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HIGHER DIMENSIONAL KNOTS IN TUBES

BY

YAICHI SHINOHARAO

Abstract. Let K be an «-knot in the (« + 2)-sphere and V a tubular neighborhood

of K. Let L' be an «-knot contained in a tubular neighborhood V of a trivial «-knot

and L the image of V under an orientation preserving diffeomorphism of V onto V.

The purpose of this paper is to show that the higher dimensional Alexander poly-

nomial and the signature of the «-knot L are determined by those of K and L'.

1. Introduction. An n-knot Kis a smooth oriented submanifold of the oriented

(n + 2)-sphere Sn + 2 which is homeomorphic to Sn. Throughout the paper we

assume that the orientation of Sn + 2 is fixed. Two «-knots Kx and K2 are said to be

of the same n-knot type if there exists an orientation preserving homeomorphism/

of 5n + 2 onto itself such that f(Kx) = K2 and f\Kx is orientation preserving. By a

tube (or an open tube) of an «-knot K we mean a closed (or an open) tubular

neighborhood of A1 in Sn + 2.

Let K be an «-knot in Sn + 2 and V a tube of K. Let V be a tube of a trivial

«-knot K'. Let/: V -*■ V be a diffeomorphism of V onto V which preserves the

orientations induced by Sn + 2 in V and V. If « = 1, we further assume that/trans-

forms longitudes into longitudes. Let L' be an «-knot contained in the interior of

V. Then L'~AA" in V for some integer A. Moreover, L=f(L') is an «-knot con-

tained in the interior of Fand L~\K in V.

For the case n = 1, H. Seifert [4] showed that

AL(f) = AK(t')AL.(t),

where At(i), AK(t) and A¿.(/) are the Alexander polynomials of L, K and L', and

the author [5] proved that

ct(L) = o(L') when A is even,

= c(K) + c(L')   when A is odd,

where o(L), o(K) and o(L') are the signatures of L, K and L' defined by H. F.

Trotter [6].

The purpose of this paper is to generalize these results to the case of higher

dimensional knots.
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Following J. W. Milnor [3], we will define the ath dimensional Alexander

polynomial A^(r) of an n-knot K (see §2). We prove that

Theorem 1.1. For l^q^n,

A?(0 = A^A)-AZ-(i).

In [2], D. Erie defined the signature <r2 of a (2w — l)-knot which is equivalent to

a for m — 1 [1]. For the case when m is even, another signature ax of a (2w— l)-knot

was also defined. We show that

Theorem 1.2. lfn = 2m — \, then

a2(L) = cr2(7_') when A is even,

= o2iL') + (- l)(m + 1)(A - 1)l2o2iK)   when A is odd.

Furthermore, if m is even, then axiL) = axiL') + XaxiK).

2. Preliminaries. Z and Q will denote the ring of integers and the field of

rational numbers respectively. Throughout the paper we assume that every covering

space is connected.

Let A' be a connected, locally path-connected and semilocally 1-connected space

and Y a subspace of X which is connected and locally path-connected. Suppose

that there exists a homomorphism

<p: TTXiX, y0) ^ G

of TTXiX, j0) onto an abelian group G, where y0 is a point of Y. Then there exists a

regular covering space p : X -> X which belongs to Ker (<p). G acts on Â* as the

group of covering transformations. More precisely, one can describe the action of

G on X as follows :

Choose a point y0 e/»_1(jo)- Let g be an element of G and y an element of

TTXiX, y0) which is mapped into g by <p. Then there exists a unique path class y in

X with the initial point y0 such that p#iy) = y. The terminal point of y does not

depend on the choice of y which satisfies <piy)=g. Hence g corresponds to a unique

covering transformation which maps yQ into the terminal point of y. This corre-

spondence is an isomorphism of G onto the group of covering transformations and

does not depend on the choice of y0 ep~1iy0) (since G is abelian).

The above described action of G on X is called the <p-action of G on Ä". For every

subgroup S of G, the «^-action of G naturally induces an action of S on X.

Now we want to consider p~\Y). Let 77 be the image of ttxÍY, y0) under the

homomorphism

<A - <p-i#'-'"ÁY>yo)-J>'G,

where ; : F<= X. Let {gx = 1, g2,..., gu} be a coset representative system of G mod H;

that is, G=H+g2H-\-\-guH, where p = [G:H] may not be finite. Let Yx be a

path-component of p~1iY) and Fi=gi(F1) for i=l,2,..., p.. Then we have the

following lemma.
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Lemma 2.1. (1) p\Y¡: Ft—> Y is a covering space which belongs to Ker (<p),

i = l,2,. ..,p.

(2) For i= 1, 2,..., p, the <p-action of H on X induces an action of H on F¡ by

restricting every element of H to Y¡. Furthermore, this induced action of H on Yt

coincides with the '¡¡-action of H on Y(.

(3) p'x(Y) is the disjoint union of Yx, Y2,..., Yu.

This lemma can be proved easily by using basic properties of covering spaces.

Hence we omit the details.

Let M be a finitely generated module over a principal ideal domain P. By the

structure theorem for finitely generated modules over principal ideal domains,

M is isomorphic to a direct sum of cyclic modules; that is,

MzPI(Pi)®--®PI(j>r),

where (/?¡) denotes the principal ideal spanned by an element p¡ e P. The generator

of the product ideal (px- ■ -pr), unique up to unit elements of P, will be called the

order of M and denoted by orderP M [3]. The order of M is an invariant of the

P-isomorphism class of M.

Now, in Lemma 2.1, suppose that A' is a finite connected simplicial complex,

Fa connected subcomplex of Xand G = (t: ) the infinite cyclic group generated by

i. Then H=(tx: ) for some integer A and p: X^ X is an infinite cyclic covering

space. Let Y denote p~1(Y). Since F is invariant under i and Fis a finite complex,

H*(Y; Q) is a finitely generated T-module, where F denotes the rational group

ring of G.

Suppose A^O. Then [G:i/] = |A[ =/xand{l, i,..., iM_1} forms a coset representa-

tive system of G mod H. Let Yx be a path-component of Fand Yi = ti~l(Yx) for

i=l,2,..., p. By Lemma 2.1, p\Yt: Y( —> Y is an infinite cyclic covering space

having tA as a generator of the group of covering transformations. Hence H%( Yt; Q)

is a finitely generated rA-module, where TA is the rational group ring of H. More-

over, as rA-modules,

Hq(Y; Q) S Hq(Yx; Q) ©• • -® Hq(Yß; Q).

Since i* is an automorphism of H„(Y; Q) which maps Hq(Yx; Q) onto H„(Y2; Q),

..., //„(F,,; g) onto Hq(Yx; Q), a presentation of the rA-module H„(YX; Q) can

be considered as a presentation of the T-module Hq(Y; Q). This yields

Corollary 2.2. //AeP is the order of the TA-module Hq(Yx; Q), then A is the

order of the Y-module Hq(Y; Q).

Suppose A=0. Then H is trivial and {i'}^ is a coset representative system for

G mod H. Let F0 be a path-component of Y and Yi = ti(Y0) for every integer /'.

By Lemma 2.1, p\ Y¡: F¡—> Fis a homeomorphism and Fis the disjoint union of

F¡, ieZ. Hence we have
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Corollary 2.3. If dimQ 77„(F; Q) = p, then 77„(f; Q) is a free Y-module of

rank p.

Let K be an n-knot in Sn + 2 and X the complement of an open tube U of K in

Sn + 2. Let <p : irx{X) -*■ G be a homomorphism of ttx{X) onto an infinite cyclic

group G — it: ) defined by

(2.1) ^(g) = tUnVg-K1   for g e TTXiX).

Then the covering space p:X^-X belonging to Ker (<p) is an infinite cyclic

covering space. H„iX) is a finitely generated A-module, where A is the integral

group ring of G. Likewise HqiX; Q)^HqiX) ®z Q is a finitely generated T-module.

The order of the T-module H„iX; Q) will be called the qth dimensional Alexander

polynomial of K and denoted by A%(t) [3].

It follows from [2, p. 102] that

Proposition 2.4. The family {AQK(t)}„ is an invariant of the n-knot type of K.

Proposition 2.5. (1) HqiX) L^i» HQiX) is a A-isomorphism for a^O.

(2) HQiX)iHqiX; Q)) is a torsion A{Y)-module for every integer q.

(3) Hn + xiX)^0.

(4) In the homology sequence of the pair iX, dX), e>*: Hn+xiX, dX) -> HJdX) is

a A-isomorphism.

Proof. The proof of Assertion 5 in [3] holds for the integral homologies provided

that //*(*) SH^iS1), from which (1) and (2) follow immediately.

Since there exists an («+ l)-dimensional subcomplex of X which is a deformation

retract of X, Hn+xiX) is a free A-module. Hence, by (2), 77n+1(.F)^0.

By (3), «3* is one-one. Hence it remains to show that HnidX) -*■ HniX) is trivial,

but this follows from (1) and the fact HAßj{)~ A/it-1).    Q.E.D.

Finally we want to define the signature of a {2m— l)-knot K in 52m + 1.

By Proposition 2.5(4), «9*: H2m()C, 8X) -> 772m_1(«9Â!) is an isomorphism which

is compatible with /*. On 8X, we select an oriented (2w—l)-sphere S2m_1 which

is homologous to A" in Cl (£/). If m= 1, we further require that S2m_1 is a longitude

of Cl iU). Let e be the homology class in H2m_xidX) represented by a lifting of

S2m_1 to d%. Then e generates 772m_1(«9Â') and is called the canonical generator of

H2m-xidX). e is uniquely determined by K and satisfies f*(e) = e. The element

í=8i1(é) of H2miX, dX) will be called the fundamental class of X. £ is uniquely

determined by K and satisfies «**(£) = £.

By the universal-coefficient theorem for cohomology, we have

H2%X, 8X; Q) s Horn (772m(f, 8X; Q), Q),       u h» (u, >.

Hence we can define two types of pairings Bx and Z?2 from HmiX, BX; Q) ®

77m(^, dX; Q) to Q by

Bxix, y) = <x u y, {>
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and

B2(x, y) = <x U t*y + y U t*x, £>

for x, y e Hm(X, dX; Q). By Lemma 4.4 of [2], we have

Proposition 2.6. Bx is a dual pairing and Bx(y, x) = (— l)mBx(x, y) for

x,ye Hm(X, dX; Q).

For every positive integer m, B2 is a quadratic form on the finite-dimensional

vector space Hm(X, dX; Q). The signature of B2 will be denoted by c2(K).

If m is even, Bx is also a quadratic form on Hm(X, dX; Q) and the signature of

Bx will be denoted by ax(K).

Theorem 5.2 of [2] shows that

Proposition 2.7. <ix(K) and <j2(K) are invariants of the (2m — l)-knot type of K.

3. Proof of Theorem 1.1.    Let K, V, L and A be as in Theorem 1.1. Let U be a

tube of L which is contained in Int V.

We will use the following notations:

X = Sn + 2-lntU, ix: W ^ X,

W = V-\ntU, i2: fc X,

Y= Sn+2-lntV, i3:TaX,

T = Bdary V.

Choose a point xeT. Let <p be a homomorphism of ttx(X, x) onto an infinite

cyclic group G = (t: ) defined by

9(g) = 'Link(9,L)   for g e ttx(X, x),

and p: X-^ X the infinite cyclic covering space belonging to Ker(<p). Put W=

p-\W), Y=p-\Y) and T=p~1(T). Then X=ÍVkj Fandf=IFn Y.

First we will consider the case A^O. We want to show that if A^O then

¿4(t) = A%(tA) • orderr Hq(W;Q),       l^qún-l,

(tA -1) • Al(t) = Al(tA) • orderr Hn( W; Q).

Since L~\K in V, the homomorphism

7r1(F,x)-^7r1(Z,x)^G

is given by

(3.2) O •/„#)(*) - iA-™-*>

for g e ttx( Y, x), and ttx( Y, x) is mapped onto H= (tA : ) by <p • /2#. Let Yx be a path-

component of Y. Then, by Lemma 2.1, p\Yx: Yx-+ Y is an infinite cyclic covering

space of F belonging to Ker (ç> • i2#). Y is the complement of an open tube of K in
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5n + 2 and <p-i2# is the homomorphism given by (2.1) if we replace t by tÁ in (2.1).

From these observations it follows that

orders tf,(ri:ß) = A|(r*).

Hence, by Corollary 2.2, we have

(3.3) orderr//,(?;ß) = Aftr*).

The homomorphism

ti( W, x) -H» ttxÍX, x)-^G

is given by

i<p-h#)ig) = 'Link(9,w   foxgeTTXiW,x),

and is onto. Hence, by Lemma 2.1, p\ W: fT-s- W is an infinite cyclic covering

space belonging to Ker (<?•/«.#).

ttxÍT, x) is mapped onto 77 by <p-i3#. If Tx is a path-component of T, then Tx is

homeomorphic to Snx Rl and

orderrA HqiTx ; Q) = tÁ -1,   q = 0, n,

= 1, otherwise.

Hence, by Corollary 2.2, we have

orderr 77,(f ; ß) = rA-l,   q = 0, n,
(3.4)

= 1, otherwise.

By using the Mayer-Vietoris sequence of W and Y, (3.4) and Proposition 2.5(3),

we can show that

HQiX; Q) ̂ rHqiW; Q)®H¿Y; Q)   for 1 Ú q á n-\,

and

0 -► 77n(f ; Q) -> 77n(^; ß) 0 77n(?; Q) -> 77n(*; ß) -> 0

is exact.

By (3.3), it is clear that

Alii) = A\itK)oxdexv HqiW;Q)   for 1 g ? á n-1.

From (3.3), (3.4) and Assertion 1 of [3] it follows that

(rÄ-l)-A2(r) = A^.orderrT/Ä ß).

Hence we have proved (3.1).

We now consider the case A = 0. By (3.2), the homomorphism

77^ Y, x) -H- TTXiX, x)-^G
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is trivial. Since F has the homology of a circle, it follows from Corollary 2.3 that

H¿f;Q)~T,   <7 = 0,í,

S 0,    otherwise.

Similarly

7TX(T, x) -H. 7TX(X, x)-^G

is trivial and Hq(f; Q)^0 for q^O, 1, «, «+1. As before, p\ W: W'-> IF is an

infinite cyclic covering space belonging to Ker (<p-/1#). Hence the Mayer-Vietoris

sequence of W and Y implies that

(3.5) 0-► Hx(f ; Q)-> Hx(W; Q) ® HX(Y;Q)^ HX(X; Q) -> 0

is exact,

(3.6) Hq(ï; Q) S Hq(W; Q)   for q * 1, «,

and if «^2,

(3.7) 0 -> Hn(f ; Q) -> Hn( W; Q) -> Hn(X; Q) -> 0

is exact.

If «^2, Hx(T)^Hx(Y) is an isomorphism, and hence Hx(f; Q)^HX(Y;Q)

is a T-isomorphism. By using this fact and (3.5), one can show easily that

HX(W; Q) ^r HX(X; Q).

Therefore, if n ̂  2,

(3.8) AJ(i) = orderr Hq(W; Q),       l úqú »-1,

and

(3.9) 0 -* Hn(f; Q) -> tfn(lF; g) -> //„(J?; ß) -> 0

is exact.

If « = 1, let R and 5 be a meridian and a longitude of V respectively. R represents

a generator of HX(Y) and S is a trivial element in HX(Y). Put R=p~1(R) and

S=p~1(S). Then it is easy to show that

HX(T) s HX(R) ® HX(S),

Hi(R) ^>-Hi(Y)   is an isomorphism,   and

HX(S)~^HX(Y)   is trivial.

From this fact and (3.5) it follows that

(3.10) 0 -* HX(S; Q) -> HX(W; Q) -► HX(X; Q) -* 0

is exact.

Now let A', F', L' and A be as in Theorem 1.1. The previous argument is also

valid for this case. We will put a superscript "'" to the notations in the previous
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argument to denote the corresponding objects for the case K', V, L' and A. We

may assume that /(i/')= U and/(x') = x.

It is easy to show that/#: ttx(W, x') ->■ ttxÍW, x) is an isomorphism which makes

the diagram

TTXiW',x')  -£-* G

f»      /£
/<P

"¿w,x)

commutative. Hence/induces an orientation-preserving homeomorphism

/: W' -> W

which is compatible with t and

(3.11) h:HqiW';Q)^rHqiW;Q)

for every integer q.

Since K' is trivial, if A^O, we have

A£.(f) = orderr HqiW';Q),       \ ú q Ú n-\,

it'-1)■ AUO = orderr HniW'; Q).

Hence, if A/0, Theorem 1.1 follows from this fact, (3.1) and (3.11).

If A=0 and n^2, by (3.8) and (3.11) we have A£,(r) = A£(r) for \úqún-\.

Moreover, the diagram

Hnif';Q)—>HniW';Q)

h /*

Hnif; Q) —* HniW; Q)

is  commutative. Hence, by  (3.9), there exists a  T-isomorphism  HniX'; Q)^

HniX; Q), which implies A£,(í) = A£(r).

If A = 0 and w = l, we may assume that/(S") = S. The diagram

HxiS';Q)—>HxiW';Q)

/.

HxiS; Q)

/*

HxiW; Q)

is commutative. Hence, by (3.10), we have HxiX'; Q)=rHxiX; Q), which yields

This completes the proof of Theorem 1.1.

Remark. With slight modifications we can show that if A=0, then H„iX')

^AHqiX) for every integer q.
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4. Proof of Theorem 1.2. Suppose that n = 2m- 1. In the case m—l, Theorem

1.2 follows from Theorem 9 of [5] and the equivalence of Erie's definition and

Trotter's [1]. Hence we will assume that wä2. We will use the same notations as

in §3.

Let K, V, L and A be as in Theorem 1.2. The Mayer-Vietoris sequence of ( W, 8 W)

and (f,df) yields

Hq(X,8W)^Hq(W,8W)®Hq(Y,8Y)   and
(4.1) ¡5,

H"(X, 8W)-^ H"(W, 8W) ® H"(Y, 8 Y)

for every integer q.

As in §3, we will divide our consideration into two cases. First we will consider

the case A^¿0. By Lemma 2.1, F is the disjoint union of Yx,..., Fw such that

0)m-|a|,
(2) p\Y¡: Yt-+ Y is an infinite cyclic covering space of F belonging to

Ker(<p-/2#),

where <p-i2# is given by (3.2),

(3) i carries Yx to F2, F2 to F3,..., FH to Yx.

Note that F is the complement of an open tube of K in S2m + 1.

We denote the inclusion maps as follows:

j: (X, 8X) c= (Jf, 8W),

j0: (W, 8W) c (X, 8W),

jv:(Yv,8Yv)^(X,8W),       v = \,2,..., p.

Let ee H2m_x(8X) be the canonical generator and i = 8*1(e) the fundamental

class of X. For v=\,..., p, let eve H2m_x(8Yv) be the canonical generator and

iv = dv,1(ev) the fundamental class of Fv, where

3V*: H2m(Yv, 8YV) -Î* H2m,x(8Yv).

Since t*(ex)=e2,..., til(eu)=ex, we have

(4.2) i*(W = £a,    i*(£2) -t„    • • -,    i*(U = £x.

By Proposition 2.5(3), H2m(X)^0 and H2m(Yv)^0 for *=1, 2,...,p. Hence the

Mayer-Vietoris sequence of W and Y yields //2m(IF)s0, which implies that

¿W #2Ä SrP) -»- H2m.x(8W) is one-one.

We want to show that

(4.3) there exists a unique element £0 e H2m(W, 8W) such that

30*(£o) = e-(sign A)-(e!+ • • • + e„).
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The isomorphism

A* : 772m( W, 8 W) © 772m( Yx,8Yx)®---@ 772ra( F„, d Yu) -> H2miX, 8W)

is given by

(4.4) h*ix0, xx,...,xu)=  2 7v.(*v)
v = 0

for x0 e H2miW, 8W) and xv e H2miYv, 8YV), v=\, 2,..., p. There exist a unique

element £0 e H2miW, 8W) and unique integers elf..., eu such that

(4.5) JÁQ=h*iUexlx,...,e¿u).

If we operate r* on (4.5), by (4.2) and the fact ?*(£) = £, we obtain

J*iQ = ^*('*(£o), e«£i, «1Í2, • • -, £H-iC«).

Since A* is one-one, we have £i = £2= ■ ■ • =e„.

By the commutativity of the following diagrams

772m(^, 8X) ^ H2miX, 8W)        772m(W,8W)J-^ H2miX, 8W)

, 8o$

and

H2m_xi8X) —^ H2m_xi8W) H2m_xi8W) —► H2n.xi8W)

Jv*
H2miWv, 8WV) ̂ > H2miX, 8W)

8y# 8,

H2m-Xi8Wv) —► H2m.xi8W)

we obtain

(4.6)
8*j*i0 = e,       8+hot.iio) = 30*(£o),    and    S */*(£„) = ev

v = 1, 2,.. ./¿.

Hence, by (4.4)-(4.6), we have «90*(£o) = e-e1(e1-l- • • • +e„) in H2m-xi8W).

To complete (4.3), we need only to show that ensign A. Since the diagram

H2miW,8W)-^H2miW,8W)

P*

80*

H2m-Xi8W) ^> H2m.xi8W)

is commutative, in H2m-xi8W) we have

d0*(/?*(£o)) = P*i8o*iD) = P*ie)-exip*iex) +■■■ + p*ieß)).

Hence/j*(e) = e1(/^*(ei)H-1-/>*(«?„))in #2m-i(H0, and in H2m-xiV). This shows

that L~expK in F and ex =sign A. This completes the proof of (4.3).
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Since m£2, j*: Hm(X, 31F)-> Hm(X, 8Ï)  is an isomorphism.  The homo-

morphism

h*:Hm(X, 8W) -► //m(IF, 8VV) ® Hm(Yx, 8YX) ®- ■■®Hm(Yu, 8YU)

given by

h*(x) = (j*(x),j*(x),...,jï(x))

for x e Hm(X, 8W) is an isomorphism. For an element x of Hm(X, 8X), we denote

by x the image of x under the isomorphism A*-y**-1.

Let x1;..., xr and _y1;..., ys be elements of Hm(X, 8X; Q) such that

{xx,..., xr} is a basis for Hm(W, 8W; Q) and

{yx, ...,&} is a basis for Hm(Yu, 8YU; Q).

Then {t*vyx,..., t*vys} is a basis for Hm(Wu„v, dWu.v; Q) for v=0, 1.p-l,

and

»: xu..., xr; ylt ...,ys;...; t™'^,..., r'-'y.

forms a basis for #"•(£, 8X; Q).

First we want to consider the matrix A representing the pairing Bx with respect

to the basis 38. By making use of the fact that ./*(£) = w*(£o> £li, ■ ■ -, ££«), where

e = sign A, we can show that

Bx(xt, xf) = <Xj u Xj, £0>,

Bx(t*yh t*y,) = eOi u >v, {¿, O^v^-1,

5i(xs, *">,) = Bx(t*yh x,) = 0, Oi^/t-1,

£i(r*% í*'>',) = 0, * # t.

Let

and

C =   ||<XiUXy, £o>|lSWSr

D  m   I^U;,, i»>|lSi.iS..

Then we have

If m is even, then

and

(4.7)

signature l<ytUpj, £„>||iSUSs = °i(K)

ax(L) = signature C+epax(K) = signature C+\ax(K).
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We now want to consider the matrix B representing B2 with respect to 38. We

can show that

B2iXi, Xj) = (xt u t*Xj + Xj u t*x¡, C0y,

52(í*vvi,?*v + 1^) = Kjíuji,C>,

Ba(yt, i*""1^) = e(?i u t*y,+yj u *♦?„ &>   if/* = 1,

■•OkUf'V/.ü if/^ > 1,

B2it*vyh t**yj) = 0   if p > 1 and |i— t| / 1, /x-1,

*a(*i, t*vyt) - o.

Let

and

Then we have

£ = ||<x¡ u r*x; + xy U i*X(, Co>||lsuSf

F= |e<j7, U f*<% QIUsus,.

j^t blocks
_•v_

0

p blocks ¿

0      D'

D     0      D'

D     0      .

D     0     D'

D     0

If p is even, it is easy to show that the matrix

(4.8) M <

0      D'

D     0      D1

D     0

F'

D     0      D'

D     0

is congruent to its negative and its signature is zero. Hence if p is even,

(4.9) «^(T.) = signature E.
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Proposition 2.6 implies that D' = (— \)mD and D is nonsingular. If p. is odd, by

adding (— l)m + 1 times the first row block to the third and (— l)m + 1 times the first

column block to the third; (— l)m + 1 times the new third row block to the 5th and

( —l)m + 1 times the new third column block to the 5th;... ; (-l)m + 1 times the new

(/n-2)th row block to the pth and (- l)m + 1 times the new (p.-2)th column block

to the ptn, we can show that (4.8) is congruent to the matrix

F

0

F.

(4.10)

(M-3)/2

F'     0      F¡     0
(M-3)/2

0
j-l/

(M-D/2 +/V-l)/2

where  F¡ = (-l)<m+1)iF,  f=l.G*-l)/2.  Since  D is  nonsingular,  (4.10) is

congruent to

0      D'

n    0

0       D'

D      0

F a- F'
(ß-l)/2 +r(M-l)/2

It is clear that signature [°D o']=0. One can show that

i+FL-kU -1>/2
= ( — n<m + l)-(«-l)/2

(-1) KÄUf*y,+Äu/*%{»>,,*,«

= (_1)(m+1),A_1)/2||<-UÍ*,-í+-íUÍ*,-j^>||isj.ss_

Therefore, if p is odd,

(4.11) a2(L) = signature E+(- lYm+1^~1)l2a2(K).

Now, as in §3, /*: Hm(W, 8W) -► Hm(W', 8W') is an isomorphism which is

compatible with t* and/*: H2m(W', 8IV') -> H2m(W, 8W) is an isomorphism such
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that the diagram

HUW, 8W) 4^> H2miW, 8W)

8'o* •3o«

H2m_xi8W) -^ H2m.xi8W)

is commutative. Since/*(e') = e and/*(ei+ • • • +e'u) = ex+ ■ ■ ■ +eu,

¿W/*(Q) =M8o*tt'o)) =/*(<?'-(sign X)-ie'x+ ■ ■ ■ +e'u))

= <?-(sign \)-iex+---+ell).

Hence, by (4.3), we have/*(£ó) = £0-

{/*(xj),.. .,/*(xr)} is a basis for Hm{\V', 8W';Q) which satisfies

</*(*<.) U /*(*,), ft>  =  <X¡ U X„ £0>

and

</*(*,) U t*f*ix,)+f*iXj) U Í */*(*.), £ó> = <*i u ***,+*, u t*xh £0>.

Since K' is trivial, by (4.7), (4.9) and (4.11), we have

oxiL') = signature |</*(x,) u/*(x;), ft>|| = signature C

and

a2(L') = signature |</*(x,) u í*/*(x;)+/*(x,) u ?*/*(x(), Q|| = signature E.

Therefore we have shown that

a2{L) = <r2(L') when A is even,

= <r2(L') + ( - l)(m+1MA - 1),2ct2(A:)   when A is odd,

and if m is even,

a1(L) = <71(L') + Aa1(7<).

This completes the case A^O.

Finally we want to consider the case A = 0. Y consists of countably many

copies of Y and «9? consists of countably many copies of «9F^5,2m_1 xS1.

In the Mayer-Vietoris sequence of (?, 0) and iW, 8X), we can show that

h*HmiX, dX) —=> 77m(^, 8X)

is an isomorphism and

0 —» 772m(3?) —* H2miW, dX) -i> H2miX, 8X) —^0

is exact. Note that mâ2. Hence there exists an element £0 e H2m(W, dX) such that

h*iio) = l
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Let {xx,..., xr} be a basis for Hm(%, 8X; Q). Then {xj,..., xr} is a basis for

Hm(W, 8X; Q), where jc,=/r*(xf) for i=l,...,r, and

-ßl(*i, */)   =  <X¡ U Xy, £0>,

B2(Xi, Xj) = <X; UÎ^ + ïjU Í*X¡, £0>-

As before,/* : Hm( W, 8X) -> Hm( W', 8X') and/* : H2m( rV',8%')^ H2m( W, 8%)

are isomorphisms and f*(e') = e. Since the diagram

H2m(W',8Ï')  -4^ H2m(W,8X)

H2m(X',8X') -§- H2m.x(8X')  -è-* H^-xidX) J^-   H2n(X,8X)

is commutative, Vo=f* 1(£o) ̂  H2n(rV', 8X') satisfies «*(£ó) = £'.

{f*(xi)> ■ • •>/*(■*>)} is a basis for Hm(W', 8X'; Q) and {xi,..., x,} is a basis for

#%?', ai"; g), where *í=A'*_1(/*(*)) for i= 1,..., r. Hence

*i(*i, x,) = </*(x() u/*(x,), ft>

= <x¡ U x,-, £0> = -S^Xj, xy).

Likewise we have Ä2(xt', Xy) = £2(x¡, x,). Therefore we have shown that <j2(L') = o2(L)

and, if m is even, (j1(L') = a1(L). This completes the proof of Theorem 1.2.
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