (resp. bounded two-sided order )

in a semisimple ring and e be an idempotent in A. Then eAe is a right bounded right

order (resp. bounded two-sided order) in a semisimple ring.
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Proof. Let A be a right bounded right order in a semisimple ring. Lemma 2.6

shows that eAe is a right order in a semisimple ring. Let K be an essential right ideal

of eAe. Then K contains a regular element of eAe, say ece. It is then clear that

ece + (l—e)is a regular element of A and it belongs to the right ideal KA + il— e)A.

Thus KA + il —e)A is an essential right ideal of A. We have an ideal I of A such that

/ contains a regular element of A and I^KA + (l — e)A. Then eIe^eKAe = K. If

X= eXe is an ideal of eAe such that ie!e)ieXe) = (0) then

[IiAeXeA)]2 = IeXieIe)ieXe)A = (0).

Since A is semiprime, IiAeXeA) = iO) and since /contains a regular element of A,

eXe — (0). It follows that e/e is an essential right ideal of eAe. Thus eAe is right

bounded. The two-sided case is now immediate. This completes the proof.

3.4. Theorem. Let Abe a right bounded right order in a semisimple ring 2, MA be

a finite-dimensional torsionless right A-module and 5= End MA. Then B is a right

bounded right order in a semisimple ring A. If A is a bounded two-sided order in S

then B is a bounded two-sided order in A.

Proof. Consider UA = MA © AA. The theorem is immediate from Lemmas 3.2

and 3.3.

4. An example. We give an example to show that the endomorphism ring of a

finitely generated torsion-free module over a Noetherian ring may fail to be

Noetherian.

Let A: be a field, K=k(tit : i,jeZ) be the rational function field in commuting

indeterminates t¡,-, i, j e Z. Let p, a be the unique /c-automorphisms of K defined by

p(t¡j) = ti + xj and v(ttj) = tii + x for all i,j. Observe that ap = pa.

Let D = K[x, p;y, a] be the polynomial ring in indeterminates x, y with co-

efficients in K; the multiplication in D is defined by the relations xy=yx, ax = xp(a)

and ay=y<r(a) for all a e K. These relations are consistent since op = po. As in the

Hubert basis theorem, D is a left and right Noetherian domain. Let F be the quotient

skew field of D. Let I=x2D + xyD+y2D and let N=(x+y)D + I. Evidently, /is a

two-sided ideal of D contained in the right ideal N of D.

Let

ID   D\ IF   F\
B = k + xD+yD,   A-(M    ß),    Q = [p   p\

IN   D\lx+y    U IF   A

\0    0/      \   0      0/ \0    0/

It is easily seen that A is a left and right Noetherian prime ring which is an order in

the simple Artinian ring Q and MA is a uniform right ideal of A. Since XQ is a

simple module, XA is a torsion-free uniform injective ^-module and thus an injective

hull of MA (cf. [7]). Using Corollary 2.2, every .4-homomorphism b: M¿->- MA

can be uniquely extended to a g-homomorphism h : XQ -> XQ. The map b *->■ b is

easily seen to be a monomorphism
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End MA -> End Xc
- \0   0}

Thus

EndM-{(o olh^'G o)M^Ho  o) = A

It is readily seen that the ideal xD+yD of P is not finitely generated from either

side. Thus End MA is not Noetherian from either side although it is a two-sided

order in the skew field P.

We proceed to show how the above example can be modified to obtain an instruc-

tive Artinian ring.

Let J=x3D + x2yD + xy2D + y3D. Clearly, / is a two-sided ideal of D as well as

of P. Put D = D/J, B = B/J, N=N/J, 1=1 /J,

ID    D\ ,    _      IN   D\
P=(;     _)    and    M=(o     J-

Then P is a left and right Artinian ring and

is a right ideal of P. Identify P with

so that B is a (not necessarily unitary) subring of R. It is readily seen that the map

bi : MR ->- MR defined by b¡(m) = bm Vm e M is a P-homomorphism and that

bh^bt defines a monomorphism P -> End MR. Let/e End MR; say,

Using

WJDCHOU
it follows that A-j = r2(Jc+>') so that r2 e P. Then/is induced by (02 g); so, End MB

g P. It is clear that the ideal / of P is not finitely generated from either side. Thus

End MR is not Artinian from either side although P is Artinian from both sides.

Some concluding remarks are in order.

1. Apparently, J. E. Björk has an example of a two-sided Artinian ring P

with a P-module MR such that End MR is not Artinian from either side. Although

I have not seen his example, I was aware of its existence while constructing the

above example. Our Noetherian example appears to be new.
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2. J. M. Zelmanowitz [9] contains some examples to show that endomorphism

rings of finitely generated torsion-free uniform modules over right Ore domains

may be unpleasant.

3. Recently, S. A. Amitsur [1] has shown how "Morita context" can be utilized

to get the theorem of Zelmanowitz (among other things). Our proofs differ from

Amitsur's both in the underlying idea as well as its execution.
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