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OSCILLATION PROPERTIES OF TWO TERM

LINEAR DIFFERENTIAL EQUATIONS

BY

G. A. BOGARH

Abstract. The two term differential equations Ln[y]+py = Q, where L0[y] = y,

Li[y] = (pi(t)Lt[y(t)]y, were recently studied by Z. Nehari. In this paper we give

integral conditions which assure the integrability of pî1(t)p(t) on [a, oo) when

L„[y] is disconjugate. By changing the integral conditions slightly we then prove that

the equation has n linearly independent oscillatory solutions.

1. Introduction. The differential equations, which will be considered here, are of

the form

(1.1) Ln[y]+Py = 0,

where L0[y]=y, Li[y] = ipiLi^x[y])', i=\,...,n, and pt(x) are positive and

continuous in (0, oo). Also pix) is continuous in (0, co).

A function y will be considered as a solution of (1.1) if Lj[y],j=0,...,«, exists

and is continuous and y satisfies (1.1).

Definition 1.1. (a) Equation (1.1) is said to be disconjugate on [a, oo) if no

nontrivial solution of (1.1) has more than n—\ zeros, counting multiplicities, on

[a, co).

(b) If y is a solution of (1.1), y is said to be oscillatory on [a, co) provided it has

infinitely many zeros on [a, co).

Definition 1.2. For t e [a, oo) define r¡x{t) to be the greatest lower bound of the

set of all b>t such that (1.1) has a nontrivial solution with at least n zeros on

[/, b]; r)xit) is called the first conjugate point of t.

Definition 1.3. A fundamental set of solutions {u^ix, t)} of (1.1) is defined by

La[ußit, t)] = oa¡B,       («, ß = 0,..., n-1).

In §2 we prove a theorem which gives Theorem I of Z. Nehari [5] with less

conditions and Theorem 11.2 of W. Leighton and Z. Nehari [2] for equation (1.1).

§3 is devoted to conditions under which there exist n oscillatory solutions to (1.1).
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2. First let us develop some notation which will be used in the remainder of the

paper.

t2-1) <Pk(x,a)=\   -j-\\    -77T" TTt—V
Ja   P2U1) Ja    ÍW2) Ja PkVk-l)

(2.2)     i/.fc(x, a) =       -77^:-7T\-\       TTt-V       k = {2,...,n},
Ja   PkUl) Ja    Pk+Ah) Ja PnVn-k+l)

and

(2.3)        Sfcfl).r*L_r * ...r ^-_.
Ja   PnUl) Jd  Pn-lU2) Jí»-! P2('n-l)

Theorem 2.1. Let p(x) and p¡(x) (i=\,.. .,n) be continuous and positive on

[a, 00). Suppose that */>k(x, a) -*■ 00 as x -> 00 (k = 2,..., n— 1). //" i/ie differential

equation (1.1) is disconjugate on [a, 00), i/ie« ¿¡[»„^(x, a)]a:0 on [a, 00) w/iere

/={0,...,«-l}.

Proof. Let j=«n_1(x, a). If, for some ; e {1,..., n- 1}, L¡[^] has more than one

simple zero on (a, 00), then by repeated application of Rolle's Theorem, we see

that Ln[y] must have a zero on (a, 00), but this is a contradiction.

AssumeLx[y] has a zero on (a, 00), say at x = cx; then by Rolle's Theorem Li[y],

i e (1,2,..., n—1), has a zero on (a, Cj). Since «„^(x, a)=j(x), we know that all

the functions Li[y], for 1 £i<in— 1, are negative on [cx, 00). Also Ln[j]= — py so

that Ln[j] <0 on [cx, °o) and

Ln[y] = -     W < 0;
JCx Jcx

therefore

-PnLn-1[j'](x)> -p„Ln-l[>;W]U = c1  = c >  0

or

-£n-iLvK*) = c/p„(x) > 0.

Thus after integrating n times, we have

-pxy(x) + Pxy(cx) ^ c>p2(x,cx) > 0.

Now

lim ((-PijOW + piXci)) è œ,

but this is a contradiction.

By using a similar argument and the hypothesis that ¡/«¡(x, a) ->■ 00, we can show

that Lj[>']^0 on [a, 00) andLi[>']>0 on (a, 00), f=*l.n— 1.

Using Theorem 2.1, we can now prove Theorem I of Z. Nehari [5] with the

hypothesis that <pk(x, a) -> 00 as x -> 00, k e {2,..., n — 1}, deleted.
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Theorem 2.2. Let pix) and p¡(x) (z'=l,...,n) be continuous and positive on

[a, oo). Suppose >/ik -*■ co as x -> co for k = 2,..., n — 1. If the differential equation

(1.1) is disconjugate in [a, oo), then [pxix)]~ 1pix) is integrable over this interval and

/•OO

Pi(x)5(x, a) I    pxypdx ¿ 1.

The hypothesis that «/«k ^ oo as x -^ oo, ¿=2,...,«— 1, leads also to a generaliza-

tion of a theorem of Leighton and Nehari [2] for yav)+py=0 and Leslie [3] for

yW+py = 0.

Lemma 2.1. If y satisfies equation (1.1) and >>(x)>0 for xe(«3, co), b^a, and

</>kix, a)—^oo as x-> oo, ¿ = {2,..., n}, then Ln_xyix)>Ofor x e(6, co).

Proof. Assume Ln_xy has a zero on (A, co), say at x = c, then Ln-1y(x)<0 on

(ci, co), fj >c, since ¿„.^(x) can have at most one zero on (A, oo).

Ln[y] = p„Ln-xyix) = pnLn^xyicx) < 0
Jcx

-L„-X[y]ix) = -pnLn_xyicx)lPnix) > 0.

f*    c
- Pn-iLn-2[y(x)] + pn-xLn-2yic2) =      —^

or

Now

dt
°1

and

lim [-p„_iL„-2^M + Pn^n-23'(ca)] = °°
JC-.00

which implies L„_2[>'(x)] -> — oo as x -> oo. Thus, there exists a c2 such that

Í»-¡[>W] < Oon [c2, co).

Now

«5

and

r*  c
-í>n-l¿n-abW] + />»-li,-2l<Cs) = —¡-.dt

Jc2 Pni

C*    c
-Pn.xLn_2yix) >       —rr.dt.

Jc2 Pnit)

Using this process and «/^(x, a) -> co for x^oo, ¿ = (2,..., n— 1), we arrive

finally at

-pnyix) + pxyicn-x) > <5</>2(x, cn_0 > 0.

Hence

lim ((-Pij)(x) + p1>'(cn_1)) ä co,
JC-+0O

but this is a contradiction.
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Lemma 2.2. If (l.l) is nonoscillatory and y is a solution o/(1.1), y is a solution

of(l. 1) which is positive on (a, co). Also suppose ^(x, a) -> oo as x -> oo, i/ien

~œ < lim tTTT\ = lim PnA.-i.K*) < oo
je-»» j n^x, a)       X-><X

when Tk(x, a) = (\/px)<pk(x, a), k = 2,..., n, and Tx(x, a)= l/px.

Proof. After n- 1 integrations by parts of (1.1), we can write (1.1) as

(2.4) F(x, a) = y(x)+ ¡* Fn(x, t)p(t)y(t) dt
Ja

where F(x, a) = X=o Pk+i[Lk}']*=a3rfc+i(x, a). Since j(x)>0, then

R(x, a) <. y(x) + Tn(x, a) j* py dt.

Thus,

(2.5) j^ S ^-) + pnLn_^(a)-pnLn_l(x).

Now

7fc(x, a)      Ffc(x, a)        1 _ <pfc(x, a)        1

Tn(x, a)      Tk(x, a) tfik+ x(a, a)      <pk(x, a) >/)k + x(a, a)

If <pk(x, a) -> oo as x -> oo, then lim*-.,*, <pfc(x, a)/<pk(x, a)= 1 ; hence Fk(x, a)¡Tn(x, a)

->-0, fc=2,...,«—1. On the other hand, if ç>k(x, a)^k as x^oo, then

Fc(x, a)¡Tn(x, a) -»■ 0, A: = 2,..., n — 1. Hence

(2.6) lim |^4 = aA-iMU—
A-.» J nt,x, a)

Because of Lemma 2.1 and Ln[_y]<0, the lim*-.« Ln^xy(x) exists. Combining

(2.5) and (2.6)

lim pn(x)Ln.xy(x) ^ lim inf  y(*}'  .

From (2.4) if a < e < x, we can obtain

Tjx-a) = FÏxT^+^xT^)^^-^^-^-^^-

Since 0<limx^œ <pn(x, ¿)¡<pn(x, a)-¿ 1, we have by (2.6) for a fixed £

PnLn-i.yOO ̂  lim sup   ^ *    •

Since Ln-iJ' is decreasing and the e above was arbitrary, we have

lim PnLn-xy(x) è lim sup   y* .•
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Theorem 2.3. Suppose <¡>kix, a) -*■ co as x-^oo, then (1.1) has a principal

solution yix, a) such that

lim Tñ 1ix, d)\y(x)\ = c       (0 < c < oo)
¿c-»co

//a««i ow/y //J"" rn(x, a)/?(*) «ix < co (0 < a < co).

Proof. In order to prove the sufficiency, we first choose a large enough so that

/*oo

Tn(x, a)pix) dx < \.
Ja

Now let yix, a) = un-xix, a) and assume that 7¡1(a)<oo. Using equation (2.4) the

assumption that r¡xia) < co leads to the contradiction

¡•nxia)

1 Ï Tnit, a)pit) dt < \.
Ja

Thus ?;1(a) = oo and therefore, by Lemma 2.2, limA._a> _y(x)/Tn(x, a) exists.

Using equation (2.4), we see that rn(x, a)tyix) and that

Tn(x, a) Í yix) + Tnix, a) f Tn{t, a)p[t) dt.
Ja

Hence Tn(x, a) <y(x) + Tn(x, a)¡2 or ±<yix)¡Tn{x, a) g 1.

Since the lim,.,.«, j(x)/Tn(x, a) exists and %<y(x)¡Tn{x, ä)^ 1, the sufficiency is

proven.

The necessary part is a direct generalization of the proof given by Leighton and

Nehari [2] for yIV>+/>}>=0.

For the equation

(2.7) L[y] = yM+py = 0   with p ^ 0 and n ^ 2,

we obtain the following corollary:

Corollary 2.1. Equation (2.7) has a principal solution yix) = yix, a) such that

limx_n + 1|j(x)| = c       (0 < c < oo)
JC-.00

if and only if\1 xn " xp(x) dx < oo (0 < a < oo).

3. Conditions for oscillation of equation (1.1). Before proving the main results

of this section we prove a lemma and develop some notation.

Lemma 3.1. If the differential equation (1.1) is nonoscillatory on [a, oo), then the

zeros in (a, co) of Li[un_xix, a)] are at most simple for 0^i^n—l. Moreover,

between the zeros of u„-xix, a) in (a, oo), there exists one and only one zero of

Li[un-x],Oíién-l.
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Proof. Since L[y] = 0 is nonoscillatory on [a, oo), then there exists acia such

that un_xix, a)t^O on (c, oo). From Theorem 2 of Mikusinki [4] we know that

w„_i(x, a) has at most only simple zeros on (a, co). If h„_i(x, a)>0 for x e (a, oo),

then using Rolle's Theorem we see that the theorem follows. When oa, let m

be the number of zeros on (a, c]. Now by Rolle's Theorem we can show that the

zeros of Li[un_x\ are simple. Let cx be the first zero of un_x to the right of a. Again

by Rolle's Theorem we can show that L¡[un-Xix, a)] has one and only one zero in

(a, cx] and the zero does not occur at cx. After m such applications the theorem

follows.

Now let us develop some notation in order to simplify the statement of the next

theorem.

(a) Xiix, c) =       -      • • • —rf-;    for 1 ú i Ú «i-l.
Je   />l + i Je Jc PniVni-l)

(b) For n an integer, let S be the set of ally between 1 and nx — 1 when n = 2nx and

the set of ally between 1 and nx when n = 2nx +1.

,\ .    .     rx   dt       r^-2 dtni.x        .
(c) crX*.^- n(t      s   forjeS.

Je    Pn1 + 1+Í        Jc Pn\lnx-l)

Theorem 3.1. For «>3, where n = 2nx + l or n = 2nx, suppose the following hold:

(3.1) Y((x, a) -> co   asx^-oo   /or 1 á i á «x— 1;

(3.2) «r/x, a) -> oo   ai x -> co   for j e S;

(3.3)       r^p.-.r-^r-^^^^oo;
L     Pn1 + lJ J Pn    J Pl(/m+l)

/»CO

(3.4) r„-i(x, a)/Ji/x = co.
Ja

Then there exists a set ofn linearly independent oscillatory solutions o/(l.l) and the

zeros of one oscillatory solution separate the zeros of the other oscillatory solutions.

Proof. Assume that the theorem is false and consider the solution yix)

= cMn_i(x, a), which has a zero of order n—\ at a. Let b be the last zero of y on

[a, oo) and let m be the number of zeros of y on (a, co). Since the zeros of y are

simple, let us assume without loss of generality that yix) > 0 on (¿, oo). If m is even

then yix)>0 between a and the first zero of >>(x) on (a, b]; if m is odd then_v(x)<0

between a and the first zero. Furthermore Lx[y],.. .,Ln_x[y] are all positive at

x=b (unless b=a in which case the functions are all positive in a right-hand

neighborhood of x=a), since the zeros of Li[y] are simple and occur between the

zeros of y.

We now want to show that the functions Lx[y],.. .,Lni_2[_y] do not have a

zero on (6, oo) and hence are positive there. Assume that Lx[y] has a zero at x=c
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on (b, oo). By repeated use of Rolle's Theorem, each L2[y],..., Ln_x[y] has one

and only one zero on (b, c) and no zeros on [c, oo). Thus, on (c, oo) they are all

negative.

Since Lni[y] = (PniLni.x(y))' <0 or   -Lni[y]>0, integrating from xx e (c, x)

to x yields

-PnxLni-x[y(x)] + pniLní_x[y(xx)} > 0

or

r r   / vi        -Pn1Lni-X[y(xx)] cx .
-Lni-X[y(x)] > --^-= ^)>0.

By successive integration we arrive at

-p1j(x) + p1>'(x1)   >  Ci - -t-5-r-
JXl P2 JXl PnA'^-l)

Hence lim*-.*, (—pij,(x)-l-p1j(x1)) = oo, which implies that pii'(x) -*■ -oo, but

this is a contradiction. Continuing the above process and using the hypothesis

that x. -*■ oo as x -► oo, we see that L¡[}>(x)]>0(/=1,...,«! —1). Since Pi>'>0 and

(piyy>Q on [b, °o), Pi.V is increasing.

Now assume there is a point c such that LnJj] is negative on [c, oo). From the

discussion above we know that pxy(c)<pxy(x) for x>c. Thus,

Piy{c)lpx(x) < y(x)   or    -P(x)c¡px(x) > -p(x)y(x)

where c=pxy(c)>0. But y is a solution of (1.1), hence

Ln[y] < -p(x)c/px(x)

and

pnLn-x[y(x)]-pnLn_x[y(c)) < -J  ^Á6^-

We have assumed that LnJ_v] is negative on [c, oo) and, by Rolle's Theorem, we

know Lni+X[y],..., Ln_x[y] are negative on [c, oo). Then

L-i['(*)] = -;é)I* "(í) *.
PntoJc   Pl(0

After n+l—nx integrations, we find

Pni£nl[j'(x)]-Pn1Lni-1[j'(c)]   =   -C - -Í '
Jc    Pm + 1 J Pn       J Pi

so that

lim [PniLni_x[y(x)] - pniLni_x[y(c)]]-+ -co

which is a contradiction.
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In order to show that Ln¡+Xy through Ln_xy are positive on [b, oo), we use a

similar argument as that for Lx through Lni_x where the assumption that Xi -* °o

as x -> oo is replaced by the assumption that a¡ -> oo as x -> co, y e S.

Now Ln_1#y(x) >0 on [b, oo) implies that

pn_1Ln_2[v(x)]-pn_1Ln_2[.y(c)] > 0,       ce ib, co),

or

Ln-2[yix)]  >  c/p„-i(x)  >  0

where c=pn_1Ln_2[>>(c)]. Hence, j(x)>«5Tn_1(x, c). Now

Ln[y] = -PJ < -cTn_xix,c)

or

I^^W-I,.!^«:) < -<5Í  Tn_xit,c)pit)dt;

hence

lim ¿„^(x)] < -oo,

which is a contradiction. Thus yix) is oscillatory on [a, oo). The theorem now fol-

lows by Theorem 3 of Mikusinki [4].

For the 2« selfadjoint

(3.5) iryM)M+py = 0,

we obtain the following theorem of R. Hunt [1] as a corollary.

Corollary 3.1. Suppose that

J" (*7» ̂j/Xx) ¿x = co

and

f°° 1
ixInp) -¡-^dx = oo

j /-(x)

iwhere xIn denotes the nth iterated integral), then there exists a set of 2n linearly

independent solutions of (3.5), withp>0 on [a, co), as in Theorem 3.1.

Corollary 3.2. Suppose that

xn~2pix)dx = co,

then there exists a set of n linearly independent solutions of yin)+py = 0 with p>0

on [a, oo), as in Theorem 3.1.
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