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WELL DISTRIBUTED SEQUENCES OF INTEGERS

BY

WILLIAM A. VEECHO

Abstract. Niven's notion of a uniformly distributed sequence of integers is

generalized to well distribution, and two classes of integer sequences are studied in

terms of this generalization.

1. Introduction. Niven [5] defines a sequence of integers qx,q2,... to be

"uniformly distributed" if it satisfies a condition equivalent to the following: for

every nonintegral rational number a the relation

(1) lim i 2 e(°^ = °
AT-.oo   I\   ¿^x

holds, where e(y) — exp (2-niy). We use the same terminology but reserve it for

those sequences satisfying (1) for all nonintegral real numbers a. Then we say

qx, ?2, • • • is well distributed if it satisfies the stronger requirement that for every

nonintegral real number a

(F) hm \, f e(qn + ka) = 0
N-> oo  N rC^x

holds uniformly for k S 0.

We now state two theorems concerning well distribution. The first is proved in

§2 and the second in §3. [■] is the greatest integer function.

Theorem 1. Let P(n) = a0 + axn + ■ ■ ■ + atnl be a polynomial with real coefficients,

and define qn= [P(n)] for each n. The following statements are pairwise equivalent:

(0 ai, a2, ■ ■ ■ ¡s well distributed.

(h) Ox, a2,... is uniformly distributed.

(iii) Either t=l andax = l/qfor some integer q, or else t}t2 andax,.. .,at do not

lie in a singly generated additive subgroup of the reals.

Remark. If x and y are real numbers with x irrational Niven shows qn = [nx+y]

is uniformly distributed by his definition. The same sequence is not uniformly

distributed in the sense of the present note. The limits (1) do all exist, but for certain

(necessarily irrational) a, for example, <*= 1/x, they are not 0.

In preparation of Theorem 2 we fix an irrational real number 6 with continued

fraction expansion 6=[a0; ax, a2,...]. Recall that 6 has bounded partial quotients
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if supnö„<oo. Let 7c [0, 1) be an interval, I-iß, y), subject only to the restriction

that y—ß is not congruent to an integral multiple of 8 modulo 1. Now a sequence

Sid, I)=qx, q2,... is defined by letting qn be the number of/ 1 íkjíkn, such that

jOe I (modulo 1).

Theorem 2. A necessary and sufficient condition for Si6,1) to be well distributed

for all intervals I, as restricted above, is that 8 have bounded partial quotients.

Remark. We have only to prove the sufficiency in Theorem 2 since necessity is

contained in the results of [7]. In fact, if 8 has unbounded partial quotients, there

exists an uncountable set of «*e(0, 1) and for every t in this set an uncountable

number of intervals of length / such that the limit (1) does not even exist for Si8,1)

and a=\.

Remark. Despite the preceding remark, there are statements valid for arbitrary

irrationals. For example, (A) for almost all t e (0, 1) (depending on 8) if 7 has length

t, Sid, I) is well distributed, and (B) if t is rational, and if 7has length t, then Sid, 7)

is well distributed for every irrational number 6.

2. Proof of Theorem 1. Since (ii) is weaker than (i) we have (i) => (ii). We now

prove the contrapositive of (ii) => (iii). Thus, we suppose ax,..., at are all integral

multiples of a fixed number 8, and if r= 1, ax does not have the form l/q, q e Z.

We may clearly assume /^ 1, since there is nothing to prove if í = 0. It is necessary

to treat separately the cases 6 rational and 9 irrational.

Case 1. 8 rational. We write Pin) = a0 + il/q)ibxn+ ■ ■ ■ +btnt), where q,bx,

...,bteZ, and if t=\, bx± ±1. Define, for 0gr<q, PT e Z[x] and AreZby

Prin) = P(qn + r)-Pir),       Ar = [7>(r)].

We have [Piqn + r)]=Prin) + Xr for all n and r. Define ßr(«) = 7Jr(«) + Ar, also in

Z[x].

Letp> 1 bean integer, and define av, v=l,.. .,/>—1, by av = v/p. If (1) is to hold

for qn = [Pin)] and a = av, then because the sequence eiavqn) has period pq, we have

p-19-1 PQ-1

(2) 2   2 *(«vßr(»)) =   2   *(«.F(«)]) = 0.
n=or=0 n=0

Let Tj, Q-¿j<p, be the number of pairs (r, n), 0Sr<q, 0f¡n<p, such that

eii\/p)Qriri))=eijlp). Then (2) is the same as

(2') 21^(«v7) = 0       iv=\,...,P-\).
i = o

This implies t¡ = t is independent of/ and since r0-\-+T„.x=pq, we have r=q.

A consequence of the lemma to follow is that there exist primes p and integers /

such that each Qr — I has t zeros modulo p. Thus tq=q, or t=\. Suppose for the

moment this has been proved. Then P(n) = a0 + ib/q)n, b = bx^±l, and ßr(n)

= bn + XT for each r. We may suppose (¿?, q) = 1. Let p > 1 be a divisor of b. If
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av = v/p, as above, then by (2)p 2n = o e(ayAr) = 0. Let t¿, 0^j<p, be the number of r

such that e(Xr/p) = e(j/p). Then as above t¡ = t and rp=q. Thus, p\q, and (b,q)^l,

a contradiction.

The following lemma is probably well known. Our original proof used an

argument in Theorem 9 of [4], however M. Fried has pointed out to us a very simple

proof. We use Fried's argument below.

Lemma 1. Let G0,..., Gq_x 6 Z[x] be irreducible and have degrees d0,..., dq_x

^ 1, respectively. There exist infinitely many primes p such that for each r,0^r^q—l,

Gr has d, distinct zeros modulo p.

Remark. To apply the lemma in the above, simply choose any integer / such

that Gr = Qr -1 is irreducible, 0 ̂  r g q -1.

Proof. Let S be the set of primes which divide neither the discriminant nor the

lead coefficient of any of the Gj's. S contains almost all primes. If p e S, and if Gr

splits completely modulo p, then Gr has dr distinct zeros modulo p. Let M be a

normal splitting field for {Gr | QUrfiq—l}, and let a be a primitive element for M

with minimal polynomial fe Z[x]. Now any zero of Gr can be expressed as a

rational function of any zero off, and any zero off can be expressed as a rational

function of any other zero off. Using this fact one sees readily that by discarding

an additional finite set of primes from £ we obtain a set So containing almost all

primes with the property that if p e S0 and iff has one zero modulo p, then each

Gr (and/) split completely modulo p. We are reduced to proving/has one zero

modulo p for an infinite number of primes p. Indeed, if /(«) is representable in

terms of p1;.. .,pT for all n, thenf(n + (\~Yi = xpi)s)=f(ri) + Xspsx-- -Pt^pi1-- -p1/ for

all s, lx,..., lr depending on n and s. This is a contradiction for any « such that

/(«)^0 if s is sufficiently large. The lemma is proved.

Case 2. 6 irrational. Let A„ be defined by

(3) P(n) = [P(n)] + Xn       (0 S K < 1).

Any nonzero element among alt ■ ■., at is a multiple of 6 and hence irrational.

Therefore, by Weyl's theorem [9] on the uniform distribution of the fractional

parts of polynomials having at least one coefficient of order greater than 0 ir-

rational, the sequence A1; A2,... is uniformly distributed on the unit interval.

Also, since aj6~1eZ, l^j^t, we have />(n)ö"1 = a0ö_1 (modulo 1) for all «.

Therefore, by (3) [P^e-^aoB^-XJ-1. The function /(A) = e(a0e~1-A0"1)

is continuous on the unit interval and has nonzero integral. By the uniform

distribution of A„, the limit (1) exists and is nonzero for qn=[P(n)] and a=8~1.

Thus, qlt q2,... is not uniformly distributed.

Finally, we must prove (iii) => (i). Thus, we suppose ax,..., at do not lie in a

singly generated additive subgroup of the reals. At least one of ax, ■ ■ -, at is ir-

rational, and therefore Niven's argument (used for [«x+j']) together with Weyl's
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theorem tells us (F) holds for qn = [Pin)] and a rational. Now suppose a is irrational.

We define An, AJ,, 0^A„, A¡,< 1, using (3) and

(4) Pin)a = [Pin)a] + \'n.

If / and y are integers, not both 0, our assumption on ax,..., at implies that at least

one of ii+ja)as, 1 ̂ sfí t, is irrational. Using Weyl's theorem and the fact (i\n+jK)

= (i+ja)Pin) (mod 1), we obtain

1    N
(5) lim - 2 eii\n+k+jÁ'n+k) = 0

uniformly in k ^ 0. (The uniformity in k was not given by Weyl but is a well-known

and easy consequence of his method.) Since (5) holds for all i and j such that not

both are 0, Weyl's criterion, applied to the two torus, tells us the sequence (An, An)

is well distributed in the unit square of the (A, A') plane. The function /(A, A')

=e(A' — a A) is continuous on this square and has Riemann integral 0 over it. Using

(3) and (4) we have [Pin)]a = \'n — \na, and so the well distribution of (An, X'n)

implies (F) for qn = [P in)] and our a. The case t=\, ax = \/qbeing trivial, this com-

pletes the proof of Theorem 1.

3. Proof of Theorem 2. We begin with some notation and review of known

facts. Let X be the compact group of real numbers modulo 1, usually to be repre-

sented as X= [0, 1), and let 8 e Xbe an irrational number, fixed for the discussion.

We define T: X^ X by Tx=x+8. Let Q=(Y, 38, dy), where 38 is the Lebesgue

field and dy is Lebesgue measure. If h e #, where ^ is the space of Riemann

integrable functions on X, we have by the Kronecker-Weyl theorem that

lim 4-r 2 hiTxn+k) = f hdy
W-oo N ¿íx Jx

holds uniformly in k and x. This says in particular that each x e X is "(Q, T, tf)-

strictly generic" in the terminology of [6]. Given fe'S with absolute value 1

everywhere, define/(n)(x), n^ 1, by/(1,(x)=/(x),/(n + 1>(x)=/(x + «ö)/(n)(x). Lemma

1 of [6] asserts that the relation

(6) lim l f f^k\x) = 0
¡v^co N ¿ïx

fails to hold uniformly in k^O for some x only if the equation

(7) giy + 0)=fiy)giy)

has a nontrivial measurable solution.

Now let 7s X be a set whose characteristic function is Riemann integrable. If

a is a nonintegral real number, fixed in what follows, we define/on Y by

f(x) = eia),       xel,

= 1, x $ I.
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Then/(n)(x)=/(x)/(x + 6»)- • -f(x + (n-l)9) = e(Xna), where An = An(x) is the num-

ber of/ OújSn-l, such that x+jBel. If I=(ß, y), 0^ß<y^l, and if S(8,1)

= 1i,<l2, ■ ■ -, thenf(n)(0) = e(qn^xa), «^2. Thus, Theorem 2 is reduced to proving

that if 9 has bounded partial quotients, and if I=(ß, y) is such that y—ß+jQ for all

j, then (7) can have no nontrivial measurable solution.

Remark. If (7) has a solution for one /, then it has a solution for every translate

of I. We may therefore fix notations and always assume /=[0, t),0<t<l.

If g is a solution to (7), then |¿fO> + 0)| = |£00|, a.e. dy, and therefore \g(-)\ is

essentially constant. If g is nontrivial, we may and shall normalize and take the

constant to be 1. Using z* for the complex conjugate of z, we rewrite (7) in the

form

(7') g(x)g*(x+B)=f(x)

with its consequence

(8) g(x)g*(x + n9)=f™(x).

Define an=jxfM(y) dy. Using gg* = 1 and the continuity of translation in L2, we

conclude from (8) that

(9) lim an = 1.
719-0

In fact, the argument on p. 9 of [7] shows (9) is also sufficient for the solvability of

(7). In what follows we use only

(10) lim |a„| = 1.
n9->0

If «>0, the discontinuities of/(n) in X occur at the distinct points 0, —9,...,

(1 —n)9, t, t—6,..., t + (l—n)0 using our assumption t^j9. Between discontinuities

/(n) is constant. If we write X=[0, 1) and fix a discontinuity y= —k9, then f(y + )

=e(—a)f(y~), where the + and — denote right and left limit. If y = t — k9, then

f(y+) = e(a)f(y~). Assume as we may that 0<a< 1, and let a0 = min (a, 1 -a). The

foregoing observation implies for any point £ on the unit circle and any successive

intervals /, J' of constancy for/(n), that \fw(x)- £| ^ (y/2ß)(\ -cos 27ra0)1'2 = r on

one of J, J'. Thus, on « of the 2« intervals of constancy, |/<n> — £| ^ r. Let en be for

each n the length of the shortest interval of constancy. Using (10) and the observa-

tion just made, we have

(11) lim nen = 0.
7l9-»0

Remark. The argument on p. 15 of [7] shows the set of / for which (11) holds

has measure 0, and this does not depend on 9 having bounded partial quotients.

We have for almost all te(0,1) that if I=(ß,y), y-ß=t, then S(8,1) is well

distributed.
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If 0 < j < 1, we define <ps, «/«s on X by

<p5(x) = eia), 0 ^ x < s,

= 1, s è x < 1,

</-5(x) = e(-o),       0 g x < î,
( = 9>?(*)).

= 1, s | ï < 1,

If n > 0, define

<p(n) = cp_B<p_2e- ■ ■<pa-n)e'fit>l't-e- • -"At + a-n»,

the subscripts, as usual, being taken modulo 1. We note that <p(n) and/(n) possess

the same discontinuities with the same jumps, and therefore 9(n)=e(—a)/(n)(0)*/(n)

(compare the values at x=0). Letting ßn=jx <pw dy, (10) implies

(12) lim \ßn\ = 1.
n9->0

For each «>0 define zn and j=jn, |;|<«,by ¡j9-t\\=minw<n ||i0-r||=zB (||-|

denotes distance to nearest integer). jn is well defined unless 2r = (2m +1)0, and here

we simply make a choice. Define «/><n) by

(13) </<(n) = <Pu - n)e<P(i -1 - n)e • • • 9a - »ehe • • ■ "As

iO'=À>0and

(14) 4>w = 'P-e'P-29- ■ •9>,o'/,<-i-n)ir • -lAo-nw

if y < 0. In (13) the relation <ps«/«s = 1 and the triangle inequality for the L1 norm imply

||<p(n)-</<í_í9'/<<n)||i = \\<pin)->/>t-j8>t'in)<P-e- ■ ■'Pu + i-nyet-e- ■ •<Aü + l-n)8||l

(15) n-l

=     2     HlAi-ie-^w-«»l|i = 2(n-l)zn

provided 0 does not separate any of the pairs t — i8, ij—i)9. (By "separate" it is

meant that 0 lies in the smallest component of the complement of the pair.) Define

A to be the set of n for which en=zn. For these « (15) applies, and so by (11) and

(12) we have limne_0:neA |y„| = l where yn = }x i1™ dy. (A relation similar to (15)

holds fory'n<0.)

In the above set p = sgnjn and unify notation by setting

( 16) </-(n) = <Pue<P2ue ■ ■ ■ <Piehu - n» • • • <l>u - «OS-

Should it be the case that \\n9\\ <minläiS(Jy ||/0||, j=jn, then by pairing terms

Vue^m-tDB, • • •, We^u-nw we nnd tnat 0(n) is 1 on a collection of pj intervals whose

total measure is 1—f*/||»0| and eiA), A = <* or -a always the same, on intervals

totalling H/'|n0||. Then yn=il — pj\\n8\\)+pj\\p8\\eiA) is a convex combination of 1

and eiA). It follows that there exists a constant A > 0 depending on a such that if

|yn| > 1— e then

(17) /"./IMII < ^e   or   M/||«0|| > 1—Ae.
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Theorem 2 now follows from the argument of Proposition 7 of [7]. Since it is so

short we repeat it here.

Let pjqn,n=l,2,..., be the sequence of convergents to 9, and recall the

inequalities

(18) l/2<7n + 1 < \\qn9\\ < l/qn + 1

valid for all «. (See [3].) Since 9 has bounded partial quotients, there exists c,

0<c<^, such that

(19) MU > c/qn

for all n. Using (18) and (19) we have for all «i^O

(20) ?»||?n + »0||   >  C™*1-

Let A be chosen as in (17), and choose e>0 so that e, Xe<c3. We write en, zn, yn

for the corresponding quantities with subscripts qn. Of course qn9 -> 0, and because

of (18) and (11) e„ = zn for all large «. Let «0 be such that if «ä«0, then |y„| > 1 —e

and qnen<e/2. Letting zn + l = \\j9-t\\, it will be true infinitely often that qn<\j\

<qn + x, and we assume « has been so chosen. If also zn + 2= \\j8—t\\, then because

\j\ ||?r, + 20||<?»+i||?n + 20||<?n + i/?n + 3<i, itmustbeby (17)that |y'| \\qn + 29\\ < Xe.

But, since qn<\j\, we would also have c3<qn\\qn + 29\\ <Xe<c3 by (20). Therefore,

there exists /, \i\<qn + 2, with ||/'0-/|| =zn + 2, i^j. By the triangle inequality,

\\(i-JW\[<En + i + en+2, and so qn+i\\(i-jW\\<e- On the other hand \i-j\<qn + x

+qn + 2=qn + 3,so \\(i-j)9\\>\\qn + 39\\. We have again from (20) c3<qn + x\\qn + 38\\<e,

a contradiction. The theorem is proved.

Remark. Equations (11) and (17) serve as substitutes for equations (27) and

(38) of [7]. Lemmas 2-11 of [7] use these equations only, and therefore one can

conclude from Lemma 11 that if (10) is true, then / is expandable in an infinite series

t=m8+Y£=xbnqn8, bneZ, convergent in X with the property limn^,x bnqn\\qn9\\

= 0. This serves as a second proof of Theorem 2 of course, but we are mentioning

it because it is proved in Lemma 14 and the Remark, p. 33, of [7] that no nonzero

number t can be so represented. Finally, it is possible to improve Lemma 12 of [7]

to obtain from (10) that limn_OT e(bno)= 1, where bn are as above in the representa-

tion of t. The details are rather cumbersome, and so we omit them. Notice however

that if bn=£0 infinitely often, then by the Riemann-Lebesgue lemma the set of a

for which limn_ œ e(bna) = 1 has measure 0. We conclude that for fixed t and

almost all a the sequence qxa, q2a,... is well distributed modulo 1, where S(9,1)

—9i> (¡2, ■ ■ ■ and / has length t. (Note the reversion to the notation of the intro-

duction for qn.) There exist sequences qx, q2,... of integers with bounded gaps

such that qna is well distributed for no value of a [10].

4. Remarks. One consequence of Theorem 1 is that well distributed integer

sequences can grow as fast as polynomials. We do not know if there is one that grows
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faster than any polynomial, but we expect there will be one. On the other hand it

is not possible for a lacunary sequence qx, q2,.. .,qn + x/qn^\> 1, to be uniformly

distributed. In fact, the set of a for which the limit (1) fails to exist will have

Hausdorff dimension 1 [2].
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