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SINGULAR INTEGRALS AND

FRACTIONAL POWERS OF OPERATORS

BY

MICHAEL J. FISHERY)

Abstract. Recently R. Wheeden studied a class of singular integral operators, the

hypersingular integrals, as operators from L%(H) to LP(H) ; Ll(H) is the range of the

ath order Bessel potential operator acting on LP(H) with the inherited norm. The

purposes of the present paper are to extend the known results on hypersingular

integrals to complex indices, to extend these results to operators defined over a real

separable Hubert space, and to use Komatsu's theory of fractional powers of operators

to show that the hypersingular integral operator G" is jH ( — AJff dp{y) when Im (o)

^0 or when Re (a) is not a positive integer where Ayg is the derivative of g in the

direction y. The case where Im (a) = 0 and Re (a) is a positive integer is treated in a

sequel to the present paper.

1. Introduction. Let P be A-dimensional Euclidean space and let dx denote

Lebesgue measure on P. The theory of Lebesgue spaces of differentiable functions

L%(E, dx) is well known ; [2]. L%(E, dx), 1 <p< oo, 0 ̂  Re a < oo, is the range of the

Bessel potential operator, J", acting on LP(E). When a is a positive integer, «, PJ(P)

is also the space of weakly differentiable functions with derivatives of order k,

O^k^n, in LP(E).

R. Wheeden [19], [20] has studied a class of linear operators, the hypersingular

integral operators, which map LP(E) into LP(E) continuously. Let Ci(y) be posi-

tively homogeneous of degree zero on Pand suppose that ||Q||i = J"s |&(«>)| dw<oo

when 2 is the unit sphere in E and du denotes normalized Lebesgue measure on S.

Set

T"(f) = lim f       Rk(f,y)
e-»0 Jii!/ii>£'»ix  —luir™

where A is the dimension of E and where

RÁf,y) ~Ax+y)- 2 ^ff

and k^a<k+\. Ta is a hypersingular integral operator on P£(P) to LV(E) and

|| y*Vy|| „ ̂  JV(<x) || -£21| i where A(a) depends only on A and a. When a is a positive
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integer, k, the additional assumption must be made that J"s pk(oj)Q.(uj) doj = 0 where

pk(u>) is any homogeneous polynomial in w with degree k. Then at a=k, T" is

similar to a Calderon-Zygmund operator and Tk acts boundedly from Lkp(E) to

LP(E). If0<«<l,

T'f = lim  I"        U(x+y)-f(x)] ffi rfy;
«-•0   Jl\y\\>s [|7 II

this case is especially important and interesting when Q.(y)=l, since then TaJa is

given by a measure.

The purposes of this paper are to study a new approach to the hypersingular

integral operators, to extend the results of [19], [20] to complex indices, and to

generalize these results to hypersingular integrals over a real separable Hubert

space. Thus we shall replace the finite-dimensional Euclidean space E with a real

separable Hubert space H which is generally infinite dimensional. We shall rely

heavily upon the work of Komatsu [10], [11], [12], [13] on the theory of fractional

powers of operators. In particular we shall observe that some of Komatsu's results

can be used to prove Stein's basic lemma [17, Lemma 4] which asserts that TaJa is

given by convolution with a measure when Q(co)=l. In addition, Komatsu's

results will be useful in streamlining the study of the general hypersingular

integral.

Throughout this paper K(a), M (a), TV(a)>0, K(a,p), M(a,p), N(a,p)>0 are

constants which depend only on the parameters shown and which may vary in

value with the occasion of their use. If T is a closed densely defined operator on a

Banach space X, D(T) denotes the domain of T and R(T) denotes the range of T.

2. Preliminaries.

a. The normal distribution on Hubert space. To minimize the discussion of

measure theory on Hubert space we refer the reader to the papers [7], [9] of L.

Gross and [15], [16] of I. E. Segal.

Definition (Segal). A weak distribution on a real Hubert space, H, is an

equivalence class of linear maps, F, from the conjugate space H* of H to real valued

measurable functions (modulo null functions) on a probability space (depending

on F). Two such maps, F and F', are equivalent if for any finite set of vectors

yx, ■ ■ -, yk in H*, F(yj),. --,F(yk) and F'Cft),.. .,F'(yk) have the same joint

distribution in A>space. A weak distribution is continuous if a representative is a

continuous linear map (the range space has the topology of convergence in measure).

In what follows we shall be most interested in the normal distribution with

variance parameter c/2. This distribution is uniquely determined by the following

properties: for any y in H*, F(y) is normally distributed with mean zero and

variance (c/2)||yH2; F maps orthogonal vectors to independent random variables;

F, a representative for the normal distribution, is continuous. There is an essentially

unique (up to expectation preserving isomorphism) probability space (S, E, p.)
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and a continuous linear map Pfrom H* to the real valued measurable functions on

(S, S, ¿u.) (modulo null functions) such that P is a representative of the normal

distribution. S has no proper sub-tr-field with respect to which all of the F(y),

y e H*, are measurable. The measurable functions on H are defined to be the

measurable functions on (S1,2, //,). Lp(H,nc)=Lp(S,'Z,fi.) by definition. When

c=2, we let «=«2 and LP(H)=LP(H, n2). The expectation, E(f), of a measurable

function/is E(f)=jsfdn.

A function/(x) on the points of H is a tame function if there is a Baire function

g on a finite-dimensional Euclidean space Ek, and orthonormal vectors hlt..., hk

in H* such that/(x)=g((x, hx),..., (x, hk)). The span of the hx,..., hk in H is

called the base of/ If P is a representative of the normal distribution and/(x)

=g((x, hx), ...,(x, hk)) is a tame function, then f(s)=g(F(hx)(s),..., F(hk)(s)) is a

measurable function on H, and the expectation off is

£(/) = {Tc)'k¡2 \   *(r)exp(-c-li||V

where A: is the dimension of the base space off. This equality holds in the sense that

if either side exists and is finite, then so does the other side and the two are equal.

Several very useful representatives of the normal distribution are known. Of

these the one in which we shall be most interested is the mapping studied by Gross

[9] from H* to Borel measurable functions (modulo null functions) on an abstract

Wiener space. We adopt the notation and terminology of [9]. Let P be a one-one

Hilbert-Schmidt operator on a real separable Hubert space H. Then |x|1=||Px||

is a measurable norm on H. Let HB denote the completion of H in this norm. Let

y denote the a-field generated by the closed subsets of HB. The normal distribution

nc induces a Borel probability measure Ac on HB such that the extension of the

identity map on H* (<=//*), regarded as a densely defined map on H* to measur-

able functions on (HB, ¿^ Nc), to H* is a representative of the normal distribution

on H. Continuous functions/on HB are measurable functions on Hand if g denotes

the restriction off to H and if 3F denotes the directed set (ordered by inclusion of

the ranges) of finite-dimensional projections on H, the net {g(Qx) : Q e &} of

measurable tame functions converges in measure to / as Q tends strongly to the

identity through &'.

Let Ac be as above, and regard B as an isometry from HB to H. Then Ae ° B'1

is a Borel measure on H; this measure is usually denoted by nc ° B~x ; [8], [9]. If/is

a bounded continuous function from H to a Banach space X, jHf(x) dnc ° B'1(x)

=\Hb f(By) dNc(y) = E(f° B). Iff g, and fg are absolutely integrable tame func-

tions on H,fg=jg, (af+g)~ =af+g for constants a, and iffúg (a.e.) on H, then

fúg (a.e.); we shall use these properties often. Gross [7], [9] has studied other

functions on the points of H which give rise to measurable functions on H. If C

is a Hilbert-Schmidt operator on H, \\Cx\\ determines a measurable function
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[|C(-)||~ on H by ||C(-)||~=lim {||Cßx||~ : Q e &} where & is as above and Q

tends strongly to the identity through 3?'. If/is a bounded continuous function on

H, then/(Cx) determines a measurable function on H when Cis a Hilbert-Schmidt

operator. Such elementary functions as \\x\\, exp (- ||jc|2) and exp (i ||jc||) fail to

determine measurable functions on H. We refer to [7] for further discussion of these

points.

b. The Poisson integral. Let H be a real separable Hubert space. Let LP(H),

\<p<co, denote the Banach space of/7-power integrable functions with respect to

the weak normal distribution (with variance parameter 1, centered at the origin)

on H. Let y -> Ty denote the regular representation of the additive group of H by

isometries on LP(H); iff is a bounded tame function,

(Tyf)(x) =fi(x-y)exp [^-M!].

The Ty are strongly continuous and play the role of the "translation operators"

on H; [4]. If p. is a finite Borel measure on H, T(f) = jH Tyfdp.(y) is a bounded

operator on LP(H) with norm at most |/¿||. If«, denotes the normal distribution on

H with variance parameter t/2, and if B is a Hilbert-Schmidt operator on H, then

nt ° B'1 is a Borel probability measure on H; [8]. Let

W)= f Ty(f)dnt°B-\y)
Jh

and

Pz(f) = ^Ht(f)Nt(z)dt/t

where TV,(z) = (7ri)-1/2zexp (-rV). Pz(f) is the Poisson integral off. Ht(f) and

PJJ) were studied in [5]. We shall recall some of the properties of these operators;

the proofs appear in [5].

P-l. Ht and Pz are strongly continuous contraction semigroups on LP(H).

P-2. There is a unique Borel probability measure pz on H such that Pz(f)

=¡HTyfdPí(y).
P-3. If a=(au ..., a„) is a multi-index with \a\ = 2"=i a¡, if Ah is the infinitesimal

generator of the translation semigroup TtBh, t > 0, and if Aa = A%\ ■ ■ • A%^, then

A*H&f)= \   TbyfC\\)(y)dnt(y)
JHB

where Ca = C%\- ■ -CU» and where Ch is the infinitesimal generator of T$h, s>0,

acting on L^H, nt). Thus if i>0, AaHt is a bounded operator on LP(H) and

\\AaHt\\ gJV(a)||MBl- • ■ IK!0"'-"1"2-
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P-4. Pz(f) is infinitely differentiable with respect to z and with respect to the

space variables ;

A'PÂf) = j"A"Ht(f)Nt(z)dt/t

and

£nPx(f) = [Ht(f)¿Nt(x)dt/,

We shall use the infinitesimal generators Ah of TtBh as the Hubert space analogues

of the directional derivatives Dh on finite-dimensional Euclidean space.

c. Komatsu powers of operators. Early work on the theory of fractional powers

of operators is surveyed in [21]. Komatsu [10], [11], [12], [13] has developed an

extensive theory of fractional powers of operators. In [10], [11] it is assumed that

A is a linear operator (not necessarily densely defined) such that the negative

half-line is in the resolvent set of A and || t (t+A) '11| ̂  M for all t > 0. A" is defined

for all complex a in §4 of [10]. For our purposes it will be sufficient to recall

some of Komatsu's results for the case when ( — A) generates a bounded, strongly

continuous semigroup on a reflexive Banach space X.

K-l. If0<Rea<l,

A"x = ̂ ? rt'-^t+AY^dt
t    Jo

when x e D(A), the domain of A ; [10, p. 299].

K-2. If 0 < Re a < or < n, « a positive integer, then

for xe D(AN) when N>m>n; [11, p. 292].

K-3. If (—A) generates a bounded strongly continuous semigroup Tt on X,

then if xe D(A) and 0<Re a<o-< 1,

Aax = r(-a)'1 T (Ttx-x^'"'1 dt;       [10, p. 325].
Jo+

More formally, K-l and K-3 define an operator A% on a subspace D" of X; D"

is defined in [10]. If A\ denotes the smallest closed extension of A", whose existence

is proved in [10, Proposition 4.1], then Aa = Aa+. Similarly K-2 defines an operator

on a natural subspace of X and its smallest closed extension is A% =Aa as is shown

in [11]. When Re a<0, Att-a is defined by equation 4.10 of [10, p. 304] and At,

is shown to have a smallest closed extension AI which is independent of a. When

Re a=0, Aax is defined by equation 4.11 of [10, p. 305] for xeflTi Rx. There

is the important
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K-4. For any complex a, A"t has the smallest closed extension A% which is

independent of a and t when -T<Rea<o. If Rea>0, A%=-A\ on D(A%)

n Cl R(A) and if Re a < 0, A% = At.

If A has a bounded inverse, RI = X and At is everywhere defined and analytic if

Rea<0. If xe D", A" is analytic in Rea<a. If -(« + l)<Re <*<0,

/ — sin 7ra\             n! fœ „.„.       ..   „  ,  ,
At =   -   T—-TT-¡——^      ta+n(t+A)-n-1dt

\       tr       J (a+1)- ••(« + «) Jo

and

K-5. When A has a bounded inverse, if Re <x>0, then Aa+ =A% is the inverse of

Aöa=Aza; D(At) is contained in R(Az"). See §5 of [10].

K-6. (i) If ReaRej8>0, then A\AB± =Aa±+ß in the sense of the product of

operators, (ii) If a and ß are any complex numbers, then [AOAe)]c=AO+ß where

[T]c denotes the smallest closed extension of T. (iii) If A has a bounded inverse and

if Re a>0, then A%Aß0 = Aa0+ß. See §7 of [10].

From the assumption that \t(t + A)~1\^M for t>0 and the resolvent equation

it follows that (t+A)'1 exists for t in the sector |arg t\ < Arc sin (M_1) and that

t^ + A)'1 is bounded on each ray of this sector. Let

M(Q) = sup{||í(í+^)-1|| : |argr| = 0},       0 > 0;

M(&) is an increasing function of 0. An operator A is said to be of type (w, M(0)),

0^o)<7T, if A is closed, densely defined; the resolvent set of ( — A) contains the

sector |arg t\ <tt—w, and sup {||r(r+,4)~1|| : [arg í| = 0}^TV/(0)<oo holds for all

0^ 0<7T — cu. An operator^ is of type (w, TV/(0))foranaj<7r/2if and only if ( — A)

generates a semigroup Tt which has an analytic extension to the sector |arg t\

<tt/2 — <o such that the extension is uniformly bounded on each sector |arg/|

^Tr/2 — to — e, £>0.

K-7. If A is an operator of type (cu, Af(0)) and 0<acu<7r/2, then (—Aa+) is the

generator of a strongly continuous semigroup exp ( — tAa+) which is analytic in the

sector |arg í | ̂ 7t/2 —ato and uniformly bounded on each smaller sector |arg í |

èir/2-ato-e, e>0. See §10 of [10].

K-8. Let A be of type (a>, M(0)). Then (A\)e=Aa+e if 0<a<7r/o> and Rej8>0.

K-9. If 0<«< 1 and if r, = exp (-tA), Ttax=e\p (-Ma)x={0° TsxN(<x, t, s) ds

where TV(«, t, s) = (2ttí)-1 ¡°0+_\Z exp (us-tua) du; [21].

It is worth noting in connection with the discussion preceding K-8 and in con-

nection with K-8 that the Poisson integral Pz extends to an analytic semigroup in

every sector | arg z \ < tt/4 — e,0<e< tt/4, and the extension is bounded in each sector

of this type; this follows from the fact that TVt(z) is analytic in Re z>0 and the fact

that the integral Ps(f)=jô Ht(f)Nt(z) dt/t converges uniformly in |arg z\ <tt/4—e

for e>0. If Ht = exp (-tA), then P2=exp (-zT) where T=A112; see K-9 and [21].
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When the Hilbert-Schmidt operator P is one-one, the infinitesimal generator

( — T) of Pz is a one-one operator on LP(H) and R(T) is dense in LP(H).

d. Definitions and hypersingular integrals on L2(H). Let a—ß+iy, Re a>0, be

a complex number and let /tbea Borel measure (not necessarily bounded) on H

such that

f  bll'<*HO0 <°°,      /3 = Rea.
Jh

For any nonnegative integer k, if k > 0 set

RÁf,y,t) = [(¿-I)!]"1 Ç (t-uy-^yAtf-AWdu,
Jo

and if & = 0 set P0(/ y, t) = TtByf-f when /e D(Ak) n Lp(//) for all y in //. If

& ̂  Re a < £ +1, set

Ga(f)= f  f Rk(fiy,t)dn(y)t'«'1dt
Jo* Jh

whenever this integral converges in LP(H). Ga(f) is a hypersingular integral opera-

tor. We shall make further assumptions on a later so that G" is defined when Re a

=« is a positive integer.

In this section we shall sketch the L2-theory of hypersingular integral operators

in order to motivate the more formal theory needed to prove our main theorems

in §4.

Let/> = 2 and P(y) be a polynomial on H Set W(P)(y)=\„P(2ll2x + iy) dn(x)

where dn is the normal cylinder set measure with variance parameter 1. Segal

[15] has shown that W(P)(y) extends to a unitary operator on L2(H); W is the

Hubert space analogue of the Fourier transform. In particular, W(Tyf) =

exp (iF(y)/2)W(f) where P is a representative of the normal distribution;

hence W(Ayf) = (iF(y)/2)W(f) when/e D(Ay).

Consider the linear operator /" on L2(H) defined by

If(/«/) = (l + ||P*(-)l|)-a^(/)

when Re a è 0 and B is the one-one Hilbert-Schmidt operator used to define Ht

and Pz. J" is a bounded operator on L2(H). Some other properties of Ja are

1. JaJß=Ja+e if Re«, Re ¿3^0.

2. Ja is strongly analytic in Re a > 0.

3. J" is one-one.

4. If Re a^O and if ß=(ßx,..., ßn) is a multi-index of complex numbers with

Re ßi ä 0, and |Re ß\ á Re a, then AiJ" is a bounded operator on L2(H).

Each of these properties is easily verified.

Theorem 1. //Rea>0ij not an integer, GaJa is a bounded operator on L2(H)

with \\GaJa\\^N(<x)jI] H.yll'dl/ilOO.Ree^jS.
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Proof. Let ¿<Re«<A:+l and a = k+8. Then rkRk(f,y,t) = t-kRk(f,ty,\),

and since Aky = tkA%,

W(GTf)= I*" f t-krV(Rk(J%y,t))dp.(y)r°-1dt,

and

WRk(J«fi ty, 1) = [(*-1)!]"1 j\l -u)k^(exp (ituF(By)/2)-l) du<p(y),

where <p(y) = (iF(By)/2)k(l + \\B*(-)\\)-a. Since

f [exp(itF(By)/2)-l]r>-i dt = T(-8)(-iF(By)/2Y,

W(GaJ*f) = TV/(«)IF(/) f  [-iF(By)r(l + \\B*(-)\)-adp.(y).
JH

Smce\<$,Byy\(l + \\B*t\\y^\\y\\,

\\GaJ"\\ g TV(a) f   \\y V d\p.\(y) < oo,       ß = Re «.

Note that M(a) = r(fc) "x r( - 8)Ä(A:, S +1 )( -1 )k2 ~ " where B( •, • ) is the j9-function.

The next theorem extends Theorem 1 to the case when Re a=k, a positive integer.

Theorem 2. Let Re (a) = k ^ 1 a/ztf suppose that if pk is a homogeneous poly-

nomial of degree k on H then ¡Hpk(y) dp.(y) = 0. Then if lm(a)^0, ||GVa||

^^(«)J*bllkrfW(>')^/Im(«) = OJ|GVll^Ar(«)JH||^||k(l + |log||>.|||)</H(j')-

Proof. Proceed as in the proof of Theorem 1 to get

WG"Jaf = M(k) f   Í" [exp (itF(By))-1 ]/-»-«» dt F(By)k dn(y)W(Jaf)
JH  J0 +

where y = Im a. Assume first that y^O. Since ¡H F(By)k dp.(y) = 0, Corollary 1 of

[14] implies that the double integral above converges to a bounded function. Thus

\\G°J"\\úN(a)íH\\y\\kd\p.\(y).

When Rea = A: and Im a=0, G"J" is a kind of Calderon-Zygmund operator;

[1], [4]. Set dv(y) = (l + \\B*(-)\YkF(By)k dp(y), so we need only show that

A = f   I"" [exp (itil By})-1] dt/t dv(y)
JH J0 +

satisfies lAI^TV/^ ||j>||k(l + |log \\y\\ \)d\p.\(y). The integral A can be evaluated

by the method of contour integration as in the proof of Theorem 5 (Lemma 5.3)

of [4] ; in fact A is the integral evaluated there. The value of A is

f {m/2 sgn <5*t7, y}-log \(B*t,, y}\} dv(y)
JH

where 7? = £||£||_1. Thus GkJk has the desired norm.
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Remarks. It is interesting to note that GkJk = TkZ where Tk has Wiener trans-

form (or Fourier transform) ||P*x||fc(l + ||P*x||)"k and where Z is a kind of Calde-

ron-Zygmund operator. An analogue of the first statement of Theorem 2 holds

when Re (a)=0, a^O. When a = 0, Ga is a Calderon-Zygmund operator if /j.(H)=0

andif{H(l + |log|M||)¿H(>>)<°o.

3. Bessel potentials.

Definition. If/is in LP(H) and if Pt(f) is the Poisson integral off, then for

Re (a) > 0, the Bessel potential off of order a is

J"(f) = r(a)'1j"pt(f)t<-1e-tdt.

Theorem 3. J" enjoys the following properties:

i. ||/"(f)I,ár(Re«)|r(«)-i||/|p.
2. lim {/"(/) : |arg a\ ¿ 0 < tt/2, a -> 0} =/.

3. J" is strongly analytic in Re <x>0.

4. JaJß=Ja+ß ifRea, Re/3>0.

5. /" m one-one on LP(H) if Re a > 0.

6. Ja = (J1y, the ath Komatsu power ofJ1, i/Re a>0.

7. P«e ra«ge o//«, P(/a), is dense in LP(H).

8. Jiy is a strongly continuous group of bounded operators on Lp(H)for real y.

9. /'"(/)=lim {J°+«"(/) :s-*0+}forfin LP(H).

Proof. (1) follows from Minkowski's integral inequality and the fact that

IIA/MII/||P. If Rea>0, J'f-f-rW1 ft [Ptf-nt-ie-* dt. Given *>0, let
S>0 be sufficiently small that ||Pt/—/||P<e f°r 0<t<8. Choose 17>0 such that

¡F^l'1 ¡7 t*""'^-*dtKe^ReaiirWl'1 when 0<Re«<r?. Then \\Jaf-f\\p
^er(Rea)|r(a)|-1[l + 2||/||p]. This proves (2) when |arg a\ ^ &<tt/2, in which

case r(Rea)|r(a)|_1^M(0). (3) is a consequence of the analyticity of r(a)'1ta'1

in Re a>0 for />0 and the fact that t"'1 log te'1 is absolutely integrable for Re a

>0. To prove (4) let <Pa(0 = r(a)-1ia-1e-t if r>0 and <pa(t) = 0 if t¿0. Then

J"(f)=i-oo Pt(f)<Pa(t) dt and J'JW^r-« pt<J)<P° * n(t) dt where 9a * <ps is the

convolution of <pa and <pß. An elementary integration and use of some basic identities

for the T-function show that <pa * <pe = <pa+e and hence JaJß=Ja+e. (5) follows from

(4), (3), (2) above. For if Jaf=0 for some a in Re a>0, Ja+rf=0 for all real

numbers r > 0. The principle of uniqueness for analytic functions implies that J"f= 0

for all a in Re a > 0. Since lim {Jrf: r -> 0, r is real} =/ we have that /= 0 and J" is

one-one.

Set J1=J. To prove (6), we need verify the statement only for 0<Re <x< 1. For

if a=n+ß, we have Ja=JnJß from (4) above. If Re a—n, a positive integer, the

conclusion (6) is proved in [6]. It is proved in [10] that Jn = (J)n. So if we verify (6)

when 0 < Re ]8< 1, K-6 of §2c implies that J"=(J)a. Note that J=(l + T)'1 when
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P( = exp(-íD. So Jf=JZ e-'PJdt. Then

j«(f) = r(«) - » j" m- v uPu(f) du

= iXa)-1^-«)-1 ["(["rv-v-1»*)?^

= r^-TO-a)"1 f"(f"(í-l)-«e-t» Jf^PJ-ii/

= rí«)-1^-«)-1 f"(í-l)-« re-^PJdudt

= Y(«)-iT(l-a)-^\t-l)-"(t + T)-\f)dt

= r^-TO-a)-1 f" »-«(»+i+r)_1/ífc.

Since (t>+1+T)-1 =/(»/+1)_1, set p=jc-1 to get by K-l that

ya(/) = sinjra rxa-iy(^+/)-1/í/x = (/)a(/).
"■     Jo

(7) follows from Theorem 6.4 of [10] since by this theorem D((\ + T)a)^R(Ja);

D((l + T)a) is dense in LP(H).

Parts (8) and (9) of Theorem 3 require a lengthy development; this is given in [6].

Definition. Lap(H) is the range of Ja acting on LP(H), Re a > 0. If g e L"P(H),

II81,..- I/I, when g=J*f.
Remark. In [6] a more extensive list of the properties of the Bessel potential and

its relationship to fractional powers is given. Because of Properties (8), (9) of

Theorem 3 (proved in [6]), Lp(H)=L^ea(H) with equivalence of the norms.

Since the translation operators TtBy, t>0, form a bounded semigroup, ( — Ay)a,

Re a>0, can be written as in K-l or K-3 of §2c. In order to be able to succinctly

represent the hypersingular integrals of §4, we need to study the composition

(—Ah)aJß. To do this we need

Lemma 1. If f is in LP(H), 1 </?<oo, and if <p(t) is the Fourier transform of a

bounded, even, Borel measure p. on the real line, then

4>A(/) = Hm f      TMtA-^dt/t
£-»0 J|i|>£

satisfies \\^AÍf)\\púN(p)\\n\\ \\f\\p where the constant N(p) is independent of A and

y in H.

Proof. First set

(Tj)(x) = lim f      f{x-typ(tA -*) dt/t
£-»0 J|f|>£
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for/in Lp[(—oo, oo), dx]. Then for smooth/with compact support

(TAf)(x)= P  eiuMim f      f(x-y)e^'x' dy/y d^A(u)

where ¡j,A(E)=fx(AE) for Borel sets E in the real line. By the M. Reisz theorem on

the Hilbert transform, [|7^/"||páN(p)\\fi\\ \\f\\p, since ||/¿ 1 = 1/^1 for all |^|>0;

N(p) depends only on p.

Let /be a bounded continuous tame function on H which is based in the finite-

dimensional subspace Pof H; dimension of E=k. Since the normal distribution on

H is rotationally invariant, let K be the span of P and y and let ex,..., ek+x he an

orthonormal basis for K with ex = w = y || y || ~1. Then

f       TMtA-^dtitf = f Ii ^(x-H^lbll-1^-1)^ í/«(x)

where g is the restriction off to P'and where £>p(x, to) = exp [(x, tw)/p — t2/2p]. If

we write the integral over K as an iterated integral and write the first integral as

M g(xx-t,x2,...,xk + x)
J-oo |Jí||B|IS|í|</)IIVII

•exp[~(^~°2]y(?|b||-M-i)^

awisi<l<oiti/ii
21

dxx,

it follows from the discussion of TA over ( — 00,00) in the first paragraph of this

proof and from the dominated convergence theorem that ||Ox(/)||pg A(/>)||/x|| ||/||p,

the desired conclusion.

Theorem 4. If 0<Reß^Re a, (-Ah)ßJa is a bounded operator on Lp(H) for

l<p<co with \\(-Ah)ßJtt\\^N(cc,ß,p)\\h\\Reß.

Proof. By P-3 of §2b,

AhH?(f) = t'1 \    TtByfCh(l)(y) dnx(y),
Jhb

where Ch is the infinitesimal generator of Tsh acting on LX(H, nx). Since Ah is a

closed operator,

AhJ(f)= C Í    TtBJCh(l)(y)dnx(yyp(t)dt/t
Jo+ Jhb

where <p(t) = t~2 J" zexp(-z2t~2)e~z dz, t>0. Since Ch(l)(y) is a homogeneous

polynomial of degree 1 in y, this last integral may be written as

AhJ(f) = \lim\       f    TtByfCh(l)(y)dnx(y)<p(t)dt/t
zc-*0 J|f|>e Jhb
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when (p(t)=cp(—t) for negative t. By Minkowski's integral inequality,

|KJ/|P ï M f    ||<W/)|,|CÄ(1)(>0| dn,(y)
JHB

^ mm ii/L
by Lemma 1, if (p(t) is the Fourier transform of a finite even Borel measure p. on the

real line. Note that <p(t) is even by definition and that on t>0

/•00

<p(t) =      z exp [ — z2 — tz] dz

so that <p'(t)¿0 and <p"(i)>0. Thus Polya's criterion [3, p. 169] guarantees that

(p(t) is the Fourier transform of a finite even Borel measure on the line.

To prove that ( — Ah)aJa, 0 < Re a < 1, is a bounded operator on L„(H), l<p<oo,

we consider the integral definition ofJa in terms of Ht. Begin by changing variables

to replace t by t2. Then by arguing as above (or as in [5]), we get that

(-AhyH?(f) = r« f   wq¡(i)oo dn¿y)
JHb

where

«(1)00 = T(-a)-1 r [exp(2Ky,h>-t2\\h\\2)-l]t-<'-idt.
Jo +

Thus C£(l)(j) is a tame function on H based on the line through h. If 0 < e < R < oo,

each of the functions

Et.niy,h) = f [exp(2í<>')A>-í2||A||2)-l]r«-1¿//
JE

has integral zero. By Minkowski's integral inequality,

II¿'«.„(j', A)Hi S N(a,h)(p-nea+R-s'ea)

for large p and R, and integration by parts shows that

K<(*A)|i = ^(«.AX^-^+a1-"").

Thus C?(l)(j) eLi(//, «0 and fw C^(l)(j) Jn1(j') = 0. To apply the techniques of

[4] to prove the boundedness of

(-Ahyj"(f) = M(a)  ÍVe-«sff"  Í    TtByfCl(l)(y)dn1(y)e-^dt/t\du,
JO Uo+ JHB J

set <p(0 = e" "'" and verify that the even part of C£(1)(>0 is in L log+ L(H, «j). This

definition of <p(r) allows us to use Lemma 1 when C£(l)(j) is replaced by its odd

part and to use Lemma 1 when the techniques of the proof of Theorem 8 of [4] are

applied to the even part of C%(l)(y).
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Set Cû(l)(y) = K(a)\h\"G(y) where G(y) is a tame function based on the line

through A; so it suffices to prove that

G(x)= i" [exp(2tx-t2)-l]t-a-1dt
Jo+

has even part in L log+ L((—oo, oo), exp (—x2) dx). Integrate by parts to write

G(x) = K(a) P (x-t)exp(2tx-t2)t-"dt.
Jo +

Expand exp (2tx) in a Taylor series about 0 and integrate term-by-term. After

some calculations with identities in the T-function we get that

a 2kT((k-a)/2)
G(X) = K(a) 2  -T-r-XK.

k = 0 k\

The ratio test shows that this series converges uniformly on the compact subsets

of the line. Let L(x)=$(G(x) + G(-x));

r,x      „/ x v 22mr(m-a/2)   2mL(x) = K(a) J -v   ., ' ' x2m.
m-ïo       (2w)!

By using the fact that (7r)1,2r(2z) = 222-T(z)r(z+i), we see that

22mr(w-a/2)r(2w+l)-1 = K^m-aßMm + iy^m+l)-1.

Since Rea<l, \r(m-a/2)\T(m+i)-1^r(m-(Re a^ß^m+iy^l^nd \L(x)\

^TV(a) exp (x2). Thus log+ \L(x)\ ¿N(a) + x2, and since

Í \L(x)\ exp ( — x2) dx < oo,

it suffices to show that f"œ x2|L(x)| exp (—x2) dx<co. By integrating the above

series for L term-by-term with respect to x2exp(—x2) and applying the ratio

test to the resulting series, one sees that L(x) is in L log + L.

In order to make use of Theorem 5 of [1] we also need to verify that

J™œ log+ \x\ \L(x)\ exp (—x2) dx<ao. But this follows from the fact that log+ |x|

^c_1|jc|e for £>0 when \x\^0 and a calculation similar to that above for

jZx \x\e\L(x)\ exp ( — x2) dx. This last integral is seen to be finite for all sufficiently

small e > 0 since Re a < 1.

Now write C°h(l)(y) = K(cc)(L(y) + M(y))\\h\\" where L(y) = i(G(y) + G(-y))

and where M(y)=\(G(y)-G(-y)) so that (- Ah)aJa(f) = TL(f) + TM(f) where TL

and TM are integral operators of the form of (-Ah)aJa with Cl(l)(y) replaced by

L(y) and M(y) respectively. Since M (y) is an odd function, TM can be written as

an integral of an operator of the type in Lemma 1, so that TM is a bounded operator

on LP(H) if 1 <p<oo. For TL we proceed as in the even kernel case in [4]. Let

Kh(f)=Tr~1P J"œ TvBh(f) dv/v, the principal value integral. By Lemma 1, Kh is a
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bounded operator on LP(H); K2(f)= —/. This last fact follows from the observa-

tion that Kh is just the Hubert transform in the direction P«. Consider KhTL.

Direct computation shows that KhTL(f) is an integral with respect to u of

Ah(f)= P f    TtuByfKL(y)dnx(y)<p(t)dt/t
Jo* Jhb

where K'hL is the function P J"™ „ SuhL du/u where y -> Sy is the regular representa-

tion of the additive group of H acting on LX(H, nx). Since L(y) has integral zero

with respect to nx on HB, since L(y) is a tame function based on the line through «,

and since L e L log+ L(H, nx) with |<x, «>| |P(x)| e LX(H, nx), by Theorem 5 of [1],

K'h(L) is an odd function in LX(H, nx). Thus

\\TL(f)\l = \\KhKhTL(f)\\, í N(p)\\KhTL(f)\\p fk K(p,a)\\h\r°\\f\\p.

The desired conclusion regarding ( — Ah)aJa follows when 0 < Re a < 1.

If Re a > 1, use K-6. If Re ß < Re a, we have ( - Ah)ßJa = ( - Ah)ßJßJa 'B by part 4

of Theorem 3 with (-Ah)ßJß and J"'ß bounded on LP(H), so that (-Ah)ßJa is

bounded on LP(H) when Re jS^ Re a. This completes the proof of Theorem 4.

In the next theorem we look at the most elementary and one of the most

interesting hypersingular integral operators. This operator was studied by E. M.

Stein in [17], [18]. Let Pt(f)=exp (-tT)f. Then

T"(f) = T(-a)'1 P\Ptf-nt""1 dt
Jo

for 0< Re a < 1. We shall examine the action of T"Ja on LP(H) for Re <x>0.

Theorem 5. IfO<Rea<l,

T"J"(f) =/_?mJ^ f/uC/>a(l-")-"</«
""    Jo

where Ju(f) = jo Pt(f)e~tu dt. TaJ"(f) is given by convolution with the measure

va(E) = 8Q(E)-^^ Cj^E^l-uydu
T*        Jo

where ju(E) = ft pt(E)e'tu dt andPt(f)=jH TJdpt(y), and where 80(E) is the proba-

bility measure concentrated at the origin in H. P1/1 is given by convolution with the

measure vx(E) = 80(E)—jx(E) and TaJ" is given by convolution with the measure

va = ve*vn, vn = vx * vx *• ■ •* vx (n times) if a—n+ß with Re ß< 1. IfRea=n, an

integer, va = va_u2*vll2.

Proof. Notice first that

TJ(f) = ^TPt(f)e->dt = -j"lLpt(f)e-tdt = /-//
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by integration by parts. Thus if 80 is the Borel probability measure concentrated

at the origin in H,

TJ(f) = f TJdVl(y),       Vl(y) = 80(E)-j1(E).
JH

For any positive integer n, VJn(f)=jH Tyfdvn(y) where vn is the «-fold convolution

Of Vu

For 0 < Re a < 1,

y«Cf) = r(«)-1f"ptí/)í«-1e-'1
Jo

dt
Jo

and

V(f) = r(-cc)-1[(Pyf-fi)y-1-"dy.

If fie D(T),  Vif)-r(l - a)" * J" Py(f)y " * rfy  where P'y(f) = aPv(/)/^ . Let
L(g(t))(x) be the Laplace transform of g(t) at x. Then

T'J'if) = -Si]1^ f"z.(i«7ÎPt(/))(jf)rfx,
77    Ji

where rg=r(-a)ra. Now

*«ïW) = /« £ IjP.^c/-^"8^

= ["¿P.+iCf)^-0^ - £ tP'tPty(f)y-ady.

But PXC/0«0>+1)"» SPi(y + u(f)/8t. Thus

Ut"TSiPtif)))ix) = £ (^ +1 ) -1 ( -1- x) L(pt{y+oiwx»)^ "a *

= i" (>'+1)"2(-4X)y^^>-1(/^"aär>;

where Ju(f)= L(PJ)(u). Since

¡(-¿^,<v + D-(/) ^O+i)*-1!/!

we consider an interchange of integrals in J* L(taTS(Pt(f)))(x) dx.

fi(y+l)~2[-^xyx{y + u^(f)dx = (y+l)'2[J,y + u-<f)-RJRly+u-^(f)].

Since ||/?^B(v + i)-1(/)|p^(>'+ l)^||/||p, the dominated convergence theorem implies

that

T'J'if) = -^-^ f (Ja+y^(f)-(y+i)f)y-aa+y)-2dy.
77       Jo +
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SetM = (>'-r-l)-1 to get

TVt/-) = _!HL!^ ['(^-a-vyo-«)-«^
""     Jo

- Cju(f)W(l-u)-adu + ̂ ^ fV-Hl-«)""<*!/.
Jo "■     Jo

Sin 7T0Í

= /_!"L^r1/u(/K(i-M)-«i/M.

If Re a>0 and Re a is not an integer, write a=n+ß where n is a positive integer

andO<Rei?<l. Set

Vß(E) = S0(P)-^ \1ju(E)uß(\-u)'ßdu
17    Jo

for Borel sets E. Then va = vn * vs is the Borel measure such that TaJa(f)

=jH Ty(f) dva(y). If Rea = n, a positive integer, let y=a—\ and ß=\. Then

v«=vy*vfl, and TaJa(f)=jHTy(f)dva(y). K-6 and the continuity of all of the

operators in question justifies these last designations of va.

Remarks. 1. It is interesting to note that TaJ" is a bounded operator on LX(H).

It will not be possible to make this claim for the hypersingular integral operators

considered in §4.

2. The calculation in the proof of Theorem 5 holds for any bounded strongly

continuous semigroup St. Note that the proof of Theorem 5 amounts to calculating

^"(1+^4)"" when St = exp (-tA). Komatsu [10, §6] has made this general calcula-

tion using methods different from those in Theorem 5; see p. 309 of [10].

3. L"p(H)=L%ea(H) with equivalent norms; see [6].

4. For a > 0 other useful forms ofJ" exist and define equivalent norms on LP(H).

For instance Jl(f) = Y(a/2)'1 ft #,(/><«-»'»e-« dt. In the language of [10], Ja

=Jl=(\+T)'a and J2 = (l + T2)'"12. We have shown in [6] that /" and /f define

equivalent norms on LP(H) and that L%(H) is equivalent to D(Ta) when this

domain is equipped with the graph norm. [6] also contains a proof that /" and J2

have strongly continuous boundary value groups Jxy and J2y consisting of bounded

operators onLP(H), l<p<co.

4. Hypersingular integrals. In this section we shall study the general class of

hypersingular integral operators on LP(H).

Theorem 6. Let n be a Borel measure (possibly unbounded) on H such that

¡h II y |Re<t ̂ImKjO < °°- Ifn <Re a<n + l, n a nonnegative integer, set

Ga(f)= P f Rn(fy,t)d^(y)t""1dt
Jo* Jh

where Rn(f, y, i)=((n-1)!)"1 1*0 (t-uY-\TuByA^f-Alf) du if ml and R0(f, y, t)
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= TtByf-fiifin=0. Then

G'J'if) = Mio) f i-Ayyj"if)dpiy)
JH

and

\\GaJa(f)\\PúN(a,p)\  \yY~d\n\iy)
Jh

where M(a) and N(a, p) are constants which depend only on the parameters shown.

Proof. Set <x=n+ß, 0<Re j3<l, and note that t~nRn(f, y, t) = t~nRn(f ty, 1).

Also note that A\y = tnAy and

f {TtuByJ'(f)-J'(f))rß-^ dt = M(a)uß(-Ay)ßJ'(f).
Jo+

Since |J"¿ (1 -m)""1«5 du\ <oo, we have that

G'J'if) = M (a) f Ay(-Ay)ßJ'(f)dp.(y).
Jh

By K-6, G'J" has the desired form. By Theorem 4, ||(-^!/)Va/||p^TV(a,^)||j||Rea,

so that by Minkowski's integral inequality we get the desired estimate for

\\GaJ"(f)\\P.

Remark. The constant M(a) in the first conclusion of Theorem 6 is M(a)

=r(n)-ir(-ß)B(n,ß+i)(-ir=(-i)r(a+iy>r(i-a)r(cc).

In the case when Re a = n, a nonnegative integer, the desired theorem is more

complicated. We present a theorem and a remark regarding this situation. We

begin with

Lemma 2. Let h be a unit vector in H andy^O be a real number. Then

T(f)= lim  N™ Tthft-»-i dt-°-^f\
£-o+ Vh ty J

exists as a bounded operator on LP(H) and \T\p-^Kpq(\y\2 + l)|y|-1.

Proof. By Theorem 8 of [14], if

Ue(f)(x)= rf(x-t)t-»-idt-e-^g£,

the Ue are uniformly bounded as operators on Lp((—oo, oo), dx) and as e->0+,

Ue converges strongly to a bounded operator on Lp, l<p<co. Let/be a bounded

tame function on H which is based in a finite-dimensional subspace F of H. Let

K be the span of F and h and let g be the restriction off to K. By arguing as in the

proof of Theorem 4, we show that the Te converge strongly to a bounded operator

Ton LP(H). The Te are uniformly bounded and |r||p^Äjo^(|y|2 + l)|y|_1, where q

is conjugate to p.
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Theorem 7. If'y /O is a real number, « is a nonnegative integer, and /n is a Borel

measure (not necessarily bounded) on H such that l¡¡pn(y) d^(y) — 0 whenpn(y) is a

homogeneous polynomial of degree n on H and ¡x is such that \H || v |n i/|/*|(>>) < oo,

then GaJa, a = n + iy, is a bounded operator on LP(H) with

\\GaJa\\ ^N(n,y,p)\   \\y\\nd\p.\(y).
Jh

Proof. Since ¡Hpn(y) d^y) = 0, J"H AnyJ"fdn(y) = 0, and $H Rn(fi y, t) dp(y)

= jHRn_x(f,y,t)dn(y).Wite

R»-i(f,y,t) = rx«)-1 C (t-uf^T^Aifdu.
Jo

Then t'nRn-x(fiy, t) = t'"Rn_x(f, ty, 1), A\y = t"Ay, and

G*J«(f)= f P i-Ä._1(/«/,0',i)r"-1*4»ü')
Jh Jo*

= K(ri)\   flimff      [TthAyJ°f-AnyJ"f]t-,y-1dt-Aip£
Jh Jo  «-o   LJemByn <Y

+j*' TttAlJ'fr»-1 AJa-ii)»-1«" du\\ByfyMy),

where A = Pj'||Py ||_1. The inner most integral is

f °°      TthAyJaft '»''dt- WBy}")~ir AnyJaf.
Jevmm ly

By Corollary 4.1 of [6], Ja=JnJiy and by Theorem 4 of [6], Jiy is a bounded operator

on LP(H), \<p<ao. So by Lemma 2 and the dominated convergence theorem,

G"Ja is a bounded operator on LP(H) with ||GB/B|| ̂  A(«, y,p) ¡H \y\n d\n\(y).

Remarks. 1. When a=«, a positive integer,

GV"(/) = M(n) P  f  [TlByAyrf-AlJnf]dp(y)dt/t.
Jo* Jh

If we assume that $Hpn(y) dp(y)=0 when pn(y) is a homogeneous polynomial

of degree nin y and if we assume that ¡H \\y\\n df¿(y)<oo, then J"H j4J./n/i//i(3>) = 0

and 6V" is a kind of Calderon-Zygmund singular integral operator on LP(H);

see [4]. When a=0, GnJn is precisely the singular integral operator studied in [4].

We may write fi.=fi0+fj.e where ¡i0(E)=^(p.(E)-(-l)nfji.(-E)) and /¿«.(P)

=K/x(P) + (-l)V(-P)). Then ,x0(-P) = (-l)"+Vo(£) and Me(-P) = (-l)>e(P);

furthermore, GnJn(f) = T0(f) + Te(f) where P0 and Pe are operators of the same

form as G"Jn but have fi replaced by /¿0 and ¡¿e respectively. Because

f TtByApn(f)d,x0(y)= -f T-tByAyJ«(f)dii0(y),
Jh Jh
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T0 can be shown to be a bounded operator by using the M. Riesz theorem on the

Hubert transform as in the first paragraph of the proof of Theorem 4 above or as

in the proof of Theorem 7 of [4]. If the measure ¡xe is concentrated on a finite-

dimensional subspace K of H,

f TtByA«J"if)dp,eiy)= \ TtBxAUnif)dvix)
Jh Jk

where v denotes the restriction of ¡ie to K. Let eu...,ek be an orthonormal basis

for K and let Ru ..., Rkbe the Riesz operators used in the proof of Theorem 8 of

[4]. Write A%J»if) = IM=n x'BaA'Jnif) where A' = A^-- -Ap, •-(*, ..., ak), Ba

are constants and the At are infinitesimal generators of the TtBe¡, i= 1,..., k. Then

jH xa dvix) = 0. If we assume that v is absolutely continuous with respect to the

normal distribution with variance parameter 1 on K, and if dvix)/dn = Í2(x) satis-

fies xa£2(x) eL log+ L(A", n) for each multi-index a with \a\ =n, then the argument

used in the proof of Theorem 8 of [4] can be used to prove that each of the

í J"Jo+ Jk
TiBxAaJnif)x*n dnix) dt/t

is bounded on LP{H) ; so that Te is bounded on LPiH).

2. In [6] we defined Jiy, y real, and showed that the Jiy form a strongly continuous

group of bounded operators on LPiH). Furthermore, the Jiy of [6] are suitable for

boundary values of the analytic semigroup J', Re a > 0. In a paper yet to be pub-

lished, we have shown that if he H, iAh)iy is a strongly continuous group of

bounded operators on /-„(//). These results suggest that when Re a=n, a positive

integer, Im <x=/y#0, and when fHpniy) dpiy) = 0, then

G'J'if) = Mia) f A'yJ"(f)dn(y).
Jh

Since Ay(g) is an analytic function of a for a dense set of g in LP(H), and since

M(a) = M'(a)(a — n)'1 where M'(a) is a bounded function of a in a neighborhood

of n in the real line, we might ask whether

GV\f) = M(n) ̂ a(A"yJ«f) My)-

These topics require a lengthy development and will be treated in a sequel on

singular integrals and fractional powers of operators; see [22].
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