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Abstract. The two-piece property for a set A is a generalization of convexity

which reduces to the condition of minimal total absolute curvature if A is a compact

2-manifold. We show that a connected compact 2-manifold-with-boundary in E2

has the TPP if and only if each component of the boundary has the TPP. The ana-

logue of this result is not true in higher dimensions without additional conditions,

and we introduce a stronger notion called ^-tightness and show that an (n + 1)-

manifold-with-boundary M" + 1 embedded in E"*1 is 0- and (n— l)-tight if and only

if its boundary is 0- and (« — l)-tight.

A set A in En is said to have the two-piece property (TPP) if and only if every

hyperplane in En cuts A into at most two pieces. If A is a smoothly immersed

2-manifold without boundary, then the TPP is equivalent to the condition that A

has minimal total absolute curvature in the sense of Chern and Lashof [4]. For an

embedded connected 2-manifold-with-boundary M2 in E2, the TPP for M2 is

equivalent to the condition that each component of 8M2 has the TPP, but the

corresponding result is not correct for higher dimensions. We introduce a finer

concept, called k-tightness, and we use this to prove an analogue for the 2-dimen-

sional result: If Mn+1 is an (n + l)-manifold-with-boundary embedded in £n+1,

then Mn + 1 is 0- and (n— l)-tight if and only if 8Mn + 1 satisfies the same conditions.

An equivalent form of the TPP has been used by the author in several other

investigations [1], [2], [3]. A notion similar to ^-tightness has been introduced by

Kuiper in [5], but that treatment uses singular homology while this presentation

uses a somewhat stronger idea of what it means for a submanifold Mk to bound,

i.e., we require that the submanifold Mk be the boundary of an embedded (k+1)-

dimensional manifold-with-boundary. See also Kuiper's article [6] for recent

developments in this other direction.

The first section of this paper deals in an elementary way with the case n = 2.

The second section provides the definitions for the higher dimensional investigation

and proves a duality theorem for manifolds without boundary, and the final section

proves the main theorem mentioned above.
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1. The two-piece property in the plane.

Definition. A set A in P2 is said to have the two-piece property (TPP) if every

line in P2 separates A into at most two pieces.

The entire plane P2 has the TPP, since any straight line / determines exactly two

open half-planes H + (l) and H~(l). Other TPP sets are the empty set, a one-point

set, and a set with just two points. This last-mentioned set is the only example

which is not arc-connected, where a set A is said to be arc-connected if for every

two points p and q of A there is an arc y, the 1-1 continuous image of a closed

interval,  from p  to q in  A.   Note  that  an  arc must  be  embedded.

We shall restrict ourselves in this section to arc-connected sets A, and we may

make the definition of the TPP more precise as follows:

Definition. An arc-connected set A in E2 has the TPP if and only if H n A is

arc-connected for any closed half-plane H in P2.

Remark 1.1. Any convex set A has the TPP since A n H will be convex for

every H, and therefore arc-connected.

One example of a nonconvex set with the TPP is a circle. More generally, the

following two propositions give a characterization of all curves with the TPP:

Proposition 1.2. If A is a closed curve which is the boundary of a bounded region

R in E2, then A has the TPP if and only if R is a convex region.

Proof. If p and q are on the boundary A of a convex region R, then p and q

separate A into two arcs yx and y2 such that for any r in yx and s in y2, the segment

[rs] meets the segment [pq]. If p and q lie in A n H, then either yx or y2 lies in

A n //, for otherwise we could find r in y i n (E2 — H) and s in y2 n (E2 — H), and

then the segment [rs] would lie in the convex set E2 — H so the segment [pq], in H,

would not meet the segment [rs], a contradiction.

Conversely, if P is a nonconvex bounded connected region with a single boun-

dary curve A, then A does not coincide with the boundary &?f (P) of the convex

hull J^(R) of R, i.e., the smallest convex set containing P. Therefore there is a

segment [p^] of dJif(R), lying in a line / bounding a half-plane H + (l) containing

P, such that p and ç are in A but there is a point r of the segment [pq] not in ^4.

But then there is no arc from ptoqin H~(l), since A n H'(I) is contained in / and

there is no arc from /> to <7 in ^4 n /, so A does not have the TPP.

Note that the boundary A of a nonbounded region P with the TPP may fail to

have the TPP; for example, the convex region R bounded by a parabola has a

boundary curve without the TPP.

Remark 1.3. The proof of the converse in the above proposition establishes

the stronger result that a closed set A with the TPP must contain the boundary

dJf(A) of its convex hull Jf (A).

Proposition 1.4. If A is a nonclosed curve in E2, with or without endpoints, then

A has the TPP if and only if A is a connected subset of a line.
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Proof. Any connected subset of a line is convex, so it has the TPP. Conversely,

if p and q are in A and the segment [pq] does not lie in A, then at least one of the

half-planes H+(l) determined by the line / through p and q contains a point r of the

arc of A bounded by p and q so there is no arc from/? to q in H'(l) n A and A does

not have the TPP.

Another example of a nonconvex set with the TPP is an annulus, or a disc with

several disjoint discs removed, as demonstrated by the following:

Proposition 1.5. If A is a closed convex set and if{B¡}, i = 1, 2,..., m, is a finite

collection of bounded open convex sets with disjoint boundaries, then A — {J™= i Bt

has the TPP.

Proof. Let p and q be points of A n H, so that the segment [pq] will lie in the

convex set A n H. If the segment [pq] meets the component Bt in the segment

[pfli], then by Proposition 1.2 above, at least one of the arcs y¡ from/>¡ to qt on 8B{

lies in H so we may obtain an embedded path y from p to q in (A — IJfL x B¡) n H

by replacing each of the segments [/>i<7¡] by the disjoint arcs yt.

Remark 1.6. Although we do not need a stronger form of this proposition in

our investigation of 2-manifolds-with-boundary, the above proposition is true

even without the hypothesis that the boundaries of the convex sets be disjoint, for

example if A is the complement of a union of (externally) tangent discs, or if A is

the union of a circle and a chord. The same proof provides a path y (i.e., the

continuous image of a segment) joining p to q in (A — {J™=1 Bi) n H, but if the

boundaries 8Bt intersect, then y may turn out not to be an embedding. In this case,

however, we may modify the path y to produce an arc y from p to q by proceeding

inductively to remove the (finitely many) intersections of the arcs y¡ as follows :

if y¡ meets y¡ in the segment (a, b), replace the subpath of y from pt to q¡ by the

union of the subarcs (p¡a) on y¡ and (aq,) on y¡. The same result may be obtained

by appealing to the rather more subtle result that any path joining p to q contains

an arc from p to q.

Remark 1.7. Without the assumption that the collection {B¡} is finite, the set

A — [J B¡ may fail to have the TPP even if the boundaries of the convex bounded

open sets Bt are disjoint. For example, the set A — [J Bt might fail to be path-

connected, e.g., if A = E2 and B¡ is the open rectangle with vertices (1/2/,/),

(1/(2/+1), /), (1/2/, -/), (1/(2/+1), -/), or the set y constructed in the proof of

Proposition 1.4 might fail to be a (continuous) path, e.g., if A is the square with

vertices (-2, -2), (-2,2), (2,2), (2, -2) and Bt is the rectangle with vertices

(1/2/, 1), (1/(2/+1), 1), (1/2/, -1), (1/(2/+1), -1) (compare [3] where the situation

with the "circle TPP" turns out quite differently).

We now establish a strong converse to Proposition 1.5.

Theorem 1.8. If A is a closed set in E2 with the TPP, then each of the bounded

components Bt of E2 — A is a convex set and the union Av [J B¡ of A and the

bounded components of its complement is a convex set.
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Proof. If a bounded component Bt of the complement of A is not convex we may

find a pair of points of P¡ such that the segment [pq] contains a point a of A. Since

P¡ is bounded, there is a point b of a in /-(segment [pq]) where / is the line deter-

mined by the segment [pq]. Since A has the TPP there must be an arc y+ joining a

to b in H + (l) n A and another arc y~ joining a to b in //"(/) n ,4. If y+ n y~

= {a, />}, then y+ u y~ gives a closed arc in E2 which crosses the segment [pq] in

just one point (either a or b) so by the Jordan curve theorem, any arc from p to q

must contain a point of y' n y" which is contained in A. Therefore p cannot be

connected to q in P¡, contradicting the fact that P¡ is a component of P2 — A.

If y+ ny" contains points of / other than a and b, it is necessary to make the

construction somewhat more subtle. The arc y+ must contain at least one subarc

y from a point a' of A n segment [/?<?] to a point è' of A n (/-segment [/rç]) such

that y C\ l={a', b'}, and since A has the TPP, there must be an arc y" from a' to b'

in H'(I), so y' n y"={a, b). Then y' u y" provides a closed arc which still separates

p from q since there are arcs £' and J* from p to a and from a to q near the

segment [/7g] lying, except for their endpoints, in H+(l) — y' and then £' u £" gives

an arc from p to q crossing y u y" at just one point.

We now show that A u [J Bi = 3^'(A), the convex hull of A. Otherwise there is a

segment [pq] with endpoints in A containing a point r of an unbounded component

of the complement A, i.e., such that r is contained in no region bounded by a

closed arc in A. But since A has the TPP we may find y+ in H + (l) n ,4 and y~

in H'(l) n yl connecting/) to q, and either y+ u y~ already provides a closed arc

bounding a disc containing r or we may modify y+ as in the previous paragraph to

find y in H+(l) n ,4 joining points a and ¿> of different components of/—{/■} and

such that y' n /={a, ¿>}. We may then take y u y" for an arc y" joining a to 6 in

H'(l) n A to get a closed arc in A bounding a region containing r, contradicting

the assumption that r was a point of an unbounded component of the complement

of A.

Up to this point we have carried out our discussion in the spirit of the point-set

topology of P2, placing very few restrictions on the sets under consideration. In the

higher-dimensional situation, however, we will want to make some simplifying

assumptions and we now recast our results in this context.

Definition. A 2-manifold-with-boundary M2 embedded in E2 is a closed point

set M2 which can be expressed as a union of two sets: M2, the interior of M2

={p in M2 such that there is a disc neighborhood P2 ofp in E2 with P2<=M2} and

dA/2 = the boundary of M2 = {q in M2 such that there is a neighborhood P2 of q

in E2 with B2 n M2 given by the 1-1 continuous image of the intersection of an

open disc about the origin with the closed upper half-plane, with q corresponding

to the origin}.

The boundary 8M2 of a 2-manifold-with-boundary embedded in P2 is either

empty or the union of a collection of disjoint simple closed curves and simple

infinite curves. Moreover, for any closed interval the segment [pq] in P2, there can
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be at most a finite number of boundary components of M2 meeting the segment [pq],

for otherwise there would be an accumulation point r in A of the points {at}, with

ate /J¡ n the segment [pq], contradicting the fact that r has a neighborhood

meeting at most one boundary component of M2. Therefore the construction in

Proposition 1.5 goes through if A — (J ¿?¡ is a 2-manifold-with-boundary, even if

there are infinitely many components B¡.

We may then state a theorem summing up all of our results for the case of 2-

manifolds-with-boundary in E2.

Theorem 1.9. A 2-manifold-with-boundary M2 embedded in E2 has the TPP if

and only if each bounded component of 8M2 has the TPP and if ' M2 u ({J B¡) is a

convex set.

2. The higher dimensional case—examples and definitions. In the first section

of this paper, the main result implies that a 2-manifold-with-boundary M2 in E2

has the TPP if and only if each of the components of its boundary 8M2 has the

TPP. For 3-manifolds-with-boundary in £3, however, the corresponding result is

false, as is shown by the following example :

The intersection of the solid figure with any half-space is connected, but a

horizontal plane n can divide the boundary surface into more than two pieces.

The "problem" in a sense is that although every pair of points in the figure

above the plane -n can be joined by an arc, there is a circle (the top circle) in the

figure which bounds a topological disc in the figure but which does not bound

any disc in the figure and lying above the plane -n. In the terminology which we

shall introduce in this section, the figure is said to be 0-tight but not 1-tight. We

shall prove ultimately that if M3 is a 3-manifold-with-boundary embedded in £3,

then each component of 8M3 has the TPP if and only if each component of M3

has the TPP and if M3 is 1-tight.
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The results in this section are stated in terms of (n+ l)-manifolds-with-boundary

in En+1, but the reader may safely think of the case « = 2 in order to keep the

geometric meaning clear.

Definition. A k-manifold-with-boundary Nk embedded in a Euclidean space P"

is a closed subset which can be expressed as a union of Nk = interior of Nk = {p in N

with a neighborhood P" in En with Bn n Nk homeomorphic to a ^-dimensional

disc} and 8Nk = boundary of Nk = {q in A with a neighborhood Bn such that Bn n Nk

is homeomorphic to the intersection of the open unit A>disc with the closed upper

half-space in Ek, with q corresponding to the origin}.

We shall work for the most part with compact fc-manifolds-with-boundary Nk

and we shall make the strong assumption that almost every hyperplane 77 in P"

cuts Nk, if at all, in a (k— l)-manifold-with-boundary embedded in En, i.e.,

arbitrarily close to any hyperplane n, there is a parallel hyperplane 77' with the

desired property. (This situation occurs for example whenever Nk is a smooth

or polyhedral submanifold of En.)

Furthermore, we may assume that if Nk is a /c-manifold-with-boundary em-

bedded in En contained in an /-manifold-with-boundary M' with dNk contained

in BMl, then there is a &-manifold-with-boundary Nk such that dNk = dNk and

Nk is contained in M', so for example we may "push arcs away from the boun-

dary". (This property is again true for smooth or polyhedral submanifolds, and

in all cases when the containing manifold Ml is "collared".)

Definition. A set A in Pn is called k-tight if whenever Nk is a ^-manifold

embedded in Pn contained in H + (n) n A and also Nk = dPk + 1 for some (k+l)-

manifold-with-boundary pk + 1 in A, then Nk = 8Qk + 1 for some (k +1 ^manifold-

with-boundary in H + (n) n A.

Remark. In the terminology of the previous section, A is 0-tight if and only if

each component of A has the TPP.

By the Jordan-Brouwer Separation Theorem, if Nk is a connected ^-manifold

without boundary embedded in Ek + 1, then Ek + 1 — Nk consists of two components,

both (A:+l)-manifolds-with-boundary with Nk as their common boundary. An

arc y is said to cross Nk at q if there is an open subarc (pr) of y with (pq) in one

component of Ek + 1 — Nk and (qr) in the other. If y is a closed arc which crosses

Nk a finite number of times, then the separation theorem implies that y crosses

Nk an even number of times.

If Nk is a /c-manifold without boundary, possibly not connected, embedded in

Ek + 1, then again we may express Ek + 1-Nk as a union of two (&+l)-manifolds-

with-boundary, Ck + 1(Nk) and C2+1(Nk), possibly not connected, with Nk as their

common boundary, in such a way that an arc y joining points/? and q in Ek+1 — Nk

crosses Nk an even number of times if and only if p and q lie in the same one of

these (k+ l)-manifolds-with-boundary.

Furthermore, if Nk is a A;-manifold without boundary embedded in any (k+1)-

manifold Mk+1 without boundary, and if A* bounds a (A; + l)-manifold-with-
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boundary Pk + 1 embedded in Mk + 1, then it follows that Q* + i = Mk + 1-Pk + 1 is

also a (k+ l)-manifold-with-boundary embedded in Mk + 1 with the same boundary
Nk.

Remark 2.1. In the definition of ^-tightness we make use of closed half-spaces

but in certain arguments we wish to make use of open half-spaces as well. For

example, if Mn n H + (ir) consists of more than one component, then so do

Mn n H + (tt') and Mn n H + (v') for some hyperplane -n' parallel to -n and close to

77. We use this remark in the proof of the following duality theorem :

Theorem 2.2. If Mk is a k-manifold (without boundary) embedded in En, then

Mk is 0-tight if and only if Mk is (k— l)-tight.

Proof. It suffices to prove that each component of Mk is (Â:— l)-tight if and only

if it has the TPP, so we shall assume that Mk is connected.

If Mk is (k— l)-tight but not 0-tight, then there is a hyperplane 77 such that

Mk n H + (n) consists of more than one component, and, by the previous remark,

we may assume that Mk n H + (ir') consists of a component Lk and at least one

other component, and also that 8Lk = Nk~1 is a (k— l)-manifold. Since Nk~1 lies

in Mk n H~(tt') and bounds in Mk, and since Mk is (A: — l)-tight, there must be a

/c-manifold-with-boundary Pk in Mk n H~(tt') with 8Pk = Nk~1. But then

pu u jjc g¿ves a ^-manifold embedded in Mk, so Pk u Lk = Mk, contradicting the

assumption that there were points of H + (n') not in Lk.

Conversely, if Mk is 0-tight and Nk~1 is a /c-manifold without boundary in

Mk n H + (tt) which bounds a A>manifold-with-boundary Pk in Mk, then Nk'1

= 8(Mk—Pk) as well, and it suffices to prove that either Pk or Qk = Mk-Pk lies in

H+(tt). Otherwise, there would be pointsp and q in H~(tt') n Pk and H~(tt') n Qk

respectively, where 77' is parallel to 77 and where yV*"1 lies in H+(n'). Since any

arc from a point in Pk to a point in Qk must cross /V*'1 in an odd number of

points, there is no arc from p to q in H~(tt'), contradicting the hypothesis that Mk

is 0-tight.

3. The  main  theorem  for  (n+1 )-manifolds-with-boundary  in  En + 1.   In   the

remainder of this paper, we wish to study the relationship between the ^-tightness

of an n-manifold-with-boundary embedded in En and the ^-tightness of its

boundary. The first result is analogous to the 2-dimensional case:

Theorem 3.1. If Mk + 1 is an (n + l)-manifold-with-boundary embedded in En + 1

andif8Mn + 1 is 0-tight, then so is Mn + 1.

Proof. If p and q are points of Mn+1 n H+(tt) that can be joined by an arc y

in Mn+1 except perhaps for/7 and q, then consider any arc y from/7 to q in H + (tt)

which crosses 8Mn + 1 a finite number of times (any arc meets only finitely many

components of 8Mn+1). Such an arc y crosses any component Bf of 8Mn+1 an

even number of times since y u y is a closed arc and y r\ Bf= 0. Then if p¡ and

qt denote the first and last crossing points on the path y from p to q, there is a new
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path y¡ from p¡ to q¡ in Pf n H + (tt) since dMn + 1 is assumed to be 0-tight, and we

may replace the subarc from pt to qt on y by y¡ for each component Pf of dMn + 1

to obtain a new arc y" from /> to q in A/n + 1 n H + (n) as required.

Theorem 3.2. If Mn + 1 is an (n+l)-manifold-with-boundary embedded in En + 1

and ifdMn is 0-tight, then Mn + 1 is (n-l)-tight.

Proof. If An_1 is an (n- l)-manifold in Mn + 1 r\ H + (tt) which bounds an

«-manifold-with-boundary Pn in Mn + 1, we may assume that Pn r\ A/n + 1 = 0 and

that P" crosses -n in an (n— l)-manifold Qn'1=Pn n 77. Then consider the «-

manifolds-with-boundary CKQ71'1) and C^ö""1) in w. If dM3 n Cin(Ôn~1) = 0

for one of these «-manifolds-with-boundary, then (Pn n H + (n)) u Cfiß""1)

provides an «-manifold-with-boundary in Mn d H + (n) with boundary An_1 as

required.

Furthermore, if P" is the union of all of the components of 8Mn + 1 which meet

CKQ"'1) and if none of these components meets C2(ßn_1), we may set

¡jn = (pn n h + (tt)) u C?(ßn_1 u (Pn n tt)) u (Pn n /7+(7r))

to get an «-manifold-with-boundary in H + (-rr) n Mn+1 with boundary A"-1 as

required.

To complete the proof we need only show that if a component Bf of 8Mn+1

meets Ci(ßn_1), then it does not meet C^ß"-1). For otherwise we may find an

arc y in P,n n Í7+(tt) from a point/» in P(n n C^ß"-1) to q in Pf n C^ß""1), and

an arc y' from p to # in Bf n H~(ir) since we have assumed that 3M71+1 is 0-tight.

But then y u y' is a closed arc which crosses at just the point p the «-manifold

without boundary (Pn n H'(-n)) u Ci(ßn_1), a contradiction.

Before proceeding to the final step in the main theorem of this section, we

establish a lemma.

Lemma 3.3. If Bn is a component of the boundary 8Mn+1 of a 0-tight (n+1)-

manifold-with-boundary Mn+1 embedded in Pn+1, and if Bnr\H+(-n) is an n-

manifold-with-boundary containing at least two components Pn and Qn, then Qn

cannot meet both Cl(Pn n ir) and Cl(Pn C\ tt).

Proof. Otherwise we could find an arc y from a point p of Qn n Ci(Pn n tt)

to a point q of Qn n C2(Pn n tt) with y lying in ßn n 5:+(7r) and an arc y' from

/; to ^ in Mn+1 n H~(tt) except for its endpoints since Mn + 1 is 0-tight. But then

y u y' is a closed arc which crosses the «-manifold without boundary Pn u Cl(Pn r> 77)

at exactly one point p, a contradiction.

Theorem 3.4. If Mn+1 is an (n+\)-manifold-with-boundary embedded in En+1

which is 0- and (n-l)-tight, then 8Mn+1 is 0-tight.

Proof. If 8Mn+1 is not 0-tight, then there is a component Bn of 8Mn+1 and a

hyperplane 77 such that Pn n H+(tt) is an «-manifold-with-boundary consisting of
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at least two components. Let Pn and Qn be two such components such that there

is an arc y in Bn n H~(n) joining a point p in Pn n 77 to q in Qn n 77. Since Mn+1

is 0-tight, there is an arc y from/» to q in Mn + 1 n H + (jt) except for its endpoints

p and 9. By the previous lemma, Qn will not meet both Cî(Pn n 77) and C3(Pn n 77),

so we may assume that Qn n C2(Pn o 77) = 0. We then have two cases to consider.

If C2(Pn n 77) contains points of Mn+1, then y u y crosses the n-manifold without

boundary (Pn n H+(n))u (C^(Pn C\tt)) exactly once at p, a contradiction. If

C2(Pn n 77) does not contain points of Mn+1, then since Mn + 1 is assumed to be

(« —l)-tight there is an n-manifold-with-boundary Rn in Mn+1 n H~(tr) except

for its boundary and 8Rn = (Pn n 77). Then the closed arc y u y' crosses the n-

manifold (Pn n H+(n)) u /?" at the one point /?, again a contradiction to the

Jordan-Brouwer separation theorem.

Remark. In the preceding discussion it was not necessary at any stage to assume

that the manifolds Mn + 1 or any of its boundary components were compact. If

compactness is assumed, then some of the proofs can be simplified.
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