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WEIGHTED NORM INEQUALITIES FOR

SINGULAR AND FRACTIONAL INTEGRALS

BY

BENJAMIN MUCKENHOUPTO AND RICHARD L. WHEEDEN(2)

Abstract. Inequalities of the form || |^|T/||,âC| U|°/||p are proved for certain

well-known integral transforms, T, in En. The transforms considered include

Calderón-Zygmund singular integrals, singular integrals with variable kernel,

fractional integrals and fractional integrals with variable kernel.

1. Introduction.   We are interested in proving inequalities of the form

(i.i) II \A"Tfh ̂ c\ \x\"f\,.

Suppose for example that T is a Calderón-Zygmund singular integral operator

il(x-y)
(Tf)(X) = lim  \ f(y)h^yldy.

*-0 J\x-y\>e \X — y\

It is by now a familiar fact (see [4]) that if f(x) eLp(En), 1 <p<co, and Cl(x) is

positively homogeneous of degree zero with mean value zero on the unit sphere, 2,

and

(1.2)        Ni = 1 + 1* (\Q(x)-Q(-x)\ + \Q.(x) + Q(-x)\\og+ \Ü(x) + £1(-x)\) dx'

is finite where dx' is the element of area on 2, then (1.1) holds for a = 0 and q=p.

The effort to obtain a similar result for other values of a has a long history. The

case n= 1 was studied originally by Hardy and Little wood [5] and later by Babenko

[1], who showed the result is true for —l/p<a<l/p' where l/p+l/p'=l. For

n> 1, Kree [6] used a rotation method to show the same is true under the above

assumptions on a.

For n> 1, however, simple examples show some additional hypotheses on Q are

necessary to enlarge the a range. Let

(1.3) Nr= [£ |0(*)|'d*']
lit
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for r > 1 with the usual convention when r = co. Under the assumption that Nx < oo,

Stein [9] obtained the range —n/p<a<n/p'. Strichartz [10] proved (1.1) for

— n/p<a<n/p' provided that r'^p^r, 2(n—l)<r<co and Nr<co. Finally, using

rather general methods Walsh [11] further improved the result, obtaining

max ( — n/p, —n/r')<a<min (n/p', n/r') provided r> 1 and Nr<co.

Each of these results is included as a special case in the following theorem.

Theorem 1. Suppose that 1 <p<<x>, Í2 is homogeneous of degree 0 and has mean

value 0 over S, and r^l. Then there is a constant, C, independent off and Q such that

\x\" sup
£>0

Í
J|!/l>.

°^Ax-y)4y
\y\

iCNr\\\x\°f(x)

provided max (-n/p, — l/p — (n—l)/r')<a<min (n/p', \/p' + (n—\)/r'). There is no

such C if aú —n/p, a< — l/p — (n— \)/r', a^n/p' or a> l/p' + (n—l)/r'.

The inequality in Theorem 1 could be obtained from the results of Walsh, Krée,

and Calderón and Zygmund by splitting up the integrals and using an interpolation

argument. The virtue of the method used here is that it is direct and simple, using

only the Calderón-Zygmund result, Holder's inequality and Minkowski's integral

inequality. Another advantage is that the procedure can be used to prove the follow-

ing theorems.

Theorem 2. Assume that 0<y<n, \<p<n/y, \/q=\/p—y/n, r^n/(n—y), and

O. is homogeneous of degree 0. Then there is a constant, C, independent off and Q,

such that

^êïf(x-y)dy\  ûCNr\\\x\«f(x)
En \y

provided that

y + max(-n/p, -\/p-(n-l)/r') < a < -y + min(n/q', l/q'+ (n-\)/r').

There is no such Cifa^y — n/p, a<y—l/p — (n—l)/r', a^ —y + n/q' or a> —y+ l/q'

+ (n-\)/r'.

For the following "variable kernel" theorem Nr will be defined for r> 1 as

|l/r

(1.4) /vr = sup[js la^^i'i/yj1

Theorem 3. Assume that \<p<co, r^p', Q(x, y) is homogeneous of degree 0 in

y and §z Q.(x, y) dy' = 0for every x. Then there is a constant, C, independent off and

Q. such that

¡xl" sup
£>0

Í
Jlvl>

Q(x,y)
f(x-y) dy ^ S CNr\\\x\°f(x)

iw\>e  \y\

if and only if — n/p < a < n/p' — (n— \)/r. There is no such Cfor any value of a ifr <p'.
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Two other closely related results concerning variable kernel fractional integrals

and a transformation related to the derivatives of the commutator of a singular

integral operator are discussed briefly in §4.

The method we use to prove the inequalities in Theorems 1-3 is somewhat

standard. We split the integral defining T into three parts. One of these contains

the singularity of the kernel and can be handled by appealing to the known results

on singular or fractional integrals. This part poses no restrictions on a. The re-

maining two parts are estimated by techniques on the level of Hardy's inequality

and impose the restrictions on a. §§2 and 3 are devoted to these estimates. §4

contains the proofs of the inequalities in Theorems 1-3 and remarks about applying

this method to other transforms. §5 contains examples to prove the negative

assertions in Theorems 1-3. Whether or not the inequalities in Theorems 1 and

2 hold for the values of a for which no assertion is made seems to be a harder

problem and is not treated here.

2. Simple lemmas. Throughout this paper, x, y and z will denote points in

En with projections x' = xj\x\, y'=y/\y\ and z' = z/|z| on the unit sphere, 2. In-

tegrals will be taken over En or parts of En unless specified to be over 2 or parts of

the real line. Q(x, y) will denote a function homogeneous of degree 0 in y and

integrable on 2 in y; for r^ 1, Í2r will denote sup* [js \Q.(x, y)\r dy']llr with the

usual convention when r=oo. Q.r is the same as Nr except for r= 1 ; this notation is

used to emphasize the fact that for the lemmas of §§2 and 3 the complicated ex-

pression, Nu is not needed. If D(x, y) is independent of x, it will be written Q(y).

C will denote a constant independent of the functions / and O but not necessarily

the same at each occurrence.

Lemma 1. Ifa>0, lírico, 0<dir and -n/d+(n-l)/r<b<co, then

ÍÍ | |j>|í'Q(x,x->,)|<ií/>,l '   i C\x\»+nliQ.r.
U|i/|Sa|*| J

If d=<x>, then r = co and the conclusion is obvious. If d<co, a change of variables

shows that the dth power of the left side of the conclusion equals

(2.1) f | \x-z\*Q(x,z)\*dz.
J \x-z\¿a\x\

In this integral |z|á|x-z| + |*|á(a+l)|*| so that lgC(|*|/|z|)n-1. Therefore,

(2.1) is bounded above by

(2.2) Cl*!""1 f | \x-z\bQ.(x,z)\d\z\1-ndz.
J|»|S(o+l)|x|

Changing to polar coordinates with z=sz' shows that (2.2) equals

r r/>(a + l)|*| -i

(2.3) C|x|"-'      IQOczOH \x-sz'\™ds \dz'.
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To estimate (2.3) it will first be shown that

/•<a + l)|x|

.... \x-sz'\bdds ^ C\x\bd+1(l + \x'-z'\bd+1),       bd*-l,
(2-4)       J o

£ C(l+log+ l/|x'-z'|), bd= -1.

To do this let 9 be the angle between x' and z' and observe that by the law of

cosines \x — sz'\=(\x\2 — 2s\x\cos9 + s2)112. Using this, a trigonometric identity

and the change of variables s= \x\t shows that the left side of (2.4) equals

\x\bd+1 r + l[(l-0a + 4fsinaiff]M'2<//.

Since |sin $6\ has the same order of magnitude as \x'—z'\, (2.4) follows.

Now use (2.4) in (2.3). Holder's inequality with exponents r/d and r/(r—d) then

shows that (2.3) is bounded by

(2.5) C|*|M+n(£ir)'1      (l + \x'-z'\bd + 1)rllr-d)dz'\

if bd+ -1 and
r !• -\{r~dVr

(2.6) C\x\bd + n(Ür)d M   (l+log+ l/\x'-z'\)rKr-»dz'\

if bd= — 1. The hypothesis on b shows that (bd+ \)r¡(r — d)> 1 —« so that the in-

tegral in (2.5) is bounded. Similarly, if bd= —1, d<r so that r/(r—d)<co and the

integral in (2.6) is bounded. This completes the proof of Lemma 1.

Lemma 2. Ifa>0, lírico, 0<dir andb<-n/d, then

(T \\y\»Çl(x,x-y)\ddy)     i C\x\b + nldD.T.
\J\y\ia\x\ /

If d= oo, then r = oo and the conclusion is obvious. If d< oo, a change of variables

shows that the dth power of the left side of the conclusion equals

(2.7) Í | \x~z\"Q.(x, z)\ddz.
J \x-z\ia\x\

In this integral \x\ + \z\ -¿2\x\ + \x-z\ S(l + 2/a)|x-z| and in any case \x—z\

^|jc| + |z|. Therefore \x—z\ can be replaced by |x| + |z| to show that (2.7) is

bounded above by

(2.8) c[(\x\ + \z\)bd\Q.(x,z)\ddz.

In polar coordinates (2.8) becomes

C Í  \Q(x, z')\d\ ["(|x| +5)Mi-1 ds\ dz'

which is bounded by the dth power of the right side of the conclusion of Lemma 2.
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The following forms of Minkowski's integral inequality will be needed, for

a>0 and 1 ̂ i^oo,

(2.9)

and

f ( f |/(*, y)\ dyY dx]1/S < f [ f ¡fix, y)\s dx\"' dy
J   \J\v\£a\x\ / J J   U|jt|s|i/|/|a| J

(2.10)     f f ( f \f(x, y)\ dyY dx] "' á í f f \f(x, y)\s dx]** dy.
U   VlïlSalxl / J J   U|jc|6|»|/a J

3. Analogues of Hardy's inequality.   In this section we will consider the follow-

ing integrals for a fixed a > 0,

(3.1)

and

(3.2)

R = R(fÜ)={ f(y)D.(x,x-y)dy
J\y\<a\x\

S-S(f,Q)-\ f(y)Q.(x,x-y)
J\y\%a\x\

dy.

For 1 Sp^co, ||  ||p denotes ordinary unweighted V norm in P" and p' denotes

the number such that l/p + X/p' = \.

Lemma 3. If Q(x,y) does not depend on x,Q^y¿n, 1 Sp^n/y, l/q=l/p — y/n,

r ä n/(n - y) and a < min ( - n/q, - l/q—(«— l)/r), then

ll |x|*p||, s can w+-yir

Let m=0 if g = oo and otherwise let m = min(l,r/q). Choose e so that 0<e

< —a — n/q + (n—\)(m—\)/r. The hypothesis on a insures that such an e can be

chosen. Using Holder's inequality on the definition of R shows that |x|a|P| is

bounded by the product of

(3.3)

and

(3.4)

if       \f(y)\y\a+n-y+e\^(x-y)\^ dy]
U\y\ia\x\ J

Up

l*l"ff       (I
U|i/|So|ä|

n + ->-s\Q.(x-y)\1'my dy
Up'

If m< 1, it is easy to verify that the exponents in (3.4) satisfy the hypotheses of

Lemma 1 with d=(\-m)p' and b = (-a-n+y-e)/(\-m). Consequently, (3.4)

is bounded by

(3.5) c\x\-*-nlQ(nr)1'm.

If m = l, direct integration shows that (3.5) bounds (3.4).
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Using the fact that |x|a|P| is bounded by the product of (3.3) and (3.5) shows

that || |x|aP||5 is bounded by the product of C(Qr)1_m and

u r r iiip ii
(3.6) \f(y)\y\a + n-r+e\^(x-y)\m\x\'e'nl^dy\     \\ .

II UlvlSaUl J       II«

If q<oo, thenp<oo and (2.10) shows that (3.6) is bounded above by

(3.7) (f[f \\Cl(x-y)\m\x\-e"l"lf(y)\y\a+n-r+e\''dx\P"'dyY'*.

Since ü(—z) satisfies the same conditions as £2(z), Lemma 2 with d=mq and

b = ( — e — n/q)/m can be applied to the inner integral to show that (3.7) is bounded by

(3.8) C(nrr^\f(y)\y\^-y\"dyyP.

If ç = oo, then m = 0 and it is easy to see directly that (3.6) is bounded by (3.8).

The variable kernel version of Lemma 3 is the following.

Lemma 4. IfOúyún, lúpíkn/y, l/q=l/p-y/n, r^p' and a< —n/q—(n — l)/r,

then\\ |jc|"A||,áC£2r| |*|" + B-*/||p.

The proof is the same as for Lemma 3 replacing m by 0. Expression (3.7) can

be estimated directly in this case since the D drops out.

Lemma 5. If £l(x,y) does not depend on x, O^y^n, 1 úpún/y, l/q=l/p — y/n,

r^n/(n — y) anda>y + max( — n/p, —\/p — (n—\)/r'), then

|| |*|«s||, è cnr\\ \x\«+*-*f$p.

Let g(x) be a function in Lq'. Then j \x\"Sg dx equals

(3.9) f/"Cv)bla+n-,'[lj'l"a"n + ''f \x\"g(x)Q(x-y)dx]dy.
J L J\x\<\v\la J

Now use Holder's inequality on the outer integral with exponent/) onf(y)\y\"+n~y

and exponent/»' on the expression in brackets. Lemma 3 can then be applied to the

second part to show that (3.9) is bounded by ||/|j|a+n",'||,A||arL'. Since g was an

arbitrary function in L"', this completes the proof of Lemma 5.

Lemma 6. If Qúyún,   l^p^n/y,   \/q=\/p-y/n,  r^p' and a> -n/q,  then

|| \x\«S\^C£ly\ i*rn-y/iiP.

Choose e so that 0<e<a+n/q. Holder's inequality shows that \x\aS is bounded

by the product of

(no) ff     i/ooijrn-*-T</>>rp
and

(3.11) |x|a[f | \yYa~n+,+e^(x,x-y)\J''dy]  \
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Lemma 2 shows that

(3.12) | Ixl^l ^ CDr|x|6-n"'[i |/(>')|>'|a + n",'"£|p^l  *•
U |y|6a|x| J

Then use (3.12) to estimate || ¡jc[aS'||0 and apply (2.9). The conclusion of Lemma 6

follows immediately.

4. Proof of the inequalities in Theorems 1-3.   The theorems will be proved

simultaneously. Define

(4.1) rW = sup|f    *X-P5ïy)dy

where 0.(x, y) = Cl(y) in the case of Theorems 1 and 2 and y = 0 in the case of

Theorems 1 and 3. Next, define Ak to be the set of all x with 2k~1i \x\ <2k+2, Bk

the set of all x with 2k i\x\<2k+1 and let ck(x) be the characteristic function of Bk.

Then let

2 *«/ TSfc''»c=-co JyeAfc-, \x-y\ >e |A     s\

(4.2) T*(x) = sup

It follows immediately from (4.1) and (4.2) that

(4.3) \T(x)-T*(x)\ i C[\x\*-*R(\f\, M) + S(g, |Q|)]

where g(y)= \y\r~n\f(y)\ and R and S are the operators defined in (3.1) and (3.2)

with a— 1. Using Lemmas 3-6 shows that

I \x\"[T(x)-T*(x)]\\qiCClr\\ \x\"f(x)\\p

for the stated values of/?, q, r and a; q=p in the case of Theorems 1 and 3. Con-

sequently, the proof of the inequalities can be completed by showing for the stated

values ofp, q and r and every a that

(4.4) || |x|«r*(jc)||, è CNr\\ \x\°fi(x)\\v.

To prove (4.4), start with the fact that [|| |x|T*(.)t)||,]'1 equals

V    f 11   i« f f(y)&(x, x-y) , \"  ,
2 sup M iv Vi-*    dy\ dx-

k= -co JxeBk s>0 1 JyeAk. \x-y\>e        \X — y\

By the definition of Bk this is majorized by

(4.5) i   C2-f      sup   f ñyln(X'*-y) ¿y
k=-co JxeBk e>0    JyeAk. ¡x-y\ >e        \x~y\

This is bounded by

dx.

oo r /• -iqlp

(4.6) J   C2teW? \f(x)\pdx\    ;
k=-oo Uxejlit J
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for Theorems 1 and 3 this follows from results in Calderón and Zygmund [4] ; and

for Theorem 2 it follows from Theorem 9 of [7]. The dependence on Nr is not

stated explicitly in [4] or [7] but is implicit in the proofs; it also follows from the

Banach-Steinhaus theorem. It is not necessary to assume that/is in V to use these

theorems; if |x|a/is in V for some a then/belongs to V on every ring Ak, which is

enough.

Now (4.6) is clearly bounded by

c 2 *?[[
Ac = — CO LJjxeAk

\x\af(x)\" dx

Since q/p^ 1, this is bounded by

(4.7) CA?
oo /*

fc= - co JxeAk

lip

]QlP

Since each x is in at most three Aks, (4.7) is bounded by

CA?
r n «/p

J^IW/Wi-dxJ   .

This completes the proof of (4.4) and, therefore, completes the proof of the in-

equalities in Theorems 1-3.

Theorems 1-3 have the following logical complement.

Theorem 4. Assume that 0<y<n, 1 <p<n/y, Q.(x,y) is homogeneous of degree

0 in y, \/q=\/p — y/n, and r>p'. Then there is a constant, C, independent off and

O such that

Je¡
T&SfWdy

<e» \y\
Ú CNr\\\x\«f(x)

if and only if —n/q<a<njq' — (n— l)/r — y. There is no such C for any value of a if

r<p'.

The proof given in this section applies equally well to Theorem 4 except for the

passage from (4.5) to (4.6). For this an argument similar to that for fixed kernel

fractional integrals in Theorem 13 of [7] can be given. The negative parts can be

treated in the same manner that they are in §5 for Theorem 3.

The inequality in Theorem 1 is also true as stated for

(Tf)(x) = sup f [a(x)-a(y)]f(y) ̂(X Sidy

where a has first partial derivatives bounded by M,/is in LP, l<p<<x>, and Q is in

L log+ L on £ and is orthogonal over S to polynomials of degree 1. To see this,

split the integral as usual. Since \a(x)-a(y)\ ¿M\x-y\, \Tf-T*f\ is majorized
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by M[\x\-nR(\f\, \n\)(x) + S(\f\l\y\\ |Q|)(jc)] as usual. || \x\aT*(x)\\Q is estimated

by the same argument as before using the known fact that ||7/||P^CA/||/||P; see

[2] and [3].

5. Proof of the negative assertions in Theorems 1-3. Simple examples will be

given to show that the inequalities in Theorems 1-3 do not hold for the indicated

ranges of a.

In Theorem 2 if «a -y+n/q', choose ü(y)=\ and f(y) the characteristic

function of | y |gl. Then for |x|^2 the right side of the inequality

(5.1) \x\" f  f(y) ^{XZy)ydy ï C\x\^-^ \ f(y)Q(x-y)dy
JE" \x~ y\ J\y\<\x\l2

exceeds a constant times |x|a+7"'1 and, therefore, does not belong to LQ(\x\¡i2)

for a in this range.

If a^ — y+l/q' + (n— l)/r' in Theorem 2, fix a unit vector, w', let Q(y)

= \w'—y'\~tlr for some t<n— 1 and f(y) be the characteristic function of |.y|íál.

Then for |x| = 2 the left side of (5.1) exceeds a constant times

(5.2) \x\a + y-n f        Q.(x-y)dy.
J\y\<\

Let D be the intersection of \x\ 2:2 and the cylinder with radius \ and axis the ray

emanating from the origin along w'. For x in D there is a positive constant, C, such

that

f Q(y)dy-^c[X     sn~1dsÎ \w'-y'\-tlr dy'.
J\x-y\<l J\x\-C J|iu'-j/'|SC/|x|

A simple computation shows that this is bounded below by C|x|i,r. It follows that

the integral over D of the qth power of (5.2) exceeds a positive constant times

Jd \x\(a + y~n + tlr'"' dx; this is infinite if the exponent is greater than or equal to — 1.

Since t is an arbitrary number less than «—1, this integral can always be made

infinite if a> -y+\/q' + (n—\)¡r'.

In Theorem 1 ifa^n/p' ora> l/p' + (n—l)/r', Q. cannot be chosen to be positive

since it must satisfy the additional requirement J"2 £2 = 0. If a ^ n\p', take Í2 to

be 1 on the upper hemisphere of 2 and — 1 on the lower hemisphere. The same

reasoning as used before for \x\ S2 can be used if |x| =2 and xn^l. If a> l/p'

+ (n — l)/r', take Ü to be an odd function equal to \w'—y'\~tlr in a neighborhood

of w' and zero away from w' and — w' and argue as before.

The rest of the negative assertions in Theorems 1 and 2 can be obtained by a

duality argument.

To show that the range of a is best possible in Theorem 3 is even easier. For the

lower bound this is already true if O does not depend on x. If a^n/p' — (n—l)/r

in Theorem 3, let/(>>) be the characteristic function of \y \ = 1 and Q.(x, y)be the
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odd function of y equal to |.v|<n_1)"' for \x'—j'|<l/|x| and zero away from x'

and —x'. Then Ar<oo and for [jc| ¡£2

\x\-\Ay)^X'vXûy)dy*C\x\«-«[ n(x,y)dy,

and this is bounded below by C|x|ß-n + (n-1)/r. This is not in L"(\x\^2) for a in the

given range.

If r<p', Theorem 3 is clearly false since the integral in y on the left side of the

conclusion may be infinite for every x while the right side of the conclusion is finite.

References

1. K. I. Babenko, On conjugate functions, Dokl. Akad. Nauk SSSR 62 (1948), 157-160. MR

10, 249.

2. B. Bajsanski and R. Coifman, On singular integrals, Proc. Sympos. Pure Math., vol. 10,

Amer. Math. Soc, Providence, R. I., 1967, pp. 1-17. MR 38 #6405.

3. A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sei. U.S.A.

53 (1965), 1092-1099. MR 31 #1575.

4. A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.

MR 18, 894.

5. G. H. Hardy and J. E. Littlewood, Some more theorems concerning Fourier series and

Fourier power series, Duke Math. J. 2 (1936), 354-382.

6. P. Krée, Sur les multiplicateurs dans FV avec poids, Ann. Inst. Fourier (Grenoble) 16

(1966), fase. 2, 91-121. MR 35 #7080.

7. B.  Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate

harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. MR 33 #7779.

8. R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142.

MR 26 #4193.

9. E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250-254. MR 19

547.

10. R. S. Strichartz, V estimates for integral transforms, Trans. Amer. Math. Soc. 136

(1969), 33-50. MR 38 #2638.
11. T. Walsh, On V estimates for integral transforms, Trans. Amer. Math. Soc. 155 (1971),

195-215.

12. A. Zygmund, Trigonometric series. Vols. I, II, 2nd ed., Cambridge Univ. Press, New

York, 1959. MR 21 #6498.

Rutgers University, New Brunswick, New Jersey 08903


