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THE SPACE OF ALL SELF-HOMEOMORPHISMS

OF A TWO-CELL WHICH FIX THE CELL'S BOUNDARY
IS AN ABSOLUTE RETRACT

BY

W. K. MASONO)

Abstract. The theorem mentioned in the title is proved. A corollary of the title

theorem is : any homeomorphism between two compact subsets of the function space

mentioned in the title can be extended to a homeomorphism of the function space

onto itself.

1. Introduction. An interesting question in infinite-dimensional topology is the

following: Is H{D), the space of all homeomorphisms of a 2-disk D onto itself

which are the identity on the boundary of D, homeomorphic to /2, the separable

Hubert space of square summable sequences [4, Question 22]; or much more

generally, is H(M), the space of homeomorphisms of a compact n-manifold onto

itself (under the "sup norm" topology), locally homeomorphic to l2 [22, Problem

Ml]? The answer to the last question is yes if n = 1 [3], unknown if n> 1. There are

several partial results concerning these questions. It is well known that H(M) is a

complete separable metric space. The author [16] has shown that if A'is a sigma-

compact subset of H(M), then H(M) — K is homeomorphic to H(M). Geoghegan

[10] has shown that H(M)xl2 is homeomorphic to H(M). Edwards and Kirby

[9] have shown that H(M) is locally contractible. (Earlier, Dyer and Hamstrom

[8] showed that H(M) is locally contractible if M is a 2-manifold with boundary.

See also [11], [12].)

It is unknown whether or not H(M) is an absolute neighborhood retract. In this

paper we prove that H(D) is an absolute retract (Theorem 4).

The basic idea of the proof is to show that for every open covering a of H(D)

there is a locally finite polyhedron a-dominating H(D). (See §2.) We make strong

use of a selection theorem of Michael (Theorem 6 of this paper) in the main proof

of this paper which is contained in §4. The verification that Michael's theorem

may be applied is postponed until §5. Possibly readers will supply their own verifi-

cations and will not have to read §5. §6 concludes the paper with a corollary.
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All homeomorphism spaces mentioned in this paper will be topologized by the

"sup norm" distance function (see §2). We shall use without explicit mention

elementary results concerning arcwise accessibility and separation of sets in the

plane (see Chapters 5-6 of [18], or Chapter 6 of [21]).

2. Definitions and notation. The statement that a metric space X is an absolute

retract (AR) means that whenever X is embedded as a closed subset Z0 of a metric

space Z, there is a retraction of Z onto Z0. The statement that a metric space Xis

an absolute neighborhood retract (ANR) means that whenever X is embedded as a

closed subset Z0 of a metric space Z, there is a retraction of an open neighborhood

of Z0 onto Z0.

/ or [0, 1] denotes the closed unit interval, and R2 the plane (Euclidean 2-space).

If /i,/2: A -»■ B are homeomorphisms of the compact metric space A into the

metric space B, then dist(_/i,/2), the distance between f± and f2, will be

supxex dist (f1(x),f2(x)). If A and B are complete metric spaces, with metrics

du d2 resp., then a complete metric d3 on A x B is given by

dSflu ¿>i), faz, ¿>2)) = ¿i(öi, a2) + 4(¿>i, ¿2).       fli, 02 6 /4, èj, 62 e B.

Suppose A and B are point sets. Then A + B denotes the union (sum) of A and

B; Bd (A) denotes the set of boundary points of A; Int (A) denotes the set of

interior points of A.

Suppose C is a collection of subsets of a set X. Then \C\ denotes the set of all

points p of X such that /j is in some element of C ; if a e C, then st (a, C), the star of

a in C, denotes the collection of all y e C such that a n y ̂  0.

A couer of a space will always mean an open cover ; a cover y is a refinement of a

cover a if every element of y is contained in some element of a.

If y is a locally finite cover of a space X, then the nerve of y is the simplicial

complex whose set of vertices is y, and where elements Ult..., U„ of y are vertices

of a (closed) simplex a of the nerve if and only if Ux n • • • n [/„/ 0. It is well

known [7, Theorem 1.1] that there exists a standard barycentric map b from A'

into the nerve of y such that if b(x) 6 (a— Bd (ct)) for some simplex a of the nerve,

with vertices Uu ..., Un, then x e l^ n• • • n {/„.

By wa/> we mean continuous function ; an embedding of /Í into fi is a homeomor-

phism from A into i?. An isotopy A of a space yi into (onto) a space 5 is a map

A: AxI-¥ B such that for each / 6 /, the map At, defined by A((a) = A(a, t), all aeA,

is a homeomorphism of A into (onto) 5.

Suppose X is a space and a is a cover of X. Then a map/: X -> X is limited by a

if for each xe X there is an element U of a such that x and/(#) are points of U.

A homotopy A: Xx I—* X is an a-homotopy if for each x e Jf there is an element

U of a such that A(x, r) e {/ for all ? e /. A space F a-dominates X if there are maps

/: X'-> F and g: F—»- X, and an a-homotopy A: Xxl—> X such that, for each

xeI, A(;c, 0) = ;c and A(x, l)=gf(x).
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A space X is locally n-connected (LCn) if for every xe X and every open set W

containing x, there is an open set U containing x such that every map of a A: sphere,

k^n, into U is homotopic in W to a constant map.

If X is a space, the cone over X, denoted by C(X), is the identification space

formed from Xx I by identifying Xx {1} to a point.

An arc B is a spanning arc of a disk Z if 5 is contained in Z, the endpoints of B

are contained in Bd (Z), and except for its endpoints B misses Bd (Z).

3. H(D) is an absolute retract. Following Alexander [1] let us define the

Alexander map AL: H{D)xH{D)xI-+ H{D) by AL(f, g, 0)(x) =f(x), all (J,g)

eH(D)xH(D), xeD; and AL(f g,t)(x)=f(t-[f-1g(x/t)]), 0<^1, x e D,

(f, g) e //(-D) x H(D). Here we think of points x e R2 as being vectors based at the

origin, D as being the set {xe R2 : length x¿ 1}, and we think of maps fe H(D)

as being extended to R2 - D by the identity.

The following lemma is easily proved.

Lemma 1. Let a be a cover of H(D). Then there is a refinement y of a such that

if i/j : H(D) -> H(D) is a map which is limited by y then the homotopy

6: H{D)xI-+ H{D) defined by 9(f, t) = AL(<p(f),fi t) is an a-homotopy between

¡p and the identity map.

(Proof omitted.)

In §4 we shall define a basis HVT (Horizontal and Vertical Tube cover) for

H(D). In the present section we shall assume Theorems 2 and 3 concerning HVT.

Theorems 2 and 3 will be proved in §4.

Theorem 2. Let 0lt..., On be a finite set of elements of the basis HVT. Then

nr=i Ox is an element of HVT.

Theorem 3. Let U be an element of HVT and K a finite-dimensional compact

subset of U. Then there is an embedding <p of the cone over K into U such that >fi(f, 0)

=fforallfeK.

Theorem 4. H(D) is an AR.

Proof. The homotopy 0: H(D)xI-*H(D) defined by 6(f, t)=AL(f, Id, r),

for all (f, t) € H(D)xI, contracts H(D) to a point. Therefore, since H(D) is

contractible, it suffices, by [6], to prove that H(D) is an ANR. By a theorem

of Hanner [13, Theorem 7.2] H{D) is an ANR if for every cover a of H(D) there

is a locally finite polyhedron a-dominating H(D). (See §2 for definitions.)

By Lemma 1, it suffices to show that for every cover a of H(D) there is a locally

finite polyhedron P and maps b: H{D) ->P and i/j: P-> H(D) such that tfib is

limited by a.
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Suppose then that a is a fixed cover of H(D). We may assume that each element

of a is also an element of the basis HVT. By [20, p. 980] there is a countable

refinement y of a such that (a) if h e y, then st (h, y), the star of h in y, is a finite

set, and (b) if A s y then there is a Vea such that ¡st («, y)| is contained in V. Let

P be the nerve of y and let b: H(D)-+P be the standard barycentric map.

Order the elements of y, and for each ht e y, let K¡ be an element of a such that

|st(A(, y)|cKt.

We shall define the map 0: P-> H(D) by induction on the skeletons of P. For

each vertex («¡) of P, let ^>°((/í¿)) be any point of the set hi^H(D). Now assume >p0

has been extended to a map >/in: Pn -> H(D) (Pn denotes «-skeleton of P) such that

for each (closed) simplex a" = («Ä0,..., hAn) we have

(a) <(in(an) is finite dimensional, and

(b) fV)cn {Vt s a : w¡ e O?=o st (AA,, y)}.
Now let an + 1 be any closed « + 1 simplex of Pn+1. Assume the vertices of an+1

are h0,..., hn + 1. Let U=f) {K¡ e a : «¡ e C\"¿o st («;, y)}. By Theorem 2, t/ is an

element of HVT. Since the image under </>" of each «-simplex in the boundary of

CTn + 1 is a finite-dimensional compact set, the image under 4>n of the boundary of

orn + 1 is a finite-dimensional compact set [15, Theorem III2] which we denote by K.

Clearly K^U. By Theorem 3 there is an embedding A: C(K)^* U such that

X(f 0)=/for all/e K. The simplex ct" + 1 may be thought of as the cone over its

boundary, and so for (x, t) e an+1, let </.n+1(x, i) = A(i/'n(x), t).

Extending over each <rn+1 of Pn + 1 in this way gives </>n+1: Pn+1 ->■ H(D) and

completes the induction.

Now suppose fe H(D), and h0,..., «n are the elements of y which contain /".

Let U' = f\ {V¡ e a : ht e n?=o st («,, y)}. It is easy to check that (1) n?=0 *¡c t7'*

so/e [/', and (2) #(/) e £/'. Also, ¡7' is contained in an element of a. Hence >pb

is limited by a.

The proof of Theorem 4 is complete.

4. The basis HVT. In this section we describe the basis HVT and prove

Theorems 2 and 3. First, however, we make some preliminary definitions.

It is convenient to think of the disk D now as being a rectangle in R2 with

horizontal and vertical sides. Following [18, Chapter V, §1] a grating P on D is

formed by drawing a finite number of spanning segments across D, parallel to its

sides. These spanning segments will be called the crosscuts of P. The 2-cells of P are

the closures of the rectangular domains into which the interior of D is divided by

the crosscuts of P. The mesh of P is the maximum of the diameters of the 2-cells of

P. If £ is a subset of D, the star of E in P, st (E, P), is the collection of all 2-cells of

P which intersect E.

Let P1; P2,... be a fixed sequence of gratings on D such that (a) the mesh of P¡

approaches zero as / approaches infinity, and (b) if / is a crosscut of some Pf, then

/ is a crosscut of P¡ for ally's;/.
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Pi P2

Diagram 1

For convenience of notation we shall also assume that, for each i, the set of cross-

cuts of P¡ is made up of an equal number of vertical and horizontal segments.

Let Jt be the collection of all polyhedral disks H contained in D such that

Bd (H) is the union of a vertical segment in the left side of Bd (D), a vertical seg-

ment in the right side of Bd (£>), and two polygonal spanning arcs of D. rf? is

called the collection of "horizontal" tubes in D. Let "T be the collection of all

polyhedral disks V contained in D such that Bd (V) is the union of a horizontal

segment in the top of Bd (D), a horizontal segment in the bottom of Bd (£>), and

two polygonal spanning arcs of D. "f" is called the collection of" vertical" tubes in D.

We now define the sets 0{P,; Hu ..., Hn; Vlt..., Vn) which make up the basis

HVT. Let Pj be any grating in the sequence Pu P2,_Let {lu ...,/„} be the set of

horizontal crosscuts of P„ and {mlt..., mn} the set of vertical crosscuts of P¡. Let

{Hi,..., Hn} be a set of n elements of Stf such that Hf r\ H,= 0, i+j; and let

{Vu..., Vn} be a set of n elements of "f" such that Vt n V,= 0, f#/ Then

0(Pi;Hu...tHn; Vu..., Vn) is the set of all feH(D) such that /(/,)<= Ht

-closure (D-Ht), lúiún, and /(w¡)<= Vt- closure (D- Vt), l£i¿n. It is clear

that 0(P}; Hu..., Hn; Vu..., Vn) is an open subset of H{D).

All sets of the form 0(P,\ Hlt..., Hn; Vu ..., Vn),Pie{P1, P2,.. .},{HU ...,Hn}

<=je, {Vu ..., Vn}^-r make up the basis HVT.

Lemma 5. HVT is a basis.

Proof. Suppose we are given £>0 and/e H(D). We want to find an O e HVT

such that/e O, and dist (/, g) < e for all geO.

Choose 8>0 so that dist (f(x),f(y))<e whenever dist (x, y)< 8. Choose a

grating P¡ e {Pu P2,...} such that if C2 is any 2-cell of P¡, then diam |st (C2, Pf)\

<8. Let n denote the number of horizontal crosscuts of Ps. Choose "horizontal"

tubes H1,...,Hn of Jt such that (a) HinHf=0, i+L (b) f(lt)<=H(

-closure (D-H^, 1^/^n and {c) f-\H{)^\st {k,P,)\, Xúiún. Choose "verti-

cal" tubes Vx.Vn of r similarly. Then the set 0(P¡; Hu..., Hn;Vu..., Vn)

is the required element of HVT. For, let g e 0(Pi; Hu ...,Hn; Vu ..., Vn), and
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x0 e D. Let C2 be a 2-cell of P; containing xQ. It is easily seen thatf~1g(Bd (C2))

<=|st(Ca,P,)|, hence /-^(C2)c|st(C2,P,)|. Hence dist(f-1g(x0),x0)<8, so

dist(g(x0),/(x0))<£.

The proof of Lemma 5 is complete.

Proof of Theorem 2. Let C/=Plf-i Ot. We want to show C/eHVT. Assume

U^= 0 ■ To simplify notation assume that P¡ is the grating associated with 0¡,

l^i^n. Then every crosscut ofP¡ is a crosscut of Pn, 1 ¿i^n. Let ^ be a horizontal

crosscut of Pn. For each i, 1 ̂ ¡'^«, let H{ be the "horizontal" tube associated with

/i and 0¡, provided there is one (lx may not be a crosscut of some P4's), otherwise

let H¡ = D. Since £// 0 we may choose fe U. Then f(l±) is contained in the

closure of some component H± of D — 2?=i Bd (7/Í). It is then clear that (a) if

geU then g(/j) c //, - closure (D-HJ and (b) if heH(D), and h(l1)<^H1

-closure (D-HJ, then hQ^Hi-closure (D-Hl), l^i^n. Finally, for each f,

1 ̂ i^n, Bd (i/i) is a polygonal simple closed curve containing the endpoints of lu

hence by [18, p. 168], Bd (Hx) is a (polygonal) simple closed curve. It follows that

Hi E Jz .

Continuing in this way we define a "horizontal" tube H¡ for each horizontal

crosscut l¡ of P„ (assume there are r such crosscuts), and a "vertical" tube V} for

each vertical crosscut m¡, 1 újíkr, of P„. The "horizontal" tubes //, are pairwise

disjoint since each Hj is contained in a tube HJ1 associated with On, and similarly

for the "vertical" tubes V¡. Thus U= U(Pn; Hu ..., Hr; Vu ..., Kr) is an element

of HVT.

The proof of Theorem 2 is complete.

The proof of Theorem 3 makes use of a selection theorem of Michael [17]. The

version we state here (Theorem 6) is the one given in [11, p. 32].

Theorem 6. Suppose that A and B are metric spaces, A complete and the (covering)

dimension of B does not exceed « + 1, and that Z is a closed subset of B. Suppose,

further, that R is an open mapping of A onto B such that the collection of inverses

under R is equi-LC (see below) and r is a mapping ofZ into A such that for z eZ,

r(z) e R~1(z). Then there is a neighborhood U ofZ such that r may be extended to a

mapping r'ofU into A such that for z e U, r'(z) e R~ 1(z). If each inverse under R has

the property that all its homotopy groups vanish (of order <«+1), then U may be

taken to be the entire space B.

The collection of inverses under R is said to be equi-LCn provided that if

be B,ae P-1(fr) and Pis a neighborhood of a, then there is a neighborhood G of

a such that if b' e B then every mapping of a fc-sphere, k^n, into P-1(è') n G is

homotopic in P_1(è') n Pto a constant map.

Proof of Theorem 3. (See statement in §3.) Let Pe{P1, P2,...} be the grating

associated with U. Let llt.. .,/„ and mlt..., mn be the horizontal and vertical

crosscuts, resp., of P. Let Hu ..., Hn and Vu..., Vn be the "horizontal" and

"vertical" tubes, resp., associated with U.
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Step A. There is a small square TV contained in a 2-cell of the grating P and an

isotopy 0].: Ax /-> i/such that (a) Nn Bd(D) is a segment, (b) N n 2?=i (#i+ K,)

is empty, (c) ßtf, 0)=/for all/e K, (d) if/e A then O^fi l)[Bd (Ar) = Id|Bd (TV),

and (e) iff,geK,f¿g, then 0^/, l)|A^0i(g, 1)|/V. 0X and TV are obtained as

follows. Let ^L: H(D)x H(D)xI-^ H(D) be the Alexander map of Lemma 1.

Let ft : H{D) x /-> #(ß) be defined by ̂ {f, t) = AL(ld,f l-t) all (/ /) e //(£>)

xl. By the compactness of A, there is a ?0 e (0, 1) such that if/e A", and 0^t^to,

then ^j(/, r) e U. We may choose a square N, satisfying (a) and (b), small enough so

that piif, t0)\N=\à\N for all/e H(D). We may also assume, by the compactness

of A", that /Vis small enough so that if/e/x^Ax {?„}), ge H(D), and/=gon D — N,

then ge U. Let F: N-*• D be a fixed homeomorphism of N onto D. Let

ti2: ¡j-i(Kx {t0}) x /-> £/ be the isotopy defined by

M2(/, 0(*) = /(*) for x e £> - V,

= (F-1 o AL (Id,/, /) o F)(x) for x e V.

Then /x2(/ 0) =/ for all f e ^(K x {t0}), since f\N=ld; and if/^g, then /¿2(/; 1)

#M2(S, 1) on /V. Then, for/e A", / e /, let B¿f, t) = ̂ {f t) if 0^ tú t0, and e¿f, t)

=MaG*i(/> 'o), (' —io)/(l -?o)) if fo<í^l.

Let A"i = 0X(A x {1}). Then A\ has the property that if A : A?! x / -> t/ is a homo-

topy, and A(/ ?)|Ar=/|7v' for all tel,fe Ku then A is an isotopy.

Step B. Our goal now is to shrink Kx so that all the homeomorphisms in the

image of A"x agree when restricted to the horizontal crosscut /j.

Let the arcs making up the boundary of the "horizontal" tube Hx be denoted by

L, R, T, B, where Lis in the left side of Bd (Z>), R is in the right side, Pis the "top" of

Hu and B is the "bottom". Since the set |{/(/i) : /e A\}| is a compact subset of D

disjoint from T+B, we may adjust Tand B slightly by "pushing them in", so that

every component of Hx n 2"=i Bd (K¡) is a (polygonal) spanning arc of Hx. Since

Bd (Hi) and 2?=i Bd (K¡) are polygonal we see that Hx n 2"=i Bd (K¡) has only a

finite number of components. (The "pushing in" step is not absolutely necessary,

but it simplifies the remaining arguments.) The components of Hi n 2"=i Bd (K()

may be partitioned into two collections, denoted by SEP and NSEP. The elements

of SEP are arcs which separate L and R in Hi (and thus have endpoints in both T

and B). The elements of NSEP are arcs which do not separate L and R in Hx (and

thus have either both endpoints in T or both in B).

We want to get an isotopy 62: A"j x /-^ U such that (a) 62(f 0)=/ all fe A"1;

(b) e2(f t)=f outside/"\Hi), all (/, r) eÜ x /, and (c) 02(/ 1)^) n |MS£P| = 0,

all/e A-j.

Let Bi be an element of NSEP. We first push/(/j) off Bx for each/e A"a.

Let MON be a fixed subset of R2 consisting of (a) three disks Dly D2, D3, with

disjoint interiors, such that Di n D2 and Z>2 n £3 are arcs, and Di C\ D2 n D3 is

two points eue2, plus (b) two arcs ("stickers") MX,M2 such that

Mt n (D1 + D2 + I>3)={ei}, i=l, 2. (See Diagram 2.)
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Diagram 2

Let M3 be the arc M1 + (D2 n D3) + M2. Let H(MON, HJ be the space of

embeddings of MON into the tube Hx. Let ßc k± x H(MON, HJ be the set of all

(/,y) in 7^ x H (MON, H±) such that

(1) j(M3) = Bltj (endpoint of M3 in Mi) = fixed endpoint u of 51;

(2)7(Z)1 + £»2 + JD3)cInt(//1),

(3) y(Z>3) O | JV5£P-Jîxl = 0,
(4) /(2?=i Wj) (~\j(MON) = 0 (recall that the njj's are the vertical crosscuts of P),

(5)/(/1)ny(D1+M1+Ma)=0,

(6) Ä! separatesy'(Int (DJ) and L+ /? in 7/j.

The set of all (/,y) satisfying (2)-(5) is open, and the set satisfying (1) and (6) is

closed, in K± x H(MON, HJ, hence ß is a G6 in a complete metric space, hence ß

is a complete metric space [14, Theorem 2-76].

Let 77! : ß -> ^ be defined by n1(fj)=f all (/,/) e ß.

Lemma 7. P«ere « a mapping r'\ A^ —> ß shc« í«ar 7^/-' = Id: A-! ->■ Kx-

Lemma 7 will be proved in §5. The proof consists of verifying that the hypotheses

of Theorem 6 hold for the spaces Q, Ku and the map -n^.

Let 77-2 : ß -> H (M ON, Hx) be the map defined by -n2(f,j)=j, all (fij) e Q. Let

r: Ki -> H(MON, HJ be the map r = n2r'. For each fe Ku we shall use the em-

bedding r(f) to guide us in pushing/^) off Bx. Let G: MONxI^- MON be an

isotopy of MON onto itself such that G0 = Id, Gt = Id on Bd (MON), all / e /, and

G1(D1) = D1 + D2. Let F: Kx xl^ H(D) be the map defined by

F(f, t)(x) = x

= (r(f)°Gt°r(f)-i)(x)

if x i r(f)(MON),

if x e r(f)(MON)

for all (/, 0 e Kx x I, x e D.

Finally, let 62: Kx x /->- U be the isotopy defined by

Uf, t) = F(f, t) of   all (/, t) e Kx x I.

Then 62(f t)eU, all (f,t)eKxxl, because (a) F(f, /)=Id on 2"=i/(Wi), since

r(f)(MON) n Zr=1/(mj)= 0 (property (4) of Q), and (b) F(f, t)=\d outside Ht.

Since  f(h)nr(f)(D1 + M1 + M2)=0,   we   see   that   e2(f,\)(h)r\r(f)(M3) =
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02(/ l)(/j) C\ Bi= 0. Also by property (3) of Q, 62{f, l)(li) intersects no new ele-

ments of NSEP. By induction then we may assume that 02(/ l)(/a) n \NSEP\ = 0,

for all/e A\. Also, 02 is an isotopy since 02(/ /)=/on tne square N, all (/ /) e Ki

xl.

LetA'2 = 02(A:1x{l}).

Step C. Let H[ be the closure of the component of Hi— \NSEP\ which has the

vertical segments L and R in its boundary. Then

(a) Bd (H{) is a polygonal simple closed curve [18, Theorem 11-8, p. 119],

(b) if/e A2, then/(/j) is a spanning arc of H[ from L to R, and

(c) the components of \ni(H[) n 2?=i Bd (K¡) are exactly the (open) arcs in

SEP.

Let A be a fixed spanning arc in H[, with the same endpoints as lu such that A

intersects each arc in SEP in exactly one point. We want to get a fixed embedding

jo'- li-> A and an isotopy 03: A"2 x/-> t/ such that 03(/ l)|/i=y0 for all/e A"2.

For each i, l^iún, let p{ denote the point of intersection of l± and the vertical

crosscut Wj. One may show that for each i, 1 á'á«, the set {/(/>¡) : /e A"2} is con-

tained in just one component of H[—\SEP\; denote this component by S1,. Let

jo' h-^ Abe any fixed embedding such thaty0(/?¡) e Sh 1 áigw.

Let H(A, H[) denote the space of all embeddings of A into H[ which are fixed

on the endpoints of A and which take A n Int (H[) into Int (H[). By Lemma 11(b)

there is a homotopy X: K2xl-^-H(A, H[) such that for all/eA"2, (a) A(/ 0)

=/0/o~\ (b) A(/ l)=Id: ,4 ->- ̂ 4, and (c) if At is the subarc of A with endpoints

j0(Pi) a.ndjo(pi + 1), and a is any arc in SEP, then X(f t)(At) n «= 0 if arid only if

y4¡ n a= 0, all ie/.

For each/e A"2, A(/ t) °j0 will tell us where/(4) is located during the isotopy

03. We want to extend \(f t) to an element of H(H[) for each (/, t)eK2xI.

(Here H(H[) denotes the space of all homeomorphisms of D onto itself which are

the identity outside H[.) Because of certain technical difficulties we must obtain

this extension in two stages.

Let LEV be the set of all (/ h) in A"2 x H(Hi) such that

(1) X(fO) = h\A(=foj^),
(2)h-i(f(2?=imi))n\SEP\ = 0.
Let ttí: LEV-> K2, tt2:LEV-+H(H[) be projection on the first and second

coordinates resp.

Lemma 8. There is a map r[: A"2 -=► LEV such that n^i=Id : A"2 -^ K2.

The proof of Lemma 8 will be discussed in §5. Let rx =TT2r[. For each/e A"2, let

MIS (/)=ri(/)-1(/(2?=i mt)). Note that MIS (/) n \SEP\ = 0.

Let LIF be the set of all (/, t,h)eK2xIx H(H[) such that

(3) \(f,t)=h\A,
(4) /i(MIS(/))n|5£P| = 0.

Let tt12:LIF-+ K2 x I, n3:LIF-+ H(H{) be projection on the first two and third
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coordinates resp. Let y : K2 x {0} -> LIF be defined by y(f, 0) = (/ 0, rr(f)), all

feK2.

Lemma 9. There is a map r2: K2xI-+LIF, which extends y, such that 7r12r2

=id-.K2xi~>K2xi.

Lemma 9 will be proved in §5. Let r2 = 7r3r2.

Finally, define the isotopy d3: K2xl-+U by d3(f t) = r2(f t) ° ̂ (f)-1 of all

(ft)eK2xI.

63 is an isotopy since 63(f,t)=f on TV, all (f t)eK2xl. Also, 03(/, 0)

= r1(f)°r1(f)-1of=fi all /e^, 63(ft)eU, for all (f,t)eK2xI, since

OaC/iOŒr^m«) misses |SPP|. Finally, 03(/, l)|/1 = ra(/> 1) o (y0 o/-i) o/^

=',a(/i O °Jo = Kf, 1) °7'o=y'o, all/e A:2.

Let K3 = 63(K2 x{l}). Since 03(/, 1)=/outside/-1^), we may assume by induc-

tion that if/, g e K3, then g=f on all horizontal crosscuts /¡, 1 úiÉn.

Step D. Our goal next is to shrink K3 so that all homeomorphisms in the image

of K3 agree when restricted to any crosscut of the grating P.

Let m\ be the subarc of the vertical crosscut m-^ such that the endpoints of m\

are points of the horizontal crosscuts ^ and l2 (and m[ interesects no other hori-

zontal crosscuts). Thus, if/e K3, then/(«ii) is in the "vertical" tube Vlt and/(mi)

is a spanning arc of the disk D[ bounded by f(¡i)+f(l2) plus two arcs in Bd (D).

Let Z>! be the closure of the component of Z>i-Bd (VJ which has f(m[) as a

spanning arc. By [18, Theorem 11.8, p. 119], Dx is a disk. Note that if g e K3, then

g(m[) is a spanning arc of Dx with the same endpoints as/(«ii), since/= g on h + l2.

Lety'i: «ti-> Dx be a fixed embedding such that j\=f\m'i for somtfeK3. We

want to get an isotopy 04: K3xl^~ U such that for all (/, t)eK3xI, 04(/, /)=/

outside /_1(i)i), and 04(/, l)|mí—¿.

Let //(£>i) denote the space of all homeomorphisms of Dy onto itself which are

fixed on Bd (Dj). Let VER be the set of all (/, A) eK3xH(D1) such that h\Ax

=f°j~1, where A=y'i(mi). Let t^: VER^K3, and tt2: VER^H(D1) be the

usual projections.

Lemma 10. PAere ¿s a «za/> r'3 : K3 -> K£P swcA íAaí tt^ = Id : A3 ->- A:3.

Lemma 10 will be proved in §5. Let r3: Ä^3->- //(£>i) be the map defined by

r3 = -nV"3- Let ^L': H(D1)x H(D1)x I-»■ H(D1) be a map defined analogously to

the Alexander map AL of Lemma 1, except that we replace the disk D in the defini-

tion of AL by the disk ZV

Define the isotopy 04: K3xI-> Uby 04(/, t)=AL'(\d, r3(f)~\ t) of (We extend

.4L'(Id, r3(/)-\ r) outside Dj, by the identity.)

Then 6Jf, t)eU for all (/ t)eK3xI, since 04(/, r)=/ outside /"»(Di). And

W, Olmi^'aOO"1 °/lm'i -C/i °/_1) °/=A- #* »s an isotopy, since 04(/ /)=/on

N for all (/, 0 e K3 x I.

LetKi = 9i(K3x{l}). Since 04(/ 1) =/outside/" 1(D1), all/e K3, we may assume



1971]     THE SPACE OF ALL SELF-HOMEOMORPHISMS OF A TWO-CELL        195

by induction that if/ g e A4, then/=g on all vertical crosscuts m¡ (and all hori-

zontal crosscuts /(), 1 á/á«.

Step E. We shrink A~4 to a point in U. Let g0 be a fixed element of A"4. Let

C2,..., C2 be the 2-cells of the grating P. For each i, \-¿i-¿q, let Ft : C2 -> D be a

fixed homeomorphism of C2 onto Z), and let AL be the Alexander map of Lemma 1.

Define a homotopy 05: A4 xl-+ U by

05(/, OM = So » Pf1 o [AL(Figô1fFf\ Id, f)] o F,(x)

for all (/ t)eKiXl,xe Cf, l^i^q.

Note that if x e Bd (C¡2), 1 úiúq, and /e A"4, then g0(x)=f(x), thus 05 is well

defined. Also, 0B(/ l)=g0, 05(/O)=/ for all/e A4, and if f#l, then 05|A-4x{?}

is a homeomorphism.

Finally, combining the homotopies 6U ...,05 (an equation for this may be

obtained as in [4, §5]) gives us a map </>i : C(A) -^ U such that ^(Z 0)=/ all/e A,

and for each tel, i/ii\Kx{t} is a homeomorphism. But then, by Lemma 14 (see

§5), there is an embedding 4>: C(K) -» U such that i/,(fi 0)=/for all/e K.

The proof of Theorem 3 is complete.

5. Some lemmas. In this section we prove the lemmas used in Theorem 3.

First, however, we bring together in Lemmas 11 and 12 some ways of shrinking

sets of homeomorphisms. The proofs of Lemmas 11 and 12 are based on various

modifications of the Alexander map AL of Lemma 1.

In Lemmas 11 and 12, Z will denote a fixed rectangle with vertical and hori-

zontal sides, Zi a closed subset of Z and H(ZU Z) will be the space of all embed-

dings of Zj into Z which are the identity on Zx n Bd (Z), and which take Zj n Int (Z)

into Int (Z). A subset X of H(ZU Z) has the compact shrinking property (C.S.P.)

if given any compact subset Y of X, there is a map A: C( Y) -> X such that A(/ 0)

=/, all/e Y, and A(/ 1) is the inclusion map of Zi into Z, all/e Y.

Lemma 11. Let A be a horizontal spanning arc ofZ, and Au ..., Ana subdivision

of A into subarcs with disjoint interiors. Let VAN be a subset of H(ZU Z). Then

VAN has the C.S.P. if one of (a), (b), (c) holds.

(a) Zi is the closure of a component ofZ — A, and VAN=H(ZU Z).

(b) There are vertical spanning segments yu ..., ym of Z such that, for all i, j,

1 úiíkn, 1 új^m, y j misses the endpoints ofA¡. ZX=A, and

VAN = {he H(Zi, Z) : h(At) nYj= 0

if and only ifAt ny,= 0, all i,j, 1 ú i ú n,\ á i á m}.

(c) There are two collections {au ..., an_i} and {yu ..., ym} of pairwise disjoint

spanning arcs ofZ, each arc meeting the top and bottom of Bd (Z), such that for all

Uj, y i^ ai= 0> and for all i, 1 g/^«— 1, at n A is the right-hand endpoint ofA{.

Zi=Z and VAN={h e H(ZU Z) : A|^ = Id, and h(at) n Yj= 0, all i,j).
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Proof. Case (a). Identify Z with the disk D used in defining the Alexander map

AL of Lemma 1. We may assume that if x is a point (vector) of Zx then x/t is either

a point of Zx or a point outside Z, all ie(0,l]. But then the map A(/, t)

= AL(ld,f 1 —/) is well defined for all (/ t) e C(Y) and is the map required.

The proof for conditions (b) and (c) makes use of a canonical family of isotopies

R(a, ß,y, t) of the plane onto itself. Let a, ß, y be vertical lines such that a is to the

left of ß and ß is to the left of y. Let {R(a, ß, y, Olteio.u be a continuous (in t) family

of homeomorphisms of P2 onto P2 such that (1) if / is any horizontal line in R2,

then R(a,ß,y,t)(l) = l for all tel, (2) if v is any vertical line in P2, then

R(a, ß, y, t)(v) is a vertical line, all / e /, (3) R(a, ß, y, 0)=ld, (4) R(a, ß, y, t)(p)=p

if p is on or to the right of the vertical line y, and (5) R(a, ß, y, l)(a)=ß.

Case (b). Assume inductively that we have a homotopy An_2: Fx/->- VAN

such that An_2(/, 0)=/ all/e F; An.2(/, l)=Id on Ax + ■ ■ ■ +An.2, all/e F; and

if x is a point of An_x+An, then An_2(/ \)(x) is on or to the right of a vertical line

cu„_2 through the right-hand endpoint of An-2, all/e F Let wn^1 be a vertical

line through the right-hand endpoint of An_x. Let o>á_i, ¿"ñ-i be vertical lines to the

left and right, resp., of a>n_i such that none of the segments y¡, 1 ̂ j^m, intersects

the (closed) strip between <%_! and w£_i.

For t e I, let

Qt = P(tOn_2, W»_l, CUn_!, t),

St = R(a>'n.1, ton_i, wj-i, t),

K-Áf t)=Qto An_2(/ 1) o ß,-i, all/e Y,

An-i(/ 0 - An_2(/ 3í), Oítúh

= A;_1(/,3/-1), i<t^h

= Si3t-2) ° K-l(f, l) o Sä-so. i < í ^ 1

(elements of H(ZX, Z) extend outside Z by the identity).

As t moves from | to f, A,,.^/, /) becomes the identity on the part of An_x

between <on_2 and a»á_i, then as í moves from f to 1, An.ii/, r) becomes the identity

on all of vin_i. Note that Qt moves no point of An, thus Xn-i(f, t) e VAN, i^t^f;

and if x e A lies to the right of oi'n_u then Xn-i(f, l)(x) lies to the right of w'n_1,

thus A„_!(/, t) e VAN, %< t ^ 1. Thus An_j satisfies our inductive hypothesis.

Finally, we change K-i(f, 1) to the identity on An (and thus on all of A), for each

fe Y. Identify the disk bounded by <on_1, the right side of Bd (Z), and two arcs

in the top and bottom of Bd (Z) with the disk D used in defining the Alexander

map AL of Lemma 1. We may assume that the arc An is a diameter of D. Then let

A(/,/) = An_1(/,20, Org^i, and A(/ t) = AL(ld, A^f/, 1), 2-2/), i</ál, all

/e F. A is the required map.

Case (c). Let F be a given compact subset of VAN. For each /', l-£i&n—l, the

compact set «¡-Hl/"^ :/e F}| is disjoint from all arcs yf, lûj^m. Hence we

may choose spanning arcs a[, a[ of Z separating a¡-|- |{/(a¡) : fe Y}\ from the left
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and right sides, resp., of Z such that each of aj, a'¡ intersects A in one point, and

such that the disk bounded by a', + a{ plus two arcs of Bd (Z) intersects none of the

arcs yjt 1 ¿j^m. We assume that the arcs ai, aj,.. .,a£_i are pairwise disjoint.

We may also assume that the arcs a'{, au a" are vertical segments, for all i, 1 á iú n—1

(there is a homeomorphism of Z onto itself taking the arcs a\, a¡, a" onto vertical

segments, for all i, 1 ú i Ú n -1, while keeping the arc A horizontal). Then for each i,

1 £/£r—1, let tü¡, íü¡, o)" be vertical lines extending a't, a¡, a^ resp. Assume induc-

tively that we have a homotopy A„_2: Yxl-+ VAN such that An_2(/ 0)=/ all

/e y, and An_2(/ l)(/»)=/> if p lies to the left of the vertical line u>n-2, all/e F.

Define X'n_i, Xn_i exactly as in Case (b). Complete the argument as in Case (b).

The proof of Lemma 11 is complete.

,Yi+i

7i

ry'

«i

Diagram 3

Lemma 12. (For definitions of Z,Zlt H(ZX,Z), see beginning of §5.) Suppose

Z2 is a disk contained in Zx such that Z2 O Bd (Z) is an arc, and every point of

Bd (Z2) — (Z2 n Bd (Z)) is an interior point ofZx. Suppose Z3 is a closed subset of

Zx such that Z2 n Z3 is at most the endpoints of Z2 n Bd (Z). Suppose VAN is a

subset of H(Zi, Z) satisfying either (a) or (b) below. Then if Y is any compact subset

of VAN, there is a homotopy A : Y x I -> VA N such that for allfe Y, X(f, 0) =/ and

X(f,\)\Z2 = \d.

(a) VAN={fe H(ZU Z) : f(Z2) n Z3=Z2 n Z3},

(b) VAN={fe H(Zi, Z) : Z2 nf(Z3)=Z2 n Z3}.

In addition, X may be chosen so that if N is a preassigned neighborhood (in Z) of

Z2, then for all xeZx-N, either X(f, t)(x) =f(x) or X(f, t)(x) e N, for all(f,t)eY

xl.

Proof. "Push out" slightly on the disk Z2 to obtain a new disk Z2 in Zt such that

Bd(Z2)nBd(Z2)=Z2nBd(Z)=Z2nBd(Z). (Thus Bd(Z2) + Bd(Z) is a 0

curve.) We may assume that Z2 n Z3=Z2 n Z3. By the compactness of Y, Z'2 may

be chosen close enough to Z2 so that either /(Z2) nZ3=Z2 C\Z3 (Case (a)) or

^2 r\f(Z3)=Z2c\Z3 (Case (b)), for all/e K. Let Z2 be the disk such that Z2

=Z2+Z"2 and Int (Z2) n Int (Z2)= 0. Let {P(}íeí be a continuous (in /) family of
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homeomorphisms of Z into Z such that P0 = Id ; Rt(p) —p if/> $ Z2, for all tel; and

RX(Z'2)=-Z"2. Define A: Fx/-s* VAN by

\(ft)(x) = x if xfRt(Z),

= RJRr\x) if xeRt(Z)

for all (/ /) e Yxl. Then A is the required homotopy. A satisfies the last condition

of the lemma if we choose Z2 inside the neighborhood N.

The proof of Lemma 12 is complete.

We now return to the lemmas used in proving Theorem 3.

Proof of Lemma 7. (We assume the reader is familiar with the notation used in

Step B of the proof of Theorem 3.) We want to show that the spaces ß, Ku and

the map tt-l : ß ->- Kx satisfy the hypotheses of Theorem 6. We know that ß is

complete. A"x is finite dimensional since it is homeomorphic to K.

tt1 is onto. Fix feKx. Let HOL be the disk bounded by Bx plus a subarc of

either the "top" or "bottom" of Bd (H{). Let p, q be points of Pi n Int (HJ such

that Bx n/(/,)cf-{^ q), where F is the subarc of Bx with endpoints p, q. It is

clear that f(l± n 2f=i m¡) lies outside HOL, so /(/x) n HOL and /(£ m,) n HOL

are disjoint closed subsets of HOL. By [18, 16.2, p. 127] there are two spanning

arcs Fu F2 of HOL from/? to q such that Pj n F2={p, q}, and the disk bounded by

Pi+P2 misses f(h + 2 md (and thus separates/(/x) n TfOL and/(2 mt) n 7/OL in

HOL). Let P3 be a spanning arc of the closure of Hx — HOL, from p to <7, chosen

close enough to Pso that the disk bounded by F+F3 misses \NSEP—B^ +/(2 m¡).

Combining the disks bounded by F+F3, F+F2, Pi + P2 with the arc Bx gives us

the homeomorphic image of MON which we require.

F2

■n-L is open. Suppose (/,y0) e W, and W'is open in ß. Then for sufficiently small e,

if dist (/ g) < e, then (g,j0) e W.

Each inverse set is homotopically trivial. Fix/eA^. Let a be a map of an n-

sphere Sn into 7rf 1(f). Let

X = {je H (MON, Hy) : (fj) e a(Sn)}.

Diagram 4



1971]     THE SPACE OF ALL SELF-HOMEOMORPHISMS OF A TWO-CELL       199

It suffices to construct a map A: C(X)->H(MON, H¿ such that A(;', 0)=/ all

jeX,and{f}xX(C(X)^Q.

Let HOL be the disk defined above. We note that if je X, then j(Di)<=HOL,

rather than j(D3)<= HOL (by property (6) in the definition of Q). Since the compact

set \{j(D3) : je X}\ is disjoint from/(2 m¡) + \NSEP-Bi\ there is a spanning arc

in the closure of Hi-HOL, joining the endpoints of Bx, such that the disk OUT

bounded by this arc and Äj contains \{j(D3) : je X}\ but misses f(J,m¡)

+ \NSEP-Bi\ (by [18, 16.2, p. 127]). Similarly there is a spanning arc in HOL

joining the endpoints of Bx such that the disk IN bounded by this arc and Bx

contains \{j(Di + D2) : je X}\ but misses/(2 mt). We shall shrink Xto a point so

that if i is in the image of C(X) then i(MON) <=IN+0 UT, thus i(D3) n | NSEP - Bx \

= 0, and i(MON) misses /(2 mt).

We shrink X in four stages.

Stage 1. Let F be an open subarc of Bx such that/(/i) n By<=F, and

Fn\{j(Mi + M2):jeX}\ = 0

(recall that Mu M2 were the " stickers " attached to Di + D2 + D3). (We assume here

that f(lx) C\ Bi+ 0. If f(li) n Bx — 0 we choose the points bu b2, mentioned

below, to be any two points in B± n Int (Hi) and define isotopies Gf,Q similar to

those defined below.) Let bu b2 be fixed points of Int (Hi) in different components

of Bi-F. For all pairs of points p, q of Int (Hi), p, q in different components of

Bi — F, we may construct a canonically defined isotopy Gf,q of IN+OUT onto

itself which is fixed on Bd (IN+OUT), which takes Bx onto itself, which moves the

points p, q onto the points bx, b2, and which is the identity outside a preassigned

neighborhood of Bi — F. Using the isotopies Gf,q we may obtain a homotopy

Xi-.XxI->H(MON,Hi) such that for all (j,t)eXxI we have Xi(j,0)=j,

Xi(j, t)(MON)^IN+OUT, {f}xXi(XxI)^Q, and Xx(j, l)(e,) = bh i=l,2 (recall

that eu e2 are the endpoints of the arc D2 n D3). Let A'1 = A1(Arx{l}).

Stage 2. Let ji be a fixed element of Xv We want to get a homotopy

X2: XiXl^ H(MON, Hi) such that for all (J,t)eXtxI, we have A2(/0)=/

A2(/ t)(MON)^IN+OUT, {/} x X2(Xi x/)c Q, and X2(j, 1)|M3=A|M3.

Since the compact set \{j(Di) : je Xi}\ is disjoint from/^) there is a spanning

arc CUT'm HOL, from bx to ¿)2, such that CUT separates/^) and \{j(Di) : j e XJ]

-{bi+b2} in HOL. Let //(i^) denote the space of homeomorphisms of Äx onto

itself which are fixed on the endpoints of Bi and on bu b2. There is a map

fi: H(Bi)xI'^- H(Bi), defined similarly to the Alexander map AL of Lemma 1,

which contracts H(Bi) to {Id}cH(Bi). Also, for each (h, t) e H(Bx)xI, we may

extend ^(A, t) in a canonical fashion to a homeomorphism of IN+OUT onto itself

which is the identity on Bd (IN+OUT) + CUT. Identify ¡i(h, t) and its extension.

Then the homotopy A2: Xx x /-=► H (MON, Hx) is defined by

W, 0 = KJJ-^Bi, 1-0°/
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Note that for all (y, r) e X± xi, A2(y, r)(A.) misses/(A), since/¿(yiy'-1|-Bi> 1 — í) = Id

on CUT. Let X2 = X2(X1 x{l}).

Stage 3. Let FIX be the disk bounded by CUT plus a subarc of Pj. We want a

homotopy A3: X2xl-+ H (MON, HJ which satisfies the usual three conditions

plus A3(y, l)=y'i on M3-\-jï1(FIX) (ji is the fixed element mentioned in Stage 2).

If we let Z, Zu Z2, Z3, Y be represented by IN, f(M3 + Dj, + D2), FIX, j^DJ,

{jjï1 : j e X2}, respectively, then by Lemma 12(b), there is a homotopy

fi: X2xI->H(Z1, Z) such that /¿(y, 0)=yyT1 and ¡t(j, l) = Id on FIX, all y'e X2.

Define A3: X2xl-+ H (MON, HJ by X3(j,t)=j on D3, A3(y, t) = ^(j, t) °j\ on

M3 + Di + D2. Note that for all (j, t)e X2xl, A3(y, r)(A) misses/(/j), since, by the

defining property of VAN, A3(y, /)(^i) misses the interior of FIX. Let X3

= X3(X2x{l}).

Stage 4. We complete the shrinking. If we let Z, Zj be represented by OUT,

Ji(D3), resp., then by Lemma 11(a), there is a homotopy 0: X3xl-> H(ZltZ)

such that "A(y, 0)=yyT1 and ^(y, l) = Id, all j e X3. Define a homotopy

A4: X3x/^ H(MON, HJ by A4(y, f)=y on Ma + i>i + Z>a, A4(y, 0 = 00', 0 °ji on

Z>3. Then for all j e X3, A4(y, 1)=/, except on (D1 + Da)-jr1(FIX). Let A^

= A4(A"3 x {1}). If we let Z, Zx now be represented by the closures of IN- FIX and

j\{D\ + D2)-FIX, resp., then another application of Lemma 11(a) shrinks Xt to

the point y'j e Xt. This completes the shrinking and demonstrates that Trï1(f) is

homotopically trivial.

An analogous, though easier (omits Stage 3), proof shows that ttj"1^) is LCn

for all n (see definition of LCn in §2), and all/e Kx.

{tt{ 1(/)}/ex1 is equi-LCn for all «. Fix (/ y'0) e ß, an integer «, and e > 0. Let W

be an e/2 neighborhood of (/,y0) in Ky x H (MON, HJ. Assume e is small enough

so that if (h,j)eK1xH(MON,H1), and j(M3) = Bu and dist ((A,y), (fj0))<e,

then (h,j)e Q. Since n^1(f) is LC we may choose a 8-neighborhood U' of

(/./o), S<e/2, such that any mapping of a ^-sphere, A:á«, into nï^-ff) n Í7' is

homotopic in wi1^) n If to a constant. Let U" be a S/2 neighborhood of (/y"0).

Let a be a map of a A>sphere Sk into wf Hg) n £/" f°r some g e Kx. Define

y: wrHg)-**-!-H/) by y(g,j) = (f,j). Then y« maps 5"c into w-fH/) n [/', so y«

has an extension d: C(Sk)-^-Trî1(f) n W. But then y~1d is the required map of

C(Sk) into irï^g) n E-neighborhood of (/,y0).

Thus by Theorem 6, 77^ has a right inverse.

The proof of Lemma 7 is complete.

The following lemma may be proved using the classical Schoenflies theorem and

elementary plane topology (see [18]).

Lemma 13. Let A be a spanning arc of a disk Z, e a positive number, and A a

homeomorphism of Z onto Z which is fixed on Bd (Z). PAe« there is a positive

number S such that given any homeomorphism] of A onto a spanning arc ofZ having

the same endpoints as A, with dist (y, h\A)<8, there is a homeomorphism g of Z

onto Z, fixed on Bd (Z), such that g\A =y, and dist (g, A) < e.
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(Proof omitted.)

We use Lemma 13 in the

Proof of Lemmas 8 and 9. (We assume the reader is familiar with the notation

used in Step C of the proof of Theorem 3.) The proofs of Lemmas 8 and 9 are almost

identical. Therefore, we shall assume Lemma 8 has been proved and proceed with

the proof of Lemma 9. The proof consists of verifying that the hypotheses of

Theorem 6 hold for the spaces LIF, K2xl, and the map tt12: LIF-+ K2xl. LIF

is complete, since the set of all (/ t, h) satisfying X(f t)=h\A is closed, and all

(/ t, h) satisfying /¡(MIS(/)) n \SEP\= 0 is open in K2xIxH(H[). (LIF is a

G6 in a complete metric space.) Since A"2 is the homeomorphic image of A", we see

that A2 x / is finite dimensional. Before verifying the rest of the conditions we

must stop and analyze the sets MIS (/), fe K2 (if we were proving Lemma 8, we

would analyze/(2 wf),/e A"2). Fix/e A2. Since (r^f)'1 °f)(li)=j00i)=A, we see

that for each vertical crosscut m¡, l^i^n, (r^f)'1 °f)(mx) intersects the arc A in

exactly one point (the point j0(pd, which is the "left" endpoint of the arc A¡).

Thus there is only one component of (r^f)'1 °/)(/k¿) n Int (Hi) which intersects

A. Denote this component (open arc) by E¡. Since A separates the "top" and

"bottom" of Hi all other components of (r^f)'1 °f)(m¡) n Int (Hi) have either

both endpoints in the "top" or both endpoints in the "bottom" of H[. Let PI

denote the set {Eu ..., £„}. Since the set \SEP\ separates f(m¡) and f(m¡), i^j, in

H[, and since MIS (/) n \SEP\= 0, we see that \SEP\ separates Et and Ef, i+j.

Thus each component of H[-\SEP\ can contain at most one element of PA

We now choose a finite collection {Fa} of spanning arcs of Hi which will separate

MIS (/)- \PI\ from A+ \SEP\. Let Ga be one of the (finitely many) components of

lnt(Hi)-(\SEP\ + \PI\+A). Then Bd (Ga) is a simple closed curve, Bd (Ga)

n Bd (H{) is an arc, and the only limit points in Bd (Ga) of MIS (/) n Ga lie in the

arc Bd (Ga) n Bd (Hi). Let F'a be a subarc of Bd (Ga) n Bd (Hi) which contains all

limit points in Bd (Ga) of MIS (/) n Ga, and which misses \SEP\. Finally, choose

Fa to be a spanning arc of Ga, with the same endpoints as F«, such that

Gï

Diagram 5
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Fa n MIS (f)r\Ga= 0. This defines the (finite) collection {Fa}. For future refer-

ence note that each Fa can be chosen to lie in a preassigned neighborhood of

Fá+(Ga n MIS(/)). (If we were proving Lemma 8, we would replace MIS (/)

above by/(2 w¡), A by f(lx), and choose similar Pœ's.)

7T12 is onto. Fix (/ t)e K2x I. Let PI and {Fa} be defined as above for our given

/e K2. We want to find A e H(H[) so that (/ t, A) e LIF. We start by defining A on

A as equal to X(f t). Now, if a is an arc of SEP, then /f¡na=0 if and only if

A(/ t)(A¡) n a= 0, 1 fíi^n (by our choice of A). Therefore, for each arc E¡ e PI,

we may choose a corresponding spanning arc E", with the same endpoints as E¡,

such that E[ n \SEP\= 0, and Pf" n h(A) = h(E¡ n A) = h(j0(pt)). We may then

extend A to a homeomorphism of Bd (HJ + A + J, E¡ onto Bd (H{)+h(A) + J_ El

in the obvious way. Now, for each arc Fa we pick a corresponding spanning arc

F"a, with the same endpoints as Fa, such that F"a n Int (//{) misses |5PP|+A(^)

+ 2 P/'- Extend A in the obvious way to a homeomorphism of Bd (H[) + A + Ji P¡

+ 2P* onto Bd(/iO + ̂ ) + 2£'i" + 2K Complete the extension by finitely

many applications of the Schoenflies theorem. Now (ft,h)eLIF, since

^(2 P¡) n \SEP\ = 0, and the disks bounded by the Pâ's plus the appropriate

subarcs of the "top" and "bottom" of H[ contain A(MIS (/)- \PI\), and do not

intersect |SPP|.

Each inverse set is homotopically trivial. Fix (/ t) e K2xl. Let a be a map of

an «-sphere Sn into »¿ft/. /)• Let X={h e H(H[) : (f t, A) e a(S*)}. It suffices to

construct a map ¡j.: C(X) ^-H(H[) such that /¿(A, 0) = A for all A e X, and

{(/,i)}x/x(C(I))cLff.

Fix an element hx e H(H[). Suppose we can obtain a homotopy ¡/< : Xxl^- H(H[)

such that for all (A, 0 e Xx I, (a) 0(A, 0) = Af1A, </<(A, l) = Id, (b) </-(A, r)M = W, and
(c) ifi(h, O(MIS(/))nAr1(|5PP|)=0. Then the required shrinking /x will be

defined by /x(A, t) = hxo ,/,(A, i), all (A, t) e Ix /.

It remains to construct </<. Let PI, {Fa} be defined as above for our given fe K2.

For each Fa, let F'a be the subarc of either "top" or "bottom" of Bd (Hi) cut off by

the endpoints of Fa. Note that F'a n |SPP| = 0. We may choose Fa so that every

point of Fa is within a preassigned distance of Pá + MIS(/). Therefore, since

{hï1h : he X} is a compact set of homeomorphisms, and the compact set

\{hï1h(MlS(f)) : heX}\ is disjoint from hî\\SEP\), we may assume that the

set \{h[1h(Fa) : A e X}\ is disjoint from ArHlSPPl), for each Fa. Hence, if Ja is the

disk bounded by Fa + F'a, we have that \{hï1h(Ja) : he X}\ misses hr1(\SEP\), for

each Ja. Fix a JK. Now if we let Z, Zu Z2, Z3, Y be represented by H[, H[, Ja,

Af^lSPPl), {ArxA : heX}, resp., then by Lemma 12(a), there is a homotopy

^■.Xxl-^ H(H[) such that for all he X, <Aj(A, 0) = Af1A, ̂(A, l)|7a = Id, and </>!

has the other two required properties. Let X1=if>i(Xx{l}). We may assume by

induction that if A e Xu then h\Ja = Id for allJa. Let //i" be the closure of H[ — 2 /«.

Then |P/| +A + h[1(\SEP\)cH?, and A = Id on Bd (///'), all A e A'j. Now if we let

Z, A, {«x, ...,«„_!>, {yi,..., yj be represented by H'i, A, PI, {h^(ß) : ß e SEP},
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resp., then by Lemma 11(c) the set Xx may be shrunk to the Id in the required way.

Thus TTÎ2(f, t) is homotopically trivial. (This step for Lemma 8 is somewhat easier;

h:x(\SEP\) may be replaced by \SEP\.)

A proof using only the Alexander map AL of Lemma 1 shows that Trïi(f, t) is

LC" for all n, all (J,t)eK2xI.

We prove that tt12 is open and equi-LCn, for all n, at the same time. Fix

(/, ti, hi) e LIF, an integer n, and a positive number e. Assume e is small enough so

that if (g, t, h) e K2 xIxH(Hi), and dist ((/ tu ht), (g, t, h))<e, then h(MlS (g))

n \SEP | = 0. Let If be an e/4 neighborhood of (/ tu hi). Since wíi(f, ti) is LC",

we may choose a 8 neighborhood U' of (/ tu hi), 8<e/4, so that any map of a

fc-sphere, k^n, into U' n TTÎ2(f, ti) is homotopic in Wr\ irZ¿(f, ti) to a constant.

By Lemma 13 and the continuity of A, there is a 8j neighborhood U" of (/ tu hi),

81<S/4, such that if (g,t)e K2xl, and dist ((g, i), (//1))<S1, then there is a

map h2eH(H'i) such that h2\A = X(g,t), and dist (/il5 A2) < S/2. (Thus (g,t,h2)

eLIF, and (g, t, h2) e Í/', hence ir12 is an open map.) Now let a be a map of a

fc-sphere Sk into Trï2(g, t) n [/" for some (g, t)e K2x I. Choose h2 for (g, t) as

above. Define a map y: ^¿(g, t) -*■ ̂¿(fi ti) by y(g, t, h) = (f tu h^h). Since

dist (h1h21(x), x) < 8/2 for all x e Hi, we see that ya maps 5* into {/' n irï2(f, ti).

Hence there is an extension â mapping C(Sk) into Wr\ nï2(f ti). But then y-1<x

is the required mapping into TTÎ2(g, t) and the e neighborhood of (/ flf Ai).

Hence, by Theorem 6, the map tt12 has a right inverse.

The proof of Lemma 9 is complete.

Proof of Lemma 10. (We assume the reader is familiar with the notation used

in Step D of the proof of Theorem 3.) That the spaces VER, K3, and the map 7rt

satisfy th<* hypotheses of Theorem 6 is easily verified. A"3, being the homeomorphic

image of K, is finite dimensional. VER, being a closed subset of the complete

metric space A"3 x H(Di), is a complete metric space, wj is onto by the Schoenflies

theorem. For each/e A"3, irî1(f) is LCn, all n, and homotopically trivial by applica-

tion of the Alexander map AL of Lemma 1. txx is open, and {wf 1(f)}f£Ka is equi-LC",

all n, by Lemma 13 and the fact that rrïl(f) is LC", all/e A"3. This completes the

proof.

Lemma 14. Suppose K is a compact subset of H(D), e a positive number, and

•pi. C(K) -*■ H(D) a map such that ^(f 0)=/ all fe K, and for each t e [0, 1),

ipi\Kx{t} is a homeomorphism. Then there is an embedding ip: C(K) —> H(D) such

that ¿(fi 0) =/, allfe A, and dist (Ufi 0, 4>(f, 0) «for all (/, t) e C(K).

Proof. Let X=<pi(C(K)). X is compact, so by Ascoli's theorem [19, Chapter 4,

§25] there is a positive number 8, S < e/2, so that if x, y e D and dist (x, y) < 8, then

dist(/(x),/00)<e/2 for all feX. We think of the disk D as being the set

{(x,y)eR2 : O^x^l, -l£y£l}, and denote the open arc {(x, 0) : 0<x<8/3}

by A. Choose a sequence {pn}n=i of points of A such that ttx(Pí) >^i(P2) > • • •»

and {TTi(pn)} -> 0 (iTi : D ->■ / is projection on first coordinate). Let Pe H(D) be a
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homeomorphism such that dist (F, Id)< 8/3, and for each integer «, 0<ir1(F(pn))

<inf{TT1(f~1(pn)) :feX). (Define F in an order preserving manner from {pn}

into A; extend linearly to a homeomorphism of A onto itself; extend to D by

"coning".) Then for all/e X,f° Pis not the identity in any neighborhood of the

left side of Bd (D).

Let S:R1-^R1 be the homeomorphism defined by S(x)=x if 8/3 ̂ x, 5(x)

= 2x - 8/3 if 8/6 ̂  x < 8/3, S(x) = x- 8/6 if x < 8/6. Let St : P1 -> R1 be the isotopy

defined by St(x) = tS(x) + (l-t)x, all t e I. Finally, let Rt: R2 -*■ R2 be the isotopy

defined by P((x, y) = (St(x), y), all t e I. Note that dist (Rt, Id) < 8/3, all t e I.

The required embedding x¡>: C(K) -» H(D) is given by

tl>(f,t) = Rr1olfJl(ft)oFoRtoF-\   all (ft)e C(K).

(We extend i/j^f t) ° P outside P/ by the identity.) It is easily checked that

dist (Uf, t), *(fi 0)<e, all (f t) e C(K). Iff, geK, f+g, t e [0, 1), then ̂ (f, t)
¥= ipi(g, t), so ifi(f, t) + i/)(g, t). Suppose now t, se I, fi ge K, and s < t. Let / be the

left side of Bd (D) ; let/i = Ps~* ° ̂ (/ s) ° P ° Ps ; and let g^Rf1 ° <l>i(g, t)° Fo Rt.

Then/i^ Id in any neighborhood of Ps_1(/), but gi = Id in some neighborhood of

Ps_1(/). Hence fi^gy hence <P(fs)^^(g, t). Hence i/f is an embedding and the

proof of Lemma 14 is complete.

6. A corollary.   An interesting consequence of Theorem 4 is

Corollary 15. Suppose Kx and K2 are compact subsets of H(D), and a is a

homeomorphism of Ky onto K2. Then a may be extended to a homeomorphism of

H(D) onto itself.

We sketch the proof. Let l2 be separable Hubert space. By [10], H(D) is homeo-

morphic to l2xl2xH(D). Letp be a fixed point of l2xH(D). For each i, /'= 1, 2,

let/ be a homeomorphism of l2xl2xH(D) onto itself such that/(AT¡)c{0}x/2

xH(D). The existence of/ follows from [2, Corollary 10.2], since Tr12(K¡) is a

compact subset of l2 x l2 (-n12 is projection on first two coordinates). For each i,

i=l,2, there is an embedding gi:fi(Ki)^-l2x{p} [14, Theorem 2-46]. Since l2

is an AR, g¡ may be extended to a map of {0} x l2 x H(D) into l2 x {/?}. By Theorem

4 of this paper gf1 : gifi(Ki) -^ {0} xl2x H(D) may be extended to a map of l2 x {p}

into {0} x l2 x H(D). But then, by [5, Lemma 1, Theorem 1], g¡ may be extended to

a homeomorphism of l2xl2xH(D) onto itself. Identify g¡ and its extension. By

[2, Corollary 10.3], there is a homeomorphism A of l2x{p) onto itself such that

h\gifi(K1)=g2f2afi'igï1. Extend A to a homeomorphism of l2 x l2 x H(D) onto

itself, and identify A with its extension. Then the required homeomorphism of

/2 x l2 x H(D) onto itself is f2 1g2 ̂ -hgifu
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