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HIGHER DIMENSIONAL KNOTS IN TUBES

BY
YAICHI SHINOHARAC(?)

Abstract. Let K be an n-knot in the (n+2)-sphere and ¥V a tubular neighborhood
of K. Let L’ be an n-knot contained in a tubular neighborhood V¥’ of a trivial n-knot
and L the image of L’ under an orientation preserving diffeomorphism of ¥’ onto V.
The purpose of this paper is to show that the higher dimensional Alexander poly-
nomial and the signature of the n-knot L are determined by those of K and L’.

1. Introduction. An n-knot K is a smooth oriented submanifold of the oriented
(n+2)-sphere S"*? which is homeomorphic to S™ Throughout the paper we
assume that the orientation of S™*2 is fixed. Two n-knots K; and K, are said to be
of the same n-knot type if there exists an orientation preserving homeomorphism f
of S™*2'onto itself such that f(K,)=K, and f|K, is orientation preserving. By a
tube (or an open tube) of an n-knot K we mean a closed (or an open) tubular
neighborhood of Kin $™+2,

Let K be an n-knot in S®*2 and V a tube of K. Let V' be a tube of a trivial
n-knot K'. Let f: V' — V be a diffeomorphism of ¥’ onto V which preserves the
orientations induced by S"*2in V' and V. If n=1, we further assume that f trans-
forms longitudes into longitudes. Let L’ be an n-knot contained in the interior of
V’'. Then L'~ MK’ in V' for some integer A. Moreover, L=f(L') is an n-knot con-
tained in the interior of ¥ and L~AK in V.

For the case n=1, H. Seifert [4] showed that

A(t) = Ag(tM)AL(D),
where A (t), A(t) and A_.(t) are the Alexander polynomials of L, K and L’, and
the author [5] proved that

o(L) = o(L") when A is even,

o(K) + o(L’) when Ais odd,
where o(L), o(K) and o(L’) are the signatures of L, K and L’ defined by H. F.
Trotter [6].

The purpose of this paper is to generalize these results to the case of higher
dimensional knots.
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Following J. W. Milnor [3], we will define the gth dimensional Alexander
polynomial A%(z) of an n-knot K (see §2). We prove that

THEOREM 1.1. For 1 Sg<n,
Af(t) = AR(™)- AL(2).

In [2], D. Erle defined the signature o, of a (2m— 1)-knot which is equivalent to
o for m=1 [1]. For the case when m is even, another signature o; of a (2m— 1)-knot
was also defined. We show that

THEOREM 1.2. If n=2m—1, then
ax(L) = ay(L) when A is even,
= oy(L')+(=1)m+VA=-Di25,(K) when X is odd.
Furthermore, if m is even, then o;(L)=0,(L")+ Ao (K).

2. Preliminaries. Z and Q will denote the ring of integers and the field of
rational numbers respectively. Throughout the paper we assume that every covering
space is connected.

Let X be a connected, locally path-connected and semilocally 1-connected space
and Y a subspace of X which is connected and locally path-connected. Suppose
that there exists a homomorphism

(P: "I(Xs yO) -G

of m(X, y,) onto an abelian group G, where y, is a point of Y. Then there exists a
regular covering space p: X — X which belongs to Ker (¢). G acts on X as the
group of covering transformations. More precisely, one can describe the action of
G on X as follows:

Choose a point j, € p~*(y,). Let g be an element of G and y an element of
(X, yo) which is mapped into g by . Then there exists a unique path class 7 in
X with the initial point 7, such that p(7)=1y. The terminal point of 7 does not
depend on the choice of y which satisfies ¢(y) =g. Hence g corresponds to a unique
covering transformation which maps j, into the terminal point of y. This corre-
spondence is an isomorphism of G onto the group of covering transformations and
does not depend on the choice of j, € p~*(y,) (since G is abelian).

The above described action of G on X is called the g-action of G on X. For every
subgroup S of G, the g-action of G naturally induces an action of S on X.

Now we want to consider p~1(Y). Let H be the image of =,(Y, y,) under the
homomorphism

p = @-ig: m(Y, yo) > G,
wherei: Y X. Let{g,=1, g,, . . ., g,} be a coset representative system of G mod H;
that is, G= H+g,H+ - - - +g,H, where p=[G: H] may not be finite. Let Y, be a
path-component of p~}(Y) and Y,=g(Y;) for i=1,2,..., u. Then we have the
following lemma.
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LemMA 2.1. (1) p|Y;: Y, — Y is a covering space which belongs to Ker (¢),
i=1,2,..., 1

(2) For i=1,2,...,n, the g-action of H on X induces an action of H on Y, by
restricting every element of H to Y,. Furthermore, this induced action of H on Y,
coincides with the J-action of H on Y.

(3) p~U(Y) is the disjoint union of Yy, Ys, ..., Y,.

This lemma can be proved easily by using basic properties of covering spaces.
Hence we omit the details.

Let M be a finitely generated module over a principal ideal domain P. By the
structure theorem for finitely generated modules over principal ideal domains,
M is isomorphic to a direct sum of cyclic modules; that is,

M =~ P/(p,) @ --@ Pl(py),

where (p;) denotes the principal ideal spanned by an element p; € P. The generator
of the product ideal (p; - - - p,), unique up to unit elements of P, will be called the
order of M and denoted by order, M [3]. The order of M is an invariant of the
P-isomorphism class of M.

Now, in Lemma 2.1, suppose that X is a finite connected simplicial complex,
Y a connected subcomplex of X and G=(t: ) the infinite cyclic group generated by
t. Then H=(¢*: ) for some integer A and p: X — X is an infinite cyclic covering
space. Let ¥ denote p~1(Y). Since Y is invariant under ¢ and Y is a finite complex,
H.(Y; Q) is a finitely generated I'-module, where T' denotes the rational group
ring of G.

Suppose A#0. Then [G: H]=|A\|=pand{l, ¢, ..., t*~*} forms a coset representa-
tive system of G mod H. Let Y, be a path-component of ¥ and ¥;=¢i~}(¥;) for
i=1,2,...,p. By Lemma 2.1, p|Y;: Y, — Y is an infinite cyclic covering space
having ¢ * as a generator of the group of covering transformations. Hence H,(Y;; Q)
is a finitely generated I'’*-module, where I"* is the rational group ring of H. More-
over, as ["-modules,

H(Y; Q) = H(Y1; Q) @@ H(Y,; Q).

Since t, is an automorphism of H,(Y; Q) which maps H,(Y;; Q) onto H(Y,; Q),
..., H(Y,; Q) onto H(Y,; Q), a presentation of the I'*-module H,(Y;; Q) can
be considered as a presentation of the I'-module H,(Y; Q). This yields

COROLLARY 2.2. If A € I'* is the order of the I'*-module H,(Y,; Q), then A is the
order of the T-module H(Y; Q).

Suppose A=0. Then H is trivial and {¢'},.; is a coset representative system for
G mod H. Let Y, be a path-component of ¥ and Y;=r/(Y,) for every integer i.
By Lemma 2.1, p| Y;: Y; — Y is a homeomorphism and ¥ is the disjoint union of
Y;, i€ Z. Hence we have



38 YAICHI SHINOHARA [November

COROLLARY 2.3. If dimg H(Y; Q)=p, then H(Y; Q) is a free T-module of
rank p.

Let K be an n-knot in S™*2 and X the complement of an open tube U of KX in
S"*2 Let ¢:m(X)— G be a homomorphism of =;(X) onto an infinite cyclic
group G=(¢: ) defined by

.10 o(g) = tUnk@B)  for g € 7 (X).

Then the covering space p: X — X belonging to Ker (¢) is an infinite cyclic
covering space. H,(X) is a finitely generated A-module, where A is the integral
group ring of G. Likewise Hy(X; Q)~ H(X) ®, Q is a finitely generated ['-module.
The order of the I'-module H(X; Q) will be called the qth dimensional Alexander
polynomial of K and denoted by A%(¢) [3].

It follows from [2, p. 102] that

PROPOSITION 2.4. The family {A%(t)}, is an invariant of the n-knot type of K.

PROPOSITION 2.5. (1) H(X) =L, H (X) is a A-isomorphism for q#0.

(2) H(X)(H(X; Q)) is a torsion A(T')-module for every integer q.

(3) Hyir(X)=0.

(4) In the homology sequence of the pair (X, 8X), 0,: H,, (X, %) — H,(8X) is
a A-isomorphism.

Proof. The proof of Assertion 5 in [3] holds for the integral homologies provided
that H (X)~ H,(S"), from which (1) and (2) follow immediately.

Since there exists an (n+ 1)-dimensional subcomplex of X which is a deformation
retract of X, H,,.(X) is a free A-module. Hence, by (2), H,,,(X)~0.

By (3), @4 is one-one. Hence it remains to show that H,(0.X) — H,(X) is trivial,
but this follows from (1) and the fact H,(6X)~ A/(t—1). Q.E.D.

Finally we want to define the signature of a (2m—1)-knot K in S2m+2,

By Proposition 2.5(4), 8y: Hon(X, 8X) — H,,,_,(0X) is an isomorphism which
is compatible with 7,. On 0.X, we select an oriented (2m— 1)-sphere S2™~! which
is homologous to K in Cl (U). If m=1, we further require that S?™~! is a longitude
of Cl (U). Let e be the homology class in H,,_;(8X) represented by a lifting of
S$2m-1to 9.X. Then e generates H,,,_,(0X) and is called the canonical generator of
H,,_1(@X). e is uniquely determined by K and satisfies z,(e)=e. The element
{=03%e) of Hyn(X, 2X) will be called the fundamental class of X. { is uniquely
determined by K and satisfies #,({)={.

By the universal-coefficient theorem for cohomology, we have

H2m(X~’ 31?, Q) = Hom (H2m(X~’ af, Q)a Q)’ U <u’ >

Hence we can define two types of pairings B, and B, from H™(X,2X; Q) ®
H™(X,2%; Q) to Q by

B1(x,,V) =<{x Uy, C>
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and
By(x,y) =<{xVUt*y + yU t*x,
for x, ye H™(X, 2X; Q). By Lemma 4.4 of [2], we have
PROPOSITION 2.6. B, is a dual pairing and B,(y, x)=(—1)"By(x, y) for
x,ye H(X, 0X; Q).

For every positive integer m, B, is a quadratic form on the finite-dimensional
vector space H™(X, 8X; Q). The signature of B, will be denoted by oy(K).

If m is even, B, is also a quadratic form on H™(X, 0.X; Q) and the signature of
B, will be denoted by a,(K).

Theorem 5.2 of [2] shows that

PRrOPOSITION 2.7. 0,(K) and o5(K) are invariants of the (2m—1)-knot type of K.

3. Proof of Theorem 1.1. Let K, ¥, L and A be as in Theorem 1.1. Let U be a
tube of L which is contained in Int V.
We will use the following notations:

X=S8"2—-IntU, it W< X,

W=V-IntU, ip: Y< X,
Y=S8""2_IntV, is: T < X,
T = Bdary V.

Choose a point x € T. Let ¢ be a homomorphism of m,(X, x) onto an infinite
cyclic group G=(t: ) defined by

p(g) = M@ for g e my(X, x),

and p: ¥ — X the infinite cyclic covering space belonging to Ker (¢). Put W=
p~(W), Y=p~(Y) and T=p-XT). Then £F=WuU FPand T=Wn 7.

First we will consider the case A#0. We want to show that if A#0 then
3.1) Ay(t) = A4(t")-orderr H(W; @), 1=gq=n-1,

’ (t*—1)- A}(¢) = A(tY)-ordery H(W; Q).

Since L~ AK in V, the homomorphism

m(¥, %)~ (X, x) 2> G
is given by

3.2) (p-izp)(g) = tNLink@.©

for g € m,(Y, x), and =,(Y, x) is mapped onto H=(t*: ) by ¢-iss Let ¥; be a path-
component of ¥. Then, by Lemma 2.1, p| ¥;: ¥; — Y is an infinite cyclic covering
space of Y belonging to Ker (¢-iz4). Y is the complement of an open tube of K in
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S™*2 and - iyy is the homomorphism given by (2.1) if we replace ¢ by ¢* in (2.1).
From these observations it follows that

orderpr H(Y1; Q) = AL(tH).
Hence, by Corollary 2.2, we have
(3.3) orderr H(Y; Q) = A%(t?).
The homomorphism

m(W, x) ll_#> (X, Xx) e G
is given by
(piag)(g) = 1MmeD for g e m (W, x),

and is onto. Hence, by Lemma 2.1, p| W: W — W is an infinite cyclic covering
space belonging to Ker (¢-i;4).
m,(T, x) is mapped onto H by ¢-iss. If T, is a path-component of T, then T; is
homeomorphic to S"x R* and
orderrr H(Ty; Q) = t*—1, ¢ =0,n,
=1, otherwise.
Hence, by Corollary 2.2, we have
orderr H(T; Q) = t*~1, q=0,n,
G.4) r H(T; Q) q ‘
=1, otherwise.

By using the Mayer-Vietoris sequence of W and ¥, (3.4) and Proposition 2.5(3),
we can show that

H(X; Q) ~r H(W; Q) @ H(Y; Q) forl <q =n—1,
and
0— H(T; Q) — H,(W; Q) @ H(Y; Q) - H.(X; 0) >0

is exact.
By (3.3), it is clear that

AY(t) = AL(tY)-orderp H(W; Q) for1 < g < n—1.
From (3.3), (3.4) and Assertion 1 of [3] it follows that
(t*=1)-A}(t) = Ay(e*)-orderr H(W; Q).

Hence we have proved (3.1).
We now consider the case A=0. By (3.2), the homomorphism

(¥, x) ~2> (X, x) 2> G
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is trivial. Since Y has the homology of a circle, it follows from Corollary 2.3 that
HQ(Y; Q); F, q=0’1’

~ 0, otherwise.

Similarly

(T, x) > m(X, x) 2> G

is trivial and H(T; Q)~0 for g#0, 1, n, n+1. As before, p|W: W — W is an
infinite cyclic covering space belonging to Ker (¢-i14). Hence the Mayer-Vietoris
sequence of W and ¥ implies that

3.5 0— H(T; Q) > Hi(W; Q) ® Hi(Y; Q) > Hy(X; 0) >0

is exact,

(3.6) H(X; Q) =~ H(W; Q) forq # 1,n,
and if n=2,

3.7 0— H(T; Q) > H(W; Q) > H(X; 0) >0
is exact.

If n22, H(T) — H,(Y) is an isomorphism, and hence H,(T; Q) - H,(Y; 0)
is a I'-isomorphism. By using this fact and (3.5), one can show easily that

H\(W; Q) =r Hy(X; Q).
Therefore, if n=2,
(3.8) AL(t) = orderr H(W;Q), 1=<gq<n—1,
and
(39 0— H(T; Q) > H (W; Q) > H(X; @) > 0
is exact.

If n=1, let R and S be a meridian and a longitude of V respectively. R represents
a generator of Hy(Y) and S is a trivial element in H,(Y). Put R=p-%(R) and
S=p~1(S). Then it is easy to show that

H(T) = Hi(R) @ H,(S),
H,(R)— H,(Y) is an isomorphism, and
H(S)— H,(Y) is trivial.

From this fact and (3.5) it follows that

(3.10) 0— Hy(S; Q) - Hy(W; Q) > H\(X; Q) >0

is exact.
Now let K’, V', L' and A be as in Theorem 1.1. The previous argument is also
valid for this case. We will put a superscript “’” to the notations in the previous
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argument to denote the corresponding objects for the case XK', V', L' and . We
may assume that f(U")=U and f(x')=x.

It is easy to show that f: m;(W’, x') — m;(W, x) is an isomorphism which makes
the diagram

mn(W,x) ¥ G

vA

m (W, x)
commutative. Hence f induces an orientation-preserving homeomorphism
W ->w
which is compatible with ¢ and
(3.11) S H(W'; Q) = Hy(W; Q)
for every integer q.
Since K’ is trivial, if A#0, we have
AL(t) = orderr H(W'; Q), 1=g=<n-1,
(t*=1)-A%L(t) = orderp H,(W'; Q).
Hence, if A#0, Theorem 1.1 follows from this fact, (3.1) and (3.11).

If A=0 and n=2, by (3.8) and (3.11) we have AL(t)=A%() for 1Sg<n—1.
Moreover, the diagram

H(T'; ) — H,(W'; Q)
f*l;p ;plf*
H(T; Q) — H(W; Q)
is commutative. Hence, by (3.9), there exists a I'-isomorphism H,(X'; Q)

H,(X; 0), which implies AZ(t)=A}z).
If A=0 and n=1, we may assume that f(S’)=S. The diagram

H(§"; Q) — H\(W'; Q)
f*lgr f*lgr
Hy(S; Q) — H\(W; Q)

is commutative. Hence, by (3.10), we have Hy(X’'; Q)~H,(X; Q), which yields
AL(t)=AL(). ‘

This completes the proof of Theorem 1.1.

ReMARK. With slight modifications we can show that if A=0, then H/(X")
~ A H(X) for every integer g.
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4. Proof of Theorem 1.2. Suppose that n=2m—1. In the case m=1, Theorem
1.2 follows from Theorem 9 of [5] and the equivalence of Erle’s definition and
Trotter’s [1]. Hence we will assume that m=2. We will use the same notations as
in §3.

Let K, V, L and A be as in Theorem 1.2. The Mayer-Vietoris sequence of (W, W)
and (Y, 8Y) yields

“n H(&, oW) <— HW, oW)® H(¥,2%) and
' HY(X, oW) => H(W, oW) @ H(T, o 7)

for every integer g.
As in §3, we will divide our consideration into two cases. First we will consider
the case A#0. By Lemma 2.1, ¥ is the disjoint union of Y7, ..., ¥, such that

(1) p=|A,
(2) p| Y;: Y, — Y is an infinite cyclic covering space of Y belonging to
Ker (- igy),

where ¢-i54 is given by (3.2),
(3) tcarries Y, to Y,, Yoto Y,, ..., Y, t0 ¥,
Note that Y is the complement of an open tube of K in S2m+1,
We denote the inclusion maps as follows:

J (X, 0%) = (X, o),
jO: (W9 6W) < (Y’ aW)y
Qi (Y,0Y)< (X, oW), v=12..,p
Let e € H,,_1(8X) be the canonical generator and {=2;(e) the fundamental

class of X. For v=1,..., u, let e, € H,,_,(dY,) be the canonical generator and
{,=9,.%(e,) the fundamental class of Y,, where

av*: Hzm( Yva aYv) 'i> fI2m—1(a Yv)
Since t.(e;)=e,, . . ., tu(e,)=e;, we have

4.2) t(8y) = Loy tulle) = &5 -+, t(8) = Goe

By Proposition 2.5(3), Hyn(X)~0 and H,,(Y,)~0 for v=1, 2, ..., u. Hence the
Mayer-Vietoris sequence of W and ¥ yields H,.(W)x0, which implies that
dou: Hom(W, W) — Hyp_1(@W) is one-one.

We want to show that

(4.3) there exists a unique element {, € H,,(W, W) such that

0x(bo) = e—(sign A)-(e1+ - - - +e,).
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The isomorphism
hy: Hon(W, 0W) @ Hyn(Y1, 2Y1) @ - @ Hn(Y,, 2Y,) — Hy(X, W)
is given by

13
(4'4) h*(an X1y e e ey xu) = Z jv.(xv)
v=0

for xo € Hy(W, W) and x, € Hy(Y,, 2Y,), v=1,2,. .., u. There exist a unique
element ¢, € H,,(W, W) and unique integers ¢y, . . ., ¢, such that
(4°5) j*(g) = h*(go, elCl, ey sugu)'
If we operate ¢, on (4.5), by (4.2) and the fact 7,({)={, we obtain
]*(l) = h*(t*(lo), 6u§1a ela, .. ., 8u—1£u)-
Since h, is one-one, we have ¢; =¢,=- - - =¢,.

By the commutativity of the following diagrams

Honl(R, 02) 225 Hou(R, W) Han(OW, 0W) 2% H,(X, o)

b

H2m—1(ag) —> Hzm-1(aW) H2m-—1(aW) - H2m—1(aW)

and
Haon(W,, oW,) 2% H,p(X, 0W)
av*l lé*
Hy,_(0W,) —> Hzm—l(aW)
we obtain
(4.6) 5*1'*(0 =e, 5*h0*(C0) = Jox(Lo), and g*jv*({v) = &y,
' v=12,...u

Hence, by (4.4)~(4.6), we have dox({o)=e—ei(e1+ - - - +¢,) in Hyp_1(OW).
To complete (4.3), we need only to show that ¢; =sign A. Since the diagram

Hon(W, W) L2 (W, 0w)
130* la
Hom_(oW) L2 H,,_(0W)
is commutative, in H,,_,(0W) we have

Oox(P+(£0)) = Px(904(L0)) = pul€)—e1(puler) + - - - + palen).

Hence py(e)=e:(ps(e))+ - - - +px(e,)) in Hyp (W), and in Hy,, (V). This shows
that L~&;uK in V and &, =sign A. This completes the proof of (4.3).
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Since m=2, j*: HX, oW)— H™(X, 0X) is an isomorphism. The homo-
morphism

h*: H™(X, 0W) -~ H™(W, 8W) @ H™(Y,,8Y,) @ --@ H™(Y,, 8Y,)

given by
h*(x) = (j§(x), jT(¥); - . -, ji' (%))

for x e H™(X, @W) is an isomorphism. For an element x of H™(X, 0X), we denote
by X the image of x under the isomorphism A*-j* 1.

Let x,..., x, and yy, ..., y, be elements of H™(X, X; Q) such that

{%1, ..., X,} is a basis for H™(W, dW; Q) and

{71, ..., Vs is a basis for H™(Y,, 0Y,; Q).
Then {t*'y,, ..., t*'y} is a basis for H™(W,_,, W, _,; Q) for v=0,1,...,p—1,
and

BiXtyeo s X3 V1o en s Voo w3 BTy, oo, ¥4y,
forms a basis for H*(X, 0.X; Q).
First we want to consider the matrix A representing the pairing B, with respect

to the basis #. By making use of the fact that j(0)=h.(lo, €4, . . ., £{,), Where
e=sign A, we can show that

Bi(x;, x;) = <X; Y Xj, Lo),

By(t*y;, t**y;) = &(Ji Y 5 L)y Osv=p-1,
By(x;, t*y;) = By(t*y;, x;) = 0, Osvsp-l,
B,(t**y;, t*'y;) = 0, v# T
Let
C = |<x VX, Lodlisigsr
and

D = "6<)7i ija Cu>||1§i_f§s.

Then we have

If m is even, then

signature [{F; U 7;, {151,755 = 01(K)
and

4.7 o,(L) = signature C+epo,(K) = signature C+ Aoy (K).
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We now want to consider the matrix B representing B, with respect to #. We
can show that
By(x;, X)) = (X, U t¥%, 4+ %; U t¥%y, LoD,
By(t**y;, t¥'*1y)) = &7; Y B, L),
By(y, t*71y)) = LGV t*),+5, Y t*p, D
= ey Y t*y, D
By(t*y, t*y) =0 ifp > land [v—7| # 1, p—1,
By(x;, t*'y,)) = 0.

ifu=1,
ifp>1,

Let
E = |<X; U t*%;4+X; U t*%, Lod |1 si,r
and

F = |5V t*7, L) ]1s1,sss
Then we have

p blocks
- N —_— -
E | 0
N
: o D F
{ D o D
p blocks 7 : D o .
B= 0]
I .
I 0 ,
I D o D
\ : F’ D o
If u is even, it is easy to show that the matrix
©
e ~ 2
([o D F]
D o D 0
0
(4.8) * 9 .
0
D o D
Fl
L L D o J

is congruent to its negative and its signature is zero. Hence if p is even,

(4.9)

ay(L) = signature E.
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Proposition 2.6 implies that D’=(—1)"D and D is nonsingular. If x is odd, by
adding (—1)™*?! times the first row block to the third and (—1)"** times the first
column block to the third; (—1)™*?! times the new third row block to the 5th and
(—1)™** times the new third column block to the 5th;...; (—1)"*! times the new
(p—2)th row block to the uth and (—1)™*?! times the new (x—2)th column block
to the uth, we can show that (4.8) is congruent to the matrix

F

0 0
Fl
0

(4.10)
D'\ Fiusy
0
[F' 0 F{ 0e- Fig,0 Fouiryz + Firir |

where Fi=(—1)™*Y™F, j=1,...,(p—1)/2. Since D is nonsingular, (4.10) is
congruent to

1
L : Fonynt Fiu1y2

It is clear that signature [3 2']=0. One can show that
Foyovyg+Foopya = (=)™ DDl 5O %45, 4 5, U 15, L) 150556
= (=) DA=DRICH U P+ 5, U 2, L 1 s,s s
Therefore, if p is odd,
4.11) ay(L) = signature E+(—1)m+D-A=Dizg (K),

Now, as in §3, f*: H™(W, 0W) — H™(W’, 9W’) is an isomorphism which is
compatible with ¢* and fy: Hyn(W', 8W') — H,,(W, 8W) is an isomorphism such
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that the diagram

Hzm(W’9 aVi’/,) {—*) Hzm(W’ 3W)
b e
a

Hzm-1(3W') —Q Hzm—1(aW)

is commutative. Since fy(e’)=e and fy(ei+ - - - +e))=e,+ - - +e,,
Qox(f(L0)) = Fu(064(L0)) = fule' —(sign A)-(e1+ - - - +e3))
= e—(sign A)-(e;+ -+ - +e,).
Hence, by (4.3), we have fi({6) = Lo
{f*(x), ..., f*(%)} is a basis for H™(W', 8W’; Q) which satisfies
CP*E) U XX, Loy = <XV X5, Loy
and
CFHE) U EFHE) +TH(E) U 14H(R), o) = <F U 13,4+ X, U 14%,, o).
Since K’ is trivial, by (4.7), (4.9) and (4.11), we have
o,(L) = signature |(f*(x) U f*(%,), {o>|| = signature C
and
ag(L') = signature |{f*(x,) U t*f*(X,) +f*(%,) U t*f*(x), {o>| = signature E.
Therefore we have shown that
ay(L) = a5(L) when A is even,
= oo(L")+(—1)m+D*-Di25,(K) when A is odd,
and if m is even,
01(L) = o1(L)+ Aoy (K).

This completes the case A#0.

Finally we want to consider the case A=0. Y consists of countably many
copies of Y and ¥ consists of countably many copies of 9Y~S2"~1x S,
In the Mayer-Vietoris sequence of (¥, @) and (W, 2X), we can show that

H™(X, 0X) L H™W, 0X)
is an isomorphism and
0 —> Hyn(07) —> H, (W, 8X) LN Hyn(X, 0X) —0

is exact. Note that m = 2. Hence there exists an element {, € H,,(W, 8X) such that

h*(go) = C
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Let {x,,..., x,} be a basis for H™(X, 9X; Q). Then {X,, ..., X,} is a basis for
H™(W, 0X; Q), where %;=h*(x;) for i=1,...,r, and

Bi(x;, x;) = <% VY X;, Lo,
Bo(xi, x;) = (X, U %X+ %, U %X, {o).

As before, f*: H™(W, 0X) — H™(W’', 0X') and fy: Hyu(W',0X8") > H,, (W, 0X)
are isomorphisms and f,(e’)=e. Since the diagram

Hyn(W',08) —— f * > Hyn(W,0%)

> l%* lao* X
Hy(Xj0X%") _3_;_) Hopm- X)) —<— f* Hyn-1(0X) *'QL Hyn(X,0%)

is commutative, £ =7 ({o) € Han(W', 0.X') satisfies hy({o)={'.
{f*(x), ..., f¥(%,)} is a basis for H™(W’, 0X'; Q) and {x}, ..., x} is a basis for
H™(X', 6,? ; 0), where x;=h"*~1(f*(%)) for i=1,..., r. Hence

By(xi, x)) = {f*(%) U f*(x), (o>
=X VU X, Loy = Bi(xy, x).

Likewise we have B,(xi, x;)= By(x;, x;). Therefore we have shown that o,(L")=04(L)
and, if m is even, o,(L")=0,(L). This completes the proof of Theorem 1.2.
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