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BOREL MEASURABLE MAPPINGS

FOR NONSEPARABLE METRIC SPACES

BY

R. W. HANSELLP)

Abstract. The main object of this paper is the extension of part of the basic theory

of Borel measurable mappings, from the "classical" separable metric case, to general

metric spaces. Although certain results of the standard theory are known to fail in the

absence of separability, we show that they continue to hold for the class of "o-

discrete" mappings. This class is shown to be quite extensive, containing the con-

tinuous mappings, all mappings with a separable range, and any Borel measurable

mappings whose domain is a Borel subset of a complete metric space. The last result

is a consequence of our Basic Theorem which gives a topological characterization of

those collections which are the inverse image of an open discrete collection under a

Borel measurable mapping. Such collections are shown to possess a strong type of

»-discrete refinement.

The properties of »-discrete mappings together with the known properties of

"locally Borel" sets allow us to extend, to general metric spaces, well-known tech-

niques used for separable spaces. The basic properties of "complex" and "product"

mappings, well known for separable spaces, are proved for general metric spaces

for the class of a-discrete mappings. A consequence of these is a strengthening of

the basic theorem of the structure theory of nonseparable Borel sets due to A. H.

Stone. Finally, the classical continuity properties of Borel measurable mappings are

extended, and, in particular, a generalization of the famous theorem of Baire on the

points of discontinuity of a mapping of class 1 is obtained.

Introduction. In this paper we are primarily concerned with extending part of

the "classical" (separable metric) theory of Borel measurable mappings to general

metric spaces. Some work of this nature has already been done—-notably the results

of Montgomery in [10], the related work of Kuratowski in [7], and the work of

Stone in [13]. It has long been suspected (and in some cases known, e.g. [13, p. 29]

and [6, p. 488]) that certain basic results of the standard theory will not extend to

nonseparable spaces, at least without imposing some further conditions upon the

mappings (or perhaps the spaces themselves). Here we consider mappings/: X-> Y

which are "a-discrete" in the sense that there exists a <r-discrete collection 0i of

subsets of X such that to each open K<= Y there corresponds a subcollection 3§v of
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SS such that f~1(V) = \J 38v. We call J1 a o-discrete base for/ Note that all con-

tinuous mappings (with a metrizable range or domain) and all mappings with a

separable range are a-discrete. (See §3.2 for further examples, and characterizations

of those spaces X and Y for which every mapping /: X -> Y is a-discrete.)

The properties of a-discrete mappings allow us to extend, to general metric

spaces, well-known methods used for separable spaces. Thus we show that, to a

large extent, a-discrete bases (for mappings) can replace countable bases in the

classical arguments. This in turn is largely a consequence of the properties of

"locally Borel" sets (see e.g. [10] and §0.4 of this paper). Our principal result

regarding a-discrete mappings, indicating their general nature, states that every

Borel measurable (in fact, every analytic) mapping defined on an absolutely analytic

domain is a-discrete (Theorem 3, §3.2).

In more detail, the paper proceeds as follows. §0 deals mainly with preliminaries

and background material. In §1 we introduce and study the properties of a "a-

discretely decomposable" collection of sets—a collection {Ad \ de D}of subsets ofa

fixed space Xis said to be a-discretely decomposable (abbrev. a-d.d.) provided each

Ad = \J Adn («=1,2,...) such that, for fixed «, {Adn | de D} is discrete in X. In

particular, we show that the definition is independent of the containing space X

(§1.3). For separable spaces, a disjoint collection is a-d.d. iff it is countable. In

§2 we are mainly concerned with the study of disjoint collections of analytic sets

which are "completely additive-absolutely analytic" in the sense that the union of

every subcollection is absolutely analytic. Such collections arise naturally in the

study of Borel measurable mappings (see §2.1). Fundamental to what follows, we

prove here our Basic Theorem (Theorem 2, §2.7): A disjoint collection of analytic

sets in a complete metric space X is completely additive-analytic in X if and only

if it is a-d.d. This theorem is then used in §3 to prove (Theorem 3, §3.2) that every

analytic mapping (respectively, Borel measurable mapping of class a (<cu1))

defined on an absolutely analytic space is a-discrete and has a a-discrete base of

analytic sets (resp. Borel measurable sets of class a). The basic properties of

"complex" and "product" mappings (§3.5), well known for separable spaces,

are then proven for general metric spaces for the class of a-discrete mappings. As an

application of these results, we obtain a sharpening (Theorem 8) of the "basic

theorem" for the structure theory of nonseparable Borel sets due to A. H. Stone

(see §3.6). The paper concludes (§3.7) with a generalization (Theorem 10) to non-

separable spaces ofa famous theorem of R. Baire on the points of discontinuity ofa

Borel measurable mapping of the first class [4, p. 289].

0. Preliminaries. For the convenience of the reader we collect here some of

the more basic definitions, properties, and notational practices to be used in the

sequel. Our terminology regarding Borel sets follows that of Kuratowski [6]; for

analytic sets we follow Sierpiñski [12]. The basic reference for general topology

and axiomatic set theory is Kelley [5]. Throughout this paper, all spaces considered
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are assumed to be metrisable. We use the axiom of choice without specific mention,

but not the continuum hypothesis.

0.1 Analytic sets. Let Jbe a space and suppose that to each finite sequence

(«!,..., np) of natural numbers there corresponds a closed subset Fni.- of X.

Then the set

^ = un Fni...np,
wp) p=i

where the union is over all sequences (np) = («i, «2,...) of natural numbers, is called

an analytic ( = Suslin [4, p. 203], =H0-analytic [13, p. 34]) set in X.

Analytic sets can be "regularized" in the sense of the following lemma (this

result is essentially known, e.g. cf. [4, p. 205]).

Lemma 1. To each analytic set A in X we can associate a family {Anv„np} of

analytic sets in X indexed by the finite sequences of natural numbers such that

(1) A = A, U^ü-,

(2) Aní,,,np = Ani^np, U /lni..,n¡)2 u- • -,

(3) A = \J(Up) n?-i A~ni.,.np (closure in X).

Proof. By hypothesis, we have

^=Ufl   ̂ i...n',
(n'q) Q=l

for suitable closed subsets FBi...nj of X. We now define /íni...„p to be the union of all

the sets (~)q=, T7^...^ with n'r=nr for r=l,.. .,p. Then properties (1) and (2) are

easily seen to hold (cf. [4, p. 205]). To prove (3), we note first that (1) and (2) together

imply that y4<=[J(n¡¡) P)™=1 Ani„ - , and hence, all the more so, is A contained in the

right side of (3). On the other hand, if (n,,..., np,...) is a given sequence of

natural numbers, then, for each p, we have

À c  F
-"ni.-.np        L ni-..np»

as follows easily from the definition of the sets Ani_n and the fact that the sets

T^i...np are closed in X. Consequently, C\Äni...np (/> = !> 2,...) is contained in

O ^ni...n ip— 1» 2,...), from which it follows that the right side of (3) is contained

in A. Thus equality in (3) must hold, and this completes the proof of the lemma.

0.2 Borel sets. The open (closed) subsets of a space X are said to be of additive

(multiplicative) class 0 in X. If a is a countable ordinal > 0, a subset of X is said to

be of additive (multiplicative) class a in X if it is the union (intersection) of a

countable family of subsets of classes <ain J. The family of all sets of classes

< co, ( = first uncountable ordinal) in A1 is the family of Borel subsets of X. Further,

a subset of X which is of both additive and multiplicative class a is said to be of

ambiguous class a (in X). (Cf. [6, pp. 344-348].)

0.3 Sets with the Baire property. A subset 77 of a metric space X is said to have
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the Baire property in X if B = (G~P) u R where G is open and F, R are of the first

category in X (cf. [6, pp. 87-92]).

0.4 General properties of analytic, Borel, and Baire property sets. The following

properties are well known.

(0) For a fixed metric space X, Borel in X implies analytic in X implies the Baire

property in X. (See e.g. [12, p. 213] and [6, p. 482].)

(1) If F<= Fc: x, E is analytic (Borel of additive [multiplicative] class a) in Y if

and only if it is of the form Y n M where M has the corresponding property in X.

(Cf. [13, p. 9].)
(2) If £c x, and Fis homeomorphic to a set which is analytic (Borel of additive

class a> 1 [multiplicative class a^ 1]) in some complete metric space, then E has

the same property in X. (See [6, p. 432] and [13, p. 36].)

Sets F with this property are said to be absolutely analytic (absolutely Borel, etc.).

From (1) above we see that an analytic (Borel) subset of an absolutely analytic

(absolutely Borel) set is itself absolutely analytic (absolutely Borel).

(3) Countable unions (resp. intersections) of analytic (analytic) sets, additive

(multiplicative) class a sets, and sets having the Baire property (Baire property)

have the same property. (Cf. [13, p. 34] and [6, pp. 88, 344].)

(4) If F<= X is locally analytic(2) (Borel of additive class a [multiplicative class

a >0] has the Baire property) in X, then E has the corresponding (global) property

in X. (See [13, p. 35], [10], and [6, p. 361].)

(5) The union ofa discrete (see §1.1 for the definition) collection of analytic sets

(Borel sets of some fixed additive or multiplicative class ^0, sets having the Baire

property) in X has itself this property.

This follows immediately from (4) and a well-known [5, p. 126] property of

discrete families of closed sets.

(6) A separable metric space has at most 2No analytic subsets. (See e.g. [13,

Theorem 23 (* = »<,)]•)

(7) If ßc X is a set of ambiguous class a > X, then there exists a sequence of sets

Bn of ambiguous classes < a in X such that

B= Ü (7?„n2?n + 1n...)= fl (Au2?n + 1u...).
n=l n=l

In addition, if a = X+1, where À is a limit ordinal, the 2?n's can be taken to be of

class < A. (See [6, pp. 355, 357].)

0.5 Analytic and Borel measurable mappings, and mappings with the Baire

property. A mapping/: X-> Y is analytic (resp. Borel measurable of class a, has the

Baire property) if for each open set Fc F,/_1(F) is analytic (resp. Borel measur-

able of additive class a, has the Baire properly) in X. We note that, by 0.4(1), for

(2) If P is a property of subsets of a topological space X, then E<^ X is locally P if each x

in E has a neighborhood U in X such that U n E has property P.
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each of these properties,/: Z-> 7 has the property if and only iff: X ->f(X) has

it, and also that each of the properties is preserved by restriction. If/is Borel

measurable of class a, we sometimes say more briefly that/is "of class a." Notice

that the mappings of class 0 are precisely the continuous mappings.

A mapping f:X-+ Y is said to be a generalized homeomorphism of class (a, ß)

if/is 1-1,/is of class a, and/-1 is of class ß. A generalized homeomorphism of

class (0, 0) is a homeomorphism in the usual sense.

The following properties are well known.

(8) If/: X-> F is of class a and 77c Y is a set of class ß, then the set fi~\B) is

of class a+ß (and is multiplicative or additive according to the class of 77) [6, p.

376, Theorem 1].

(9) If /: X^- Y is of class a and g: Y->Z is of class ß, then the composite

mapping g °/is of class a+ß [6, p. 376, Theorem 2].

0.6 Baire space. B(k) is defined [13, p. 5] to be the product space Yl Tn

(« = 1, 2,...), where each Tn is a discrete space of cardinal k. B(k) can be completely

metrised by the metric p for which p(s, t) = l/n if s, = t,,..., ín_1 = ín_1, sn^tn

(s, t e B(k)). We denote by S(t, «) the basic neighborhood of t consisting of all

points * such that s, = t,,..., sn = tn.

Theorem (Stone [13, p. 6]). If X is a metrisable, 0-dimensional absolute G6 with

a dense set of cardinal k, and if every nonempty open subset of X contains a discrete

subset of cardinal k, then X is homeomorphic to B(k) and conversely.

An immediate corollary of this theorem is

(10) The discrete union of ^k copies of B(k) is homeomorphic to B(k).

(By the "discrete union" of a family of topological spaces {Xt} we mean the dis-

joint union X topologized so that U<=- X is open iff the intersection of U with each

Xt is open in Xt for every /.)

1. o--discrete decompositions. For some time now the notion of discreteness,

as a property of sets or families of sets, together with its derivatives (o-discreteness,

etc.) have been among the most fundamental concepts used by topologists in

classifying and studying topological spaces. It has been especially adaptable for

describing a wide range of topological phenomena common to those spaces which

we call metrisable (see e.g. [2] and [14]). Here we introduce and study another

derivative of this basic notion, namely that of a "a-discrete decomposition" (see

§1.2), which we believe has not previously been investigated. That this concept too

is of fundamental character will become evident in later sections as it applies to

the general theory of Borel measurable mappings.

1.1 Discrete collections of sets. We recall that a collection {Ad | d e D} of subsets

of a (metric) space X is said to be relatively discrete if each point of (J Ad(de D)

has a neighborhood which meets exactly one member of the collection ; and that
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this is equivalent to the existence of open sets Ud in X such that Ad<^Ud and

Ad, n Ud= 0 for d'^d (d, d' e D). We say that the collection {Ad \de D} is

discrete in X if each point of X has a neighborhood which meets at most one

member of the collection; this is equivalent to saying that {Ad \ de D} is relatively

discrete and (Ju ^<¡ = C1 (Ud ¿a), where the closures are taken in X. Finally, we

say that {Ad | d e D} is metrically discrete (with respect to some metric p on X) if

for some e>0 we have p(Ad, Ad<)^E for each pair of distinct elements d, d' in D;

and in this case we say that the collection is e-discrete.

Remark. One easily sees that metrically discrete implies discrete and discrete

implies relatively discrete. The reverse implications do not hold, even in the case

when the members consist of just one point. For example, with the usual metric

for the real numbers R, the collection {{1/n} | « = 1, 2,...} is relatively discrete,

but not discrete in R; and

{{«}|«= I,2,...}u{{«+1/«}|«= 1,2,...}

is discrete in R, but not metrically discrete.

1.2 o-discrete decomposition. For a given collection {Ad \ de D} of subsets ofa

metric space X we consider the following three properties :

(1) Each Ad = (J {Adn \ n= 1, 2,...} (de D) where {Adn \ de D} is relatively

discrete, « = 1,2,....

(2) Each Ad = \J{Bdn | «= 1, 2,...} (de D) where {Bdn \ de D} is discrete in X,

« = 1,2, —

(3) Each Ad = \J{Cdn | « = 1, 2,...} (deD) where {Cdn \deD} is metrically

discrete, n=X, 2.

Each of these properties could reasonably be used to define what might be called

a "a-discrete decomposition" for {Ad \ de D}. Fortunately, however, it does not

matter which we use in view of the following lemma.

Lemma 2. Properties (1), (2), and (3) above are all equivalent.

Proof. We have already observed that (3) implies (2) and that (2) implies (1)

trivially; hence we need only prove that (1) implies (3).

Suppose {Ad | de D} satisfies (1). Then for each Adn we can define sets

Cdnm = {xe Adn | p(x, Ad-n) = l/«7 for all d' ¿ d},

m = 1, 2,_Since each x in Adn is the center of some ball which meets only Adn,

it follows that x belongs to some Cdnm; i.e., we have Adn = (J {Cdnm \ m= X, 2,...}.

Moreover, since p(x, Ad-n)^l/m for each x in Cdnm (d'^d) and C^n^A^n, it

is clear that the collection {Cdnm\ de D} is l/«7-discrete for each « = 1,2.

Thus, we need only write the double sequence («, m) as a simple one to satisfy

property (3).

1.3 Remark. Property (1) depends only on the collection {Ad \ de D} itself and

is a topological invariant (in the sense that if h is an embedding of (J {Ad | d e D},
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then the collection {h(Ad) \de D} also has this property). Thus, as a corollary of

Lemma 2, a collection which has these properties for any one containing space X

has them for all X. Such a collection will be said to have a a-discrete decomposition

or to be o-discretely decomposable; both abbreviated a-d.d. (Compare the comments

in [14, §2.1].)

1.4 Some lemmas on o-discrete decompositions. If a given collection {Ad \ de D}

is a-d.d., clearly so is every collection of the form {Bd \ de D} where Bd^Ad for

each d in D.

Lemma 3. Let {Ad | de D} be a collection of subsets of a metric space X. If there

exists a o-discrete cover 0¡ ofi\J {Ad \ de D} by subsets 77 of X such that each of

the collections {Ad n 77 | de D} is o-discretely decomposable, then {Ad\ de D} is

o-discretely decomposable.

Proof. In view of Remark 1.3, there is no loss in generality in assuming that

^=U{^d I de D}. Thus, by hypothesis, 3S=\J{Bim \ te Tm} («2=1, 2,...), where

the subcollections obtained by fixing m are discrete in X. Furthermore, for fixed

m and t in Tm, each

AdnBtm = (J{Adtmn\n= 1,2,...}       (deD)

where the subcollections obtained by fixing « are discrete in X. Put Admn

— U {¿dtmn | t e Tm} and observe that we have the following chain of equalities:

U U ¿amn =  U U   U   ¿atmn  =  U   U   U Àdtmn =  (J   U   Ad O Btm
m     n m     n   teTm m   teTm   n m   teTm

= Adnl{J\J Btm) = Adn({J<%) = Ad.
\ m   teTm I

Thus, if for fixed m and « we can show that the collection {Admn \ de D} is discrete

in X, then it will follow that {Ad \ de D} is a-d.d.

Fixing «j and w, for a given x in X, we can find a neighborhood of x, U say, such

that U meets at most one of the sets 77im (t e Tm). If U meets no 77(m, then clearly

U meets no Admn. Thus suppose U meets some 77(m, say 77¡<m. By the above remarks,

there exists a neighborhood V of x such that V meets at most one AdVmn, and,

accordingly, U C\ V is a neighborhood of x which meets at most one of the sets

Admn. This proves that the sets Admn (for fixed m and «) form a discrete collection,

and completes the proof of the lemma.

Definition. We say that {Ad\ de D} is locally a-d.d. if each point of (J Ad has

a neighborhood U such that {U n Ad \ d e D} is a-d.d.

Corollary 1. A locally a-d.d. collection in a metric space X is a-d.d.

Proof. If {Ad \ de D} is such a collection, then we can find an open cover {t/s}

of (J Ad such that each {t/s n Ad \ de D) is a-d.d. By the paracompactness of X,

there exists a a-discrete open refinement âS of {Í/J. Moreover, since each Bin 01 is

c some Us, the collection {77 n Ad | de D} is a-d.d. Lemma 3 now applies and says

that {Ad | d e D} is a-d.d.
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Lemma 4. If {Ad\ de D} is a a-d.d. collection of subsets of a metric space X,

then there exist metrically discrete open collections {Udn \ de D} (n=X,2,...) such

that ^dcLC=i Vin for each d in D.

Proof. Assuming the hypothesis, there exists by Lemma 2 (§1.2) metrically

discrete collections {Cdn | de D} («= 1, 2,...) such that Ad = \J Cdn (« = 1,2,...).

Suppose p(Cdn, Cd-n) = En > 0 for dj*d' (n=l, 2,...). Let

Udn = {x | p(x, Cdn) < en/3}.

Then {Udn \ d e D} is easily seen to be e„/3-discrete. Moreover, we have Ad

= Un Cdnc(Jn udn; completing the proof.

Lemma 5. Iff is a continuous map ofa metric space X onto a metric space Y and

{Ad | cTe D} is a a-d.d. collection of subsets of Y, then {f~1(Ad) \ de D} is a-d.d.

Proof. Suppose Ad = \J {Adn | «= 1, 2,...} where for fixed « the sets Adn form a

discrete collection in Y. Since f~1(Ad) = \Jnf~1(Adn), it suffices to show that, for

fixed n, the sets f~1(Adn) form a discrete collection in X. But, given x in X, there

exists an open set F containing/(x) and meeting at most one Adn; hence, by con-

tinuity of//_1(F) is an open set in X, contains x, and meets at most one f~1(Adn)

as required.

Lemma 6. A collection {Ad \ de D} with \\Ad\\ = 1 for all d in D is a-d.d. if and

only if (Jd Ad is a-discrete.

Proof. Suppose Ad = (J {Adn [ «= 1, 2,...}, where for fixed n the sets Adn form

a discrete collection in {Jd Ad. Then \\Adn\\ = 1 for each d in D and hence (Jd Adn

is a discrete subset of (J Ad. Since (Jd Ad = (Jn (Jd Adn, it follows that (Jd ¿a is °-

discrete.

Conversely, if (JdAd = \Jn Bn where each Bn is a discrete set, then Ad

= (J {Ad n Bn | « = 1, 2,...} and for fixed « the sets Ad n Bn clearly form a discrete

collection. Thus the original collection is a-d.d.

Lemma 7. If{Ad \de D} is a a-d.d. collection of sets which are analytic (resp. of

additive class a) in some fixed metric space X, then [J {Ad \ d e D'} is analytic (of

additive class a) in X for all 2F<= D.

Proof. We will prove the lemma for analytic sets ; the proof of the other case is

entirely analogous.

By Lemma 4, there exists for each « = 1,2,... an open discrete collection

{Udn | de D} such that Ad<^\Jn Udn for each d in D. Now given D'^D, the sets

Udn (^ Ad for d in D' form a discrete collection of analytic sets in X, and so its

union is analytic in A" by 0.4(5). Hence (J {Ad \ de D'} = \Jn (J {Udn nAd\deD'}

is also analytic in X by 0.4(3), proving the lemma.
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Lemma 8. If {Ad\ de D} is non-a-discretely decomposable, then there exists a

non-a-discrete subset Fof(J Ad at each point of which the collection fails to be locally

a-d.d.

Proof. For let G be the set of all points in \J Ad at which the collection is a-d.d.

Then, by Corollary 1, it follows that {Ad n G | de D} is a-d.d. Now let F=(J Ad

~G. Then, since Fand G together form a finite and therefore a-discrete cover for

\J Ad, it follows from Lemma 3 that {Fn Ad | d e D} is not a-d.d., and hence, in

particular that F is not a-discrete (see the proof of Lemma 6).

We will need in particular the following corollary.

Corollary 2. If {Ad\ de Z)¡} (i=0, 1) are two non-a-d.d. collections of subsets

of a metric space X, then there exist, for each natural number n, open sets V¡ in X

such that the diameter of V¡ is ^ 1/«, V0 n V, is empty, and {Ad n Vt \ de D¡} is

non-a-d.d., 2=0, 1.

Proof. Since countable sets are a-discrete, it follows that the set F of Lemma 8

is uncountable; in particular it contains more than one point and hence we can

choose distinct points xt in (J {Ad | de D¡} such that every neighborhood of x

meets the collection in a non-a-d.d. collection. Hence, if the distance between x0

and x, is denoted by s, then we may take V¡ to be the ball which is centered at x¡

and with radius min (1/«, s/3), and the above-mentioned properties are at once

verified.

2. The basic theorem.

2.1. If P denotes a topological property (that is, a class of topological spaces),

then a collection of subsets of a fixed space will be said to be "completely additive-

P" or a "completely additive collection of P sets" provided the union of every

subcollection, as a topological space, has property P. In this section we are con-

cerned mainly with the study of disjoint collections of analytic sets (contained in

some fixed metric space X) which are completely additive-absolutely analytic.

Such collections arise naturally in the study of Borel measurable and analytic

mappings: if X is complete and/: X^ Y is Borel measurable (or analytic), and

if {Vd | de D) is a disjoint collection of open subsets of Y, then {/_1(Fd) \de D}

is disjoint and completely additive-absolutely analytic. Our principal result con-

cerning these collections is Theorem 2 (§2.7) which says that they are always

a-discretely decomposable. This result provides the foundation upon which we base

our subsequent study of the properties of Borel measurable mappings with a non-

separable range. We begin by considering first some special cases.

For separable X we have the following theorem.

2.2 Theorem 1. On the continuum hypothesis, a disjoint collection of analytic

subsets of a separable metric space X is completely additive-analytic in X if and only

if it is countable.
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Proof. That a countable collection of analytic sets is completely additive-

analytic follows from 0.4(3).

Conversely, suppose we have a completely additive collection of analytic sets in a

separable metric space X, and suppose this collection is uncountable. Then, by

taking unions of all possible subcollections, X must have â2Ni analytic subsets;

and, on the continuum hypothesis, 2K'i=2c>c. But this contradicts 0.4(6); hence

the original collection must be countable, proving the theorem.

2.3 Remarks. We will see later (2.8, Corollary 7) that Theorem 1 continues to

hold without the continuum hypothesis, provided we assume X is absolutely

analytic. Since any discrete collection of analytic sets is completely additive-

analytic by 0.4(5), the above theorem is false in the absence of separability. Thus

countability does not serve to characterize these collections ; nor does discreteness

as trivial (two membered) examples show.

Let us consider another special case, namely those collections whose members

consist ofa single point. Further, let us assume that the union of every subcollection

is absolutely Borel. Evidently, this is equivalent to the study of absolute Borel sets

all of whose subsets are Borel. Such a study has been made by A. H. Stone (see

[14] for eight equivalent properties) and, in particular, he has shown that such a

set must be a-discrete. This latter property also characterizes the absolutely analytic

sets all of whose subsets are analytic (see §2.8, Corollary 4).

These considerations lead one to suspect that possibly a-discreteness (as a prop-

erty of collections of sets [5, p. 127]) is characteristic of disjoint completely additive

collections of absolutely analytic sets. That this property is sufficient for complete

additivity follows from 0.4(3) and 0.4(5). It is not, however, necessary, as the

following example shows.

2.4 Example. Consider the Baire space

7W = nrn («=1,2,...)

where each Tn is a copy of the set of all countable ordinals. For convenience of

notation let us write t(ß na) for the point of this space whose first « coordinates

are all equal to ß and whose remaining coordinates are all equal to a. Also, we will

denote by t(ß) that point which has all its coordinates equal to ß. We now define,

for each countable ordinal a, sets Aa={t(ßn a) | |S = a and « = 1,2,...}. It is

immediate that the sets Aa are pairwise disjoint. Also, since t(ß n a) -> t(ß) as

« -^ oo, it follows that t(ß) e A~a r\ Ae whenever a<ß. This last property implies

that the only discrete subcollections of the collection {Aa} are the ones with at

most one member. Since the entire collection is uncountable, it follows that it

cannot be a-discrete. However, the set A = (J Aa is a a-discrete set, hence every

subset is an absolute F„-set [14, Theorem 2]. To prove this, for each « let Dn

= {t(ßna) | a and ß are ordinals and jS^a}. For each x in 2?(N1), we clearly have

\\S(x, n+l) n Z>„|| =i 1. Hence Dn is discrete.  Moreover, A = (Jñ=i A,, proving
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that A is a-discrete(3). It follows that the sets Aa (a < to,) form a disjoint completely

additive collection of absolute F„-sets which is not a-discrete.

Remark. The sets Aa, in the above example, do however form a a-discretely

decomposable collection: for if A = \J Dn («=1, 2,...), where each Dn is discrete,

then one easily checks that {Aa n Dn \ a<to,, n—l, 2,.. .}is the required a-discrete

decomposition. We have already seen (Lemma 7, §1.4) that a a-d.d. collection of

analytic sets is completely additive (-analytic). We now shall prove that the converse

is true for completely additive-absolutely analytic collections.

2.5 The basic lemma. We require first a lemma.

Lemma 9. If {Ad \ de D} is a disjoint collection of analytic sets in a complete

metric space X which is non-a-discretely decomposable, then D can be partitioned

into two disjoint subsets D¡ such that {Ad \ de D¡} is non-a-discretely decomposable,

2 = 0, 1.

Proof. We define inductively a sequence of open sets Vp and positive integers

«p ip = 0, 1,2,...) subject to the following conditions:

(lp) 8iVp)Zl/ip+l),

(2P) VP^VP_, (where V_, = X),

(3p) {X...„p n Vp | de D} is non-a-d.d.

(Here 8(F) denotes the diameter of F<= X [with respect to some fixed metric on X],

and the meaning of A^...„„ is that given in Lemma 1 of §0.1 applied to the analytic

sets Ad.)

We may, of course, assume that 8(X)^l, so that, putting V0 = X, n0=0, and

A"=Ad, properties (10), (20), and (30) hold by hypothesis. Now assume that open

sets Vp and positive integers np have been defined so that (lp), (2P), and (3P) are

satisfied, for some integer p^O. By the paracompactness of X, we can cover

U {^ni...np C\VP\ de D} by a a-discrete open collection of sets with diameters

^ l/(p + 2). By Lemma 3 (§1.4), one of these open sets, Ksay, must be such that the

collection {A^...np n Vp n V \ de D} is non-a-d.d. Accordingly, we set Vp+,

= Vp n V. Now, observe that the sets U {A^..^^ \ de D} (« = 1, 2,...) form a

countable and therefore a-discrete cover for (J {A^...^ <"> I'p+i | de D}. Thus,

again by Lemma 3, there exists a suffix np+1 such that the sets

v4ni...np ^   rp + 1) O   (J   Ani,..npnp + 1  = Ani.„np +1 H  Vp + ,,
d'eD

as d ranges over D, form a non-a-d.d. collection. Hence we have shown that

properties (lP + i)-(3p + 1) are satisfied for these choices of Vp+, and np+1. Thus

open sets Vp and positive integers np can be defined by induction for every p ä 0.

(3) This proof was supplied by the referee, and is simpler and much more direct than the

author's original proof.
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Now let Ip={deD\AÍ1...npnVp=¿0}, p=0,1,..., and put In = Ç\Ip

(p = 0, 1,...). Since the collection consisting of just the empty set has a trivial

a-discrete decomposition, it follows from (3P) that Tp# 0 for aXl p. We shall now

show that ||7«, I ̂  1. For suppose d0 and dx both belong to F». Then, for 7=0, 1,

the collection {An[...n n Vv \ p=0, 1,...} is a nested sequence of nonempty closed

subsets of X with diameters converging to zero. The space X being complete, the

intersection of this system of sets must consist ofa single point x¡ (7=0, 1). Since

both points belong to (~) Vp(p = 0, 1,...) and the diameters of the sets Vp converge

to zero by (lp), we must have x0 = x1. On the other hand,

x, e H {!&...„, | p = 0,1,...} c Aa¡   and   Ado n Adl = 0

whenever d0¥'d1. Hence we must have d0 = di, which proves that ||7a,|| á 1.

Now the sets (J {Ad \ deIP~IP + 1} (p = 0, 1,...) together with \J {Ad \ delx}

form a countable and therefore a-discrete cover for (J {Ad \ de D}. Hence, from

Lemma 3 (§1.4) and the fact that {Ad \ de Ix} is a-d.d. (since \I«>\ ̂  1). it follows

that for some q the collection of sets Ad as d ranges over Iq~Iq + 1 is non-a-d.d.

Since {Ad\ de Iq+1} is non-a-d.d. by (39+1), the lemma follows upon taking

DQ=Iq+1 and D1 = D~Iq + 1.

2.6 Remark. As a corollary to our method of proof we have: if \\Ad\\ = 1 for

all d in D and (J Ad(de D) is analytic in X, then (J {Ad \ de D¡} is analytic in X,

/=0, 1. This follows from the fact that

(J{Ad\deD0} = \J{Ad\deIq + 1}

= U{Ad\Adn Vq+1 * 0} = (U {Ad | de D}) n Vq+1

(which is clearly analytic in X); and, consequently, \J {Ad\ de D1} = (JdeD Ad

n iX~ Vq + 1) (and hence also analytic in X).

2.7 The basic theorem.

Theorem 2. A disjoint collection of analytic sets in a complete metric space X is

completely additive-analytic (in X) if and only if it is a-d.d.

Proof. In view of Lemma 7 (§1.4) we have only to prove the necessity. The proof

will be by contradiction, and we assume {Ad | de D} is a disjoint completely

additive-analytic collection of sets in X which is non-a-d.d. The proof now rests

upon the construction of a Cantor set C<= U {Ad \ de D} with the property that

||C n ^d|| ^ 1 for every de D.

We begin by partitioning D into two disjoint subsets Dim such that

{Ad | de Aci)} is non-a-d.d., i(l)=0, 1. This we can do by the preceding lemma.

By Corollary 2 of Lemma 8 (§1.4), we can find open sets Fi(1) such that

{Ad C\ Fi(1) | de DH1)} is non-a-discretely decomposable, S(Fi(1))^ 1, and F0 n Fi

= 0. Now consider

A'^=U{AdnVia)\deDia)}.
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As follows easily from the fact that the Ads are completely additive-analytic,

the set Aim is analytic in X. Hence, applying Lemma 3 (§1.4) to the countable

cover {^'i(1), A2a\ ...} of Aia) (in the notation of Lemma 1, §0.1), we deduce the

existence of a suffix nÇM such that

{AdnA'^\deDia)}

is non-a-d.d., disjoint, and completely additive-analytic in X. We now put A^iy

=Ad n A'$l (c via)) for each de Dm.

Now assume that for each natural number p^q and for each /»-tuple /(/?)

=ih,..., ip) where 2r = 0 or 1, r=l,.. .,p (i.e., for each "dyadic" /»-tuple), we

have defined open sets Vilp)<= X, sets Diip)<=D, sets^i<p) and A^ {de Dilp)) analytic

in X, and natural numbers «i(!,),..., «p<p) subject to the following:

(4p) 8iVm)úl/p,
(5p) Fj(p_1)>0 n Ki(p_i)ji= 0 and A(p-d,o n Au.-i),i= 0»

(6p) ̂ P)=U {^(p-1) n Kw | de Di(p)}¿ 0,

(7p) Ar=Ar~v n ASj^p...^ n ¿if^»...»^ n-n^,
(8p) {^'i^ | J e A(p)} 's non-a-d.d., disjoint, and completely additive-analytic

in X

(Here we make the conventions that i(p-l),j=(h, ■.., ip-,,j), Vim ¡= V,, and

AT=Ad.)
We have already seen that the sets Vim, Au>> Ai(1\ and A1^ and the numbers

n'i1' defined above satisfy properties (4i)-(8i). Now let i(q) be a given dyadic ^-tuple.

By (8„) and Lemma 9 (§2.5), we can partition Di{q) into two disjoint subsets A<9 + i>

(iiq+ l) = iiq), 0 and i(q), 1) such that {A^Q) \ de A«, + i>} is non-a-d.d. By Corollary

2 of Lemma 8 (§1.4), we can then find open sets Vi(q+1) with S(Kj(ï+1))^ l/(q+l)

such that

is non-a-d.d. and Vm¡0 n Vm¡, = 0. It follows that

#«+»=UW(')nKi(,tl)|ifEA(,+1)}

is nonempty and, by (8„), analytic in X. Now consider the collection of sets

Ai(q+1)[n,- ■ -nq+,] obtained from the formula

4$>„!p>...n<<*%+1 n A'$>n,é*..nrjinq rv • -n 4$,n2 n 4« + 1>

where «r can take on all positive integral values, r=l,.. .,q + l. By property (7,)

and Lemma 1 (§0.1), these sets constitute a countable and hence a-discrete cover

of Aiit+1\ Consequently, by Lemma 3 (§1.4), there exist suffixes «i1(<1+1),..., »Jit1'

such that

{A^ n ¿««♦»fa«*».. .„««+!)] I ö?e A(,+i)}
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is non-a-d.d. Also, clearly, this collection is disjoint and, by (8S), completely

additive-analytic in X. Moreover, if we set, for each de Di(q+1),

^'i8+1) = AT n ¿««+»[4«+».. -««n1'],

then it is not hard to see from the definitions that Fi(g+1), Di(q+lh AH,l+1\ and

Aid[Q+1'> and «i(a+1),..., m««V> satisfy all of the properties (4s+1)-(8,+1). Hence

we can define by induction the above described sets and natural numbers for every

p and for every p-tuple i(p), such that (4P)-(8P) all hold (where p= 1, 2,... and the

"coordinates" of i(p) assume only the values 0 and 1).

We are now in a position to construct the desired Cantor set. For each dyadic

sequence i=(h,..., ip,...) (i.e., sequence of O's and l's), with initial /^-section

l(p) = ih, - ■ -, ip), note that we have defined a sequence

j«d => J«2) ^...za jm o ...

of closed, nonempty (by (6P)) subsets of X with 8iAi(p))^X/p. Also, if j denotes

another dyadic sequence, then, by (5P) and (6„), Ai(p) n Ai(p) = 0 whenever i(p)

¥=j(p)- Accordingly, by a well-known theorem [4, p. 154] the subspace

G=Ui C\p = i Äilv) °f % (where the union is over all dyadic sequences) is homeo-

morphic to the Cantor discontinuum. It remains to show that C<=\J {Ad \ de D}

and that ||C n Ad|| = 1 for all de D. To prove the first relation, let i be a given

dyadic sequence and note that (6p+a) and (7p_1+9) imply that

p=l v=l

and the latter set is <=^««> by Lemma 1 of §0.1. Since clearly Am<=(J{Ad \de D],

the first relation is proved. To prove that C meets each Ad in at most one point,

we note first that the points of C are precisely the intersections (\ Anp)

(p=X,2,...). Now we have just shown that f)"=i A~™^Am for q= 1, 2,..., and,

by (6q), we have A^^iJ {Ad \ de Diiq)}. But, if i and j denote different dyadic

sequences, then for some c7 we have i(q) ¥=j(q), and hence Dm and Dm are disjoint

by (59); consequently, since the sets Ad are pairwise disjoint, the points of C

corresponding to the sequences i and j respectively must belong to different ^4d's.

It follows that ||C n Ad\\ = 1 for all d in D.

This leads to a contradiction: for then every subset S of C is of the form

G n ((J {Ad | de Ds}), for some DS^D; and such sets, as the intersection of two

analytic sets in X, are analytic in X and hence in C (0.4(1)). But this implies that C

has 2C analytic subsets contradicting 0.4(6). The theorem is thus proved.

Remark. Theorem 2 will usually be applied when the (metric) space X is ab-

solutely analytic (or absolutely Borel) rather than complete. This is possible since

then any collection of subsets of X which is completely additive-analytic in X is

also completely additive-analytic in X (the completion of X).
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2.8 Corollaries to the basic theorem. The assumption of complete additivity

in the hypothesis of Theorem 2 is used only to ensure that the sets Ai(p) of (6P) are

analytic in X. When \\Ad\\ = 1 for all d in D and 1J {Ad | de D} is analytic in X,

it is a consequence of Remark 2.6 and our method of proof that the sets AUp) are

analytic without assuming complete additivity. Thus we have the following theorems

of A. H. Stone [14] and A. G. El'kin [3] as consequences of our method of proof.

Corollary 3 [Stone (resp. El'kin)]. For each absolute Borel (resp. absolutely

analytic) space X, one and only one of the following alternatives is true : either (i) X is

a-discrete, or (ii) X contains a subset homeomorphic to the Cantor set C(X0).

Corollary 4 (Stone [14]). Every subset of an arbitrary metric space X is an

absolute Borel (or absolutely analytic) set if and only if X is a-discrete.

Proof. This is a direct consequence of the theorem and Lemma 6 (§1.4) in the

case when each Ad is a single point.

Corollary 5. If a disjoint collection of absolute Borel sets of additive class a>0

is completely additive-absolutely analytic, then it is completely additive-absolutely

Borel of additive class a.

Proof. This corollary is an immediate consequence of the theorem and Lemma 7

(§1-4).

Corollary 6. If X is absolutely analytic and of weight ^ k, then every disjoint

completely additive-analytic collection of subsets of X has cardinality ^k (k an

infinite cardinal).

Proof. By the theorem, such a collection has a a-d.d. Choose a point from each

nonempty member of this collection, and note that Lemma 6 (§1.4) implies that

such a choice set is a-discrete. Since X has weight Sk, every a-discrete subset has

cardinality S k. Hence the original collection can have at most k members.

Corollary 1. If X is separable and absolutely analytic, then a disjoint collection

of analytic subsets of X is completely additive-analytic in X if and only if it is

countable.

Proof. This is just Corollary 6 with k = X0 and 0.4(3) taken together.

3. Borel measurable mappings for nonseparable metric spaces.

3.1 a-discrete mappings. A consideration of Theorem 2 (§2.7) and its applications

to the theory of Borel measurable mappings leads us to make the following

definitions. A collection âS of subsets of X is said to be a base for the mapping

/: X-+ F if to each open set F<= Y there corresponds «vcj with /- \ V) = (J 3SV.

If, in addition, J1 is a a-discrete collection, then we call 01 a a-discrete base and we

say that the mapping/: X-> Y is a-discrete. It is easily verified that/: X^> Fis
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a-discrete if and only if/: Ar->/(A') is a-discrete, and that the restriction of a a-

discrete mapping is again a-discrete. We note that one could also call a mapping

"a-discretely decomposable" if it had a base which was a-d.d. However, this leads

to nothing new, since such mappings are also a-discrete; and, conversely, a-discrete

mappings are obviously "a-d.d." The former property follows from the fact that a

a-discrete decomposition of the base yields directly a a-discrete base.

3.2 Examples of a-discrete mappings. (1) If Fis separable, then every f: X^-Y

is a-discrete. For we need only take a§={f~1iR1),f'1iR.¿),...} where Ru R2,...

is a countable open base for Y. Conversely, suppose Y has the property that for

every X and /: X -> Y, f is a-discrete. Then Y must be separable. Otherwise, we

can construct a mapping /: X ->■ Y such that X is separable, fiX) is discrete, and

1/(^)1 =^i. Accordingly, iff is a-discrete, any choice set for the collection of sets

/" 1(x) (x efiX)) is an uncountable a-discrete set in the separable space X; a

contradiction.

(2) If X is a a-discrete set, then every f: X -> Fis a-discrete. For then we may

take &={{x}\ xe X}. Conversely, a necessary condition for every mapping

defined on a fixed metric space X to be a-discrete is that X be a-discrete. For if 88

denotes a a-discrete base for a one-to-one correspondence between X and the dis-

crete space of cardinality \X\, then it follows from the property ofa base that each

{x} must belong to 3S (x e X); that is, X must be a-discrete.

(3) Every continuous /: X -> Y, with X or Y metrisable, is a-discrete. For we

may take (%={f~1iV) \ V e ir} (or âS=ir) where "f is any a-discrete base of open

sets for Y (respectively, for X). That J1 is then a-discrete (a base for/) follows easily

from the continuity off. (Cf. proof of Lemma 5 (§1.4).)

(4) The composite of two a-discrete mappings is a-discrete.

For let/: X-^ Y and g: Y-+Z be a-discrete. Let &=(Jn&n be a a-discrete

base for g and <# = \Jm ^m a a-discrete base for/ where the collections 38n and ^m

are discrete. By the collectionwise normality of Y (see [2]), we can find disjoint

open collections {UB\ Be á?n} («=1,2,...) such that UB=>B. Let

Vnn = {C nf-^B) \CeVm,Be 3dn, and C c f-\UB)}.

Then #mB is discrete, since each nonvoid C<=at most one f~1(UB) for B in 38n. We

claim that Um,„ «"»» is a base for g of. For we ha\ef-1(B)cf~1(UB) = (Jm (J V'm for

some rn^m, and hence f~\B) = (Jm U {G n/"1^) | CeTm, C^f^iU^}. But

the sets/-x(2i) (2? e 38) are clearly a base for g °fi and hence so is (Jm.n ̂  Since

this collection is countable, the proof of (4) is complete.

The fundamental result upon which the significance of this paper is based is the

following theorem.

Theorem 3. If X is absolutely analytic, then a necessary and sufficient condition

that a mapping f: X-^- Y be a-discrete and have a a-discrete base of sets which are

of additive class a iresp. analytic) in X is that f be of class a iresp. analytic). The

necessity is independent of the hypothesis on X.
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Proof. We will prove the analytic case ; the proof for the other case is completely

analogous.

The condition is necessary. For suppose/is a-discrete and has a base 0t = (J 0in

(«=1,2,...) where 0ln is a discrete collection of analytic sets in X. Given open

V<=- Y, by the definition of a base, there exists, for each «, 0l'n^0>n such that/_1(F)

= Un U @'n- By (3) and (5) of §0.4, it follows thatf'^V) is analytic in X, proving

that/is an analytic mapping.

The condition is sufficient. For suppose/: X-> Y is analytic. Let ir=\J Vn

(« = 1, 2,...) be an open base for Y, where each f"n is a discrete collection. We fix

n throughout the rest of the argument. It suffices to produce a a-discrete collection

0ln of analytic subsets of X such that/" 1( V) is the union of some subcollection of

0ln for each V belonging to "f^.

Since X is absolutely analytic,

fi-1('K)={f-1(V)\VeiQ

is a disjoint completely additive-analytic collection of sets in X (a completion of

X). Thus we may apply Theorem 2 (§2.7) to this collection. By Lemma 4 (§1.4),

there exist  open  discrete  collections  {UVm\V'eiQ  («2 = 1,2,...)  such  that

/-i(I/)c|Jm UVm for each Fin -Tn. But then,

^n-U{f-1iV)nUVm\Vern}
m

is a a-discrete collection of analytic subsets of X, and f~1(V) = (Jmf~1(V) n UVm

for each F in T^, as required. It follows that J = Un^n is a a-discrete base for/

having the desired properties. The theorem is thereby proved.

3.3. We now proceed to show that a substantial part of the basic theory of Borel

measurable mappings can be extended, from the "classical" separable metric case,

to general metric spaces for the class of a-discrete mappings. The properties of a-

discrete mappings allow us to extend, to general metric spaces, well-known methods

used for separable spaces. The fact that a-discrete bases (for mappings) can replace

countable bases in these arguments is largely a consequence of the properties of

"locally Borel" sets (cf. 0.4(4) and 0.4(5)). Of course, the importance of such

results is based upon Theorem 3 of the preceding section ; namely that a Borel

measurable mapping is a-discrete whenever it is defined on an absolutely analytic

set.

We begin with the following basic lemma.

3.4 Lemma 10. Iff: X'-*■ Y is a-discrete and of class a>0 (resp. is analytic, or

has the Baire property), then f has a a-discrete base of sets which are of ambiguous

class a (resp. are analytic, or have the Baire property) in X. Moreover, we can take

each discrete collection to be metrically discrete.

Proof. We will give the proof for mappings of class a ; the proofs for the other

properties are similar but easier. Let 01 = \Jm 3Sm be a a-discrete base for/ and let
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~f=(Jn "^~n be a a-discrete open base for Y, where SSm and "fn are discrete systems

for each «7 and « ( = 1,2,...). For each V in "V write V=(J FVp (p = \, 2,...)

where FVp is closed in Y. By hypothesis, f'1(FVp) is of multiplicative class a and

/_1(F) is of additive class a, and we have f'1(FVp)clf'1(V). Consequently, there

exist [6, p. 350] sets EVp of ambiguous class a such that/~1(F7p)cF„J)c:/-1(l/).

Accordingly, for each triple (m, n, p) of natural numbers, we define

@mnv = {BnEVp\Be®m,Ve rn, and B c f^V)}.

Since the sets B for B in SSm form a discrete collection, which fact follows easily

from the discreteness of âSm, and each nonempty B in 3§m is contained in at most one

f~1(V) for Fin "f~n, it follows that £¡8mnp is discrete in X. Thus it suffices to show that

U<m.n.p> ̂ mnp is a base for/

We will show that

f-\V) = (J{SnEVp\Be&, B^f-\V),p - 1,2,...}.

The inclusion => is evident from the fact that F7pc/-1(K) for all />. On the other

hand, f'1(V) = \J{B \Be@, B<=-f-\V)}, since ® is a base for / and /"X(F)

= U"=i/~1(TVp)cUp°=i Tivp by construction. Hence the inclusion <= follows and

equality must hold. Since ^" is an open base for Y, it follows that Ucm.n.p) &mnv

is a base for/ To obtain metrically discrete collections one uses the same technique

used in the proof of Lemma 2 (§1.2).

3.5 Complex and product mappings. Given mappings/: X-*- Y, g: X^-Z, we

can consider the "complex mappings" [6, p. 382] h: X-*- YxZ defined by the

equation h(x) = (f(x), g(x)).

Theorem 4. Suppose f is a-discrete. Then a necessary and sufficient condition for

the mapping « to be of class a is that the " coordinate" mappings f and g be of class a.

In particular, this equivalence holds iff is continuous or X is absolutely analytic.

Proof. That the condition is necessary is well known [6, p. 382] and easy to

prove ; one has only to note that the mappings / and g can be expressed as the

composite of « and a continuous projection.

The condition is sufficient. Let âS=(J 3ên (« = 1, 2,...) be a a-discrete base for/

By the preceding lemma, or by the continuity of/in the case a = 0, we may suppose

that each member of this base is of additive class a. in X. Let U= Us {Fs x Ws} be an

arbitrary open set in YxZ, where Fs and Ws are open in Y and Z respectively.

We need to show that «-1(<7) is of additive class a in X. Now we have that /i_1(G)

= yjsh-1(VsxWs) = (JJ-1(Vs)ng-1(Ws). Also, letting @n={BJteTn, we have

f~1(Vs) = Un U(er-(S) Bnt for suitable T£s)^Tn. It follows that

h~1(U) = UU   U   Bntng-\WS)
n      s    feTn(s)

= UU7in(n(     U     g-\Wt)\
n    ter„ With terete) /

n    t£Tn With fern's) /
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Since the sets 77n( n g'HUswithteTj.w Ws) with t e Tn, for fixed «, form a discrete

collection of sets of additive class a in X, their union is also of this class by 0.4(5).

Since a countable union of sets of additive class a is again of this class by 0.4(3), it

follows that h'1^) is of the desired class.

The particular cases follow from (3) and Theorem 3 of §3.2.

Corollary (Montgomery [10]). If fi.X^r Y is of class a, then Graph (/)

={(x, y) | y=f(x)} is of multiplicative class a in Xx Y.

Proof. Let h: Xx Y-+ Yx Y denote the complex mapping with coordinates

f° it, and 7T2, where n, and 7r2 denote the first and second projection, respectively,

of the product space Xx Y. Since tt2 is continuous and/° n, is of class a, it follows

from the preceding theorem that « is of class a. Letting d denote the metric on Y,

it follows that the composition do his of class a, since dis a continuous mapping

on Fxf, Consequently,

(doh)-1(0) = {(x,y)\d(f(x),y) = 0}

= {ix,y)\fix)=y}

is of multiplicative class a in Ix 7, which was to be shown.

Theorem 5. A necessary and sufficient condition for a mapping « from a metric

space X to a countable product space T~[ Yf (i= 1,2,...) to be a-discrete and of class

a is that for each i the mapping tit ° h be a-discrete and of class a, where w, denotes the

ith projection of Y~[ Yt.

In particular, if X is absolutely analytic and each ttí° h is of class a, then « is of

class a.

Proof. The condition is necessary. For this follows from the fact that w, o « is

a-discrete (by 3.2(4)) and of class a (by 0.5(9)).

The condition is sufficient. The case a = 0 reduces to the case a = 1 and a standard

fact about continuity and product spaces. We suppose that a>0. By Theorem 3

(§3.2), it suffices to produce a a-discrete base 0S for « whose members are of additive

class a in X. By hypothesis and Lemma 10 (§3.4), each of the mappings 7r¡ o h has a

a-discrete base 0¡t = {Bint \ t e 7^, «= 1, 2,...} of sets of additive class a in X, where

the sets 77nt for fixed « form a discrete collection. We consider for each 2 = 1,2,..,

and for each /-tuple (n,,..., «() of natural numbers all sets of the form

O 77niíin---n77n,ti

for it,,..., tt) e r¿ x • • • x Ti,, and denote the totality of such sets by á?Bl...„{.

Each set of the form (')is of additive class a in X[6, p. 346]. We take 0J=\J 0lni...n¡

(where the union is over all such /-tuples). Now each 0>ni,.,ni is discrete in X. For

given any x in X there exist neighborhoods UTnr (r=l,..., i) of x such that £/Br

meets at most one member of the collection 01^. Consequently, f/Bl n- ■ -r\ {/„,

is a neighborhood of x which meets at most one of the sets in á?Bl...B(. Since the set
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of all finite sequences of natural numbers is countable, it remains only to show that

SS is a base for «.

Now Yl Yi has a base of open sets of the form tt{ 1( Vx) n • • • n »," '( Ff) where Fr

is open in Yr, r=l,2,..., i. Hence it suffices to show that the inverse image of

these sets under «, which take the form

(") («i'hYKVJn ■■n(nohY1(Vi),

are expressible as the union of some subcollection of SS. By the definition of Sär, we

have, for r=l,..., i,

(77, o h)-\Vr) = (J {Brn,tr | U e Slt, nr = 1, 2,...}

for suitable Srnr^T^r. But then (") is equivalent to

U   U Bilhn-.-nBlttt
ni...ni ¡i...ti

where (nu...,«») ranges over all /-tuples of natural numbers and (tu...,tt)

e S^x ■ ■ ■ x S'n¡. This proves that SS is a base for « and completes the proof of the

theorem.

Definition. If g¡: X¡ -> Fj (/= 1, 2,...) and x=(xx, x2,...) is a point of the

product n X¡, then we define the "product" mapping p: T~[ X¡ -> Yl Yt by the

condition p(x) = (g1(x1), g2(x2), ■ ■ ■)■

Theorem 6. If each g, is a-discrete and of class a, then so is p. In particular, if each

Xt is absolutely analytic and each g¡ is of class a, then p is of class a.

Proof. Since tt¡ ° p=g, o -n\, where 7r(' and nt denote the /th projection of Yl X¡

and Yl Yi respectively, and g¡ ° tt'( is a-discrete by 3.2(4) and of class a by 0.5(9),

Theorem 6 follows from Theorem 5 with p = h.

Theorem 7. Iff: Xt-* Y,i=X,2,...,is a-discrete and of class a, then the set I

of all points xe Xxx X2x • ■ ■ such that f1(x1)=f2(x2)= ■ ■ • is of multiplicative class

a in Xi x X2x ■ ■ ■. Further, the mapping f defined by the condition f(x)=f1(x1), for

x in I, is a-discrete and of class a from I onto f(I)=f1(X1) r\f2(X2) rv • •.

Moreover, if the mappings f are generalized homeomorphisms of class (a, ß) and

either f(I) is absolutely analytic or each f~1 is a-discrete, then f is a generalized

homeomorphism of class (a, ß) and has a a-discrete inverse (in which case we say that

fis bi-a-discrete).

Proof. By the preceding theorem, the product mapping/?: X^ x X2x ■ ■ ■ -+ Yx Y

x ■ ■ ■ is of class a. Since the diagonal D={y \ y-i=y2= ■ ■ ■} is a closed subset of

YxYx--- [6, p. 153], it follows that

/7-1(T)) = {x|Jp(x)e2)} = 2

is of multiplicative class a in Xxx X2x ■ ■ -. Furthermore, since p is a-discrete

(Theorem 6) and the first projection ^ for Yx Yx ■ ■ ■ is continuous, ^ op | /=/

is a-discrete and of class a.
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We proceed to the proof of the part of the theorem concerning generalized

homeomorphisms. It is easy to see [6, p. 153, Theorem 4] that if the mappings /

are one-to-one, the same is true off. Now suppose each/ is of class (a, ß), and each

ft-1 is a-discrete (or f(I) is absolutely analytic). Then the complex mapping

h:fi(I) -> X, x X2 x ■ ■ ■ with coordinates/f1 |/(7) is a-discrete and of class ß by

Theorem 5. But, if x e I, then

«(/(*)) = ifr'ifiixi)), - - -,fa\fi,ix,)),...)
= if,-1iflix,)),...,fin-1ifinixn)),..-)

= yx,, -. -, xn,. - -) = x.

Hence h=f~1, proving that/is a generalized homeomorphism of class (a, ß) and is

bi-a-discrete.

Remark. The reader can find a complete account of the standard treatment of

the concepts of §3.5 in Kuratowski [6, pp. 382-384].

3.6 The basic theorem for nonseparable Borel sets. Throughout this section, the

letter k will denote an infinite cardinal.

Theorem 7 of §3.5 can be used to obtain a sharpening of the "basic theorem"

for the structure theory of nonseparable Borel sets due to A. H. Stone:

Theorem (Stone [13, Theorem 4]). If Y is an absolute Borel set of class a^l,

and of weight ^ k, there exists a generalized homeomorphism fi of class (0, io%), of

some closed subset A of B(k) onto Y.

We need the following lemmas which were proven in [13, Lemma 3.3 and

Theorem 2].

Lemma (Stone). If X is a complete metric space of weight S k, there exists a

generalized homeomorphism fi of class (0, 1), of a G6 subset A of B(k) onto X.

Lemma (Stone). Every Gó subset of B(k) is homeomorphic to a closed subset

ofB(k).

Theorem 8. Let Y be a complete metric space of weight Sk. For every set Xe Y

of multiplicative (resp. ambiguous) class a S: 2 in Y there exists a generalized homeo-

morphism fi of class (0, a), of a closed subset A of B(k) onto Y such that f~\X) is a

G6 (resp. F„ and G6) in A. Further, if a=ß+l, then f can be taken to be of class

(0, ß). (Cf. [6, p. 448, Theorem 1].)

Proof. We consider first the proof for ambiguous classes. We assume then that

the theorem is true for all sets of ambiguous class < a (a 2:2), and proceed to deduce

it for any set X of ambiguous class a.

By 0.4(7), X has the form

X= Ü iXnnXn+,n---)= H iXnuXn+,u---)
n=l n=1
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where Xn is of ambiguous class an and 0 < <x„ < a. Then, by the inductive hypothesis

(if an=ï2) or by the preceding two lemmas (if an= 1), there exist for each « a closed

subset FB of B(k) and a generalized homeomorphism gn, of class (0, an), of FB onto

Xn (for aB= 1, X„ is a G6 in F and hence completely metrisable [6, p. 408], so the

preceding lemmas can be applied). Similarly, since 7~ Xn is of ambiguous class o¡B,

there exists a closed subset Kn of B(k) and a generalized homeomorphism «„, of

class (0, <*„), of Kn onto 7~ Xn.

By 0.6(10), we may identify the discrete union of Fn and Kn with a closed subset

An of a copy 77n of B(k), and define a mapping /„: /4B-> 7 by requiring that

/n|FB=gB and /B|ATn=«B. Evidently,/B is a one-to-one continuous mapping and

satisfies the conditions /B(FB) = Xn and fn(Kn) = 7~ Xn. Moreover, the mapping

/„"x is of class aB, since the restrictions fi~11 Xn and fa1 \ Y~ Xn are of class aB and

Xn is ambiguous of class an in 7 [6, p. 377].

Let B=B, xB2x - - - and let A be the set of all points x in 77 such thatf,(x,)

=fa(x2)= ■ ■ ■• We define/by the rule fax) =f,(x,) for x e A. Since, by Theorem 3

(§3.2),/n and/r1 are a-discrete for each «, and/, is a generalized homeomorphism

of class (0, <xn) («„<<*), it follows from Theorem 7 (§3.5) that A is a closed subset of

A, x A2 x ■ ■ ■ (hence of 77) and / is a generalized homeomorphism of class (0, a),

if a is a limit ordinal, and of class (0, ß), if a=ß+1, of A onto

fii(A,)nf2(A2)n---= 7.

Since B is homeomorphic to B(k) [13, p. 5], it remains only to show thatf~1(X)

is an F„ and G6 (we remark that the proof now follows verbatim the one given in

the separable case [6, p. 449], although we include it here for the sake of complete-

ness). We have

fi-\x)= Ü rWn/-V,tl)n...]
n = ,

= ñ [/-1(^n)u/"1(JírB+i)u.-.];
n = l

and since/is continuous, we need show only that/-1(^n) is closed and open in A.

But, for x e A, we have

fax) eXn= fiixn) e Xn = xn e FB ;

since F„ is both open and closed in An, it follows that

f-\Xn) = A n iA,x ■ ■ ■ x An-,xFnx An + ,x ■ ■ ■)

is open and closed in A.

We proceed to prove the theorem in the case of multiplicative classes. If X is of

multiplicative class a (> 1), then we have X= X, n X2C\- ■ -, where each Xn is

ambiguous of class a. By what we have just proved, there exists for each « a closed

subset An of a copy of B(k), denote this copy by 77„, and a generalized homeomor-
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phism/n, of class (0, a), of An onto y such that/, 1(Xn) is an F„ and Gö in An. Now

let A and/be defined as above. Then

f(A)=fi(A1)nf2(A2)n--- = Y,

f-1(X)=f-1(X1)nf-1(X2)r>-..,

and

f~\Xn) = An(B1x---x Bn_, x/rTO x 7in + i x • • •),

which proves that/"1(A'n), and hence f_1(X), is a Gó in A. Finally, if oí=j8+1,

then, as the above argument shows, we may take/to be of class (0, 0).

3.7 Continuity apart from sets of the first category. Here we are concerned with

the extension to general metric spaces of theorems, well known for the separable

case, regarding the continuity properties of Borel measurable mappings or, more

generally, mappings which have the Baire property. A complete account of the

basic results of the standard theory can be found in [6, pp. 394-403] and [4, pp.

286-291].

Theorem 9. Let f: X ->■ Y be a-discrete. Then a necessary and sufficient con-

dition for f to have the Baire property is that there exists a set P of the first category

(in X) such that the restriction of'f to X~P is continuous. The sufficiency is inde-

pendent of the hypothesis on f [6, p. 400].

Proof. We need to define a set F of the first category such that the mapping

g=f\ X~P is continuous; i.e., g_1(V) is open relative to X~P whenever V is open

in Y. Let SS=(Jn £%n be a a-discrete base for/such that each SSn is a discrete collection

of sets having the Baire property in X (n=l,2,...); such a base exists by Lemma

10 (§3.4). Accordingly, each B in SS has the form B=(WB~PB) u RB, where WB

is open in X and PB and RB are of the first category (see [6, p. 87]) ; and we may

evidently assume that PBCB. As the union of a discrete collection of sets of the

first category, it follows from a theorem of Banach [12, p. 182] that each of the

sets Fn = U {PB | B in SSn} and Rn = \J{RB\B in S8n} is of the first category in X,

« = 1,2,.... Let P=(Px u Ri) u (P2 u R2) U- • •. Now let V be open in Y, and

note that g~1(V)=f~1(V)~P. Hence there exist subcollections S8'n<^Sän such that

g~\V) = U [U &n] ~ p = U   U   [{WB ~ PB U RB) ~ P].
n n   Beg-n

Since PB u RB<=P, it follows that

[(WB ~ PB) KJRB]~P=WB~P.

Hence g~1(V) = (Jn (JBe^n WB~P is open relative to X~P, which proves that

/|A'~F is continuous.

Remark. Whether or not Theorem 9 continues to hold without the a-discrete

condition remains unanswered (cf. [7, p. 545]).
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Corollary 8. If X is absolutely analytic and f: X^- Y is (in particular) Borel

measurable, then there exists a set P of the first category in X such that f\X~P is

continuous.

For Borel measurable mappings of class 1, Theorem 9 takes a much stronger

form; and we have the following generalization to nonseparable spaces of a

famous theorem of Baire (cf. [6, p. 394, Theorem 1] and [4, p. 289]).

Theorem 10. The set D of points of discontinuity of a a-discrete Borel measurable

mapping of class 1 is of the first category.

Proof. Let /: X -> Y be a-discrete and of class 1. Then / has a a-discrete base

^ = Un&n, where 0Jn is a discrete collection of F^-sets in X (Lemma 10, §3.4).

Now recall that the set D of points of discontinuity of/ satisfies the formula

D = (Jv (/_1(F)~Int [/_1(I0])> where V runs over the family of open sets of 7.

Thus we have D^(Jn Uüe^„ (B~lnt [77]), as follows easily from the fact that J*

is a base for/ But, as boundary F^-sets, the sets 77~Int [5] are of the first category

in X [6, p. 81]. Since the sets ß~Int [77], for 77 in 0ln, form a discrete collection for

each «, it follows that tjn Use^„ iB~ Int [B]), and hence D is of the first category.

Remark. The problem of "analytic representation" (see [6, p. 392]) of Borel

measurable mappings for nonseparable metric spaces can also be solved for the

class of a-discrete mappings. One can show that, for a> 1, every a-discrete mapping

f: X -> 7 of class a is the pointwise (uniform) limit of a sequence of a-discrete

mappings of classes < a ( = a), each having a discrete range contained in the range

off. Also, if either dim X=0 (in the sense of the Lebesgue covering dimension [11])

or 7 is an AR (metric) (i.e., an absolute retract for metric spaces), then the theorem

is also true for a = 1. As a consequence of these results one obtains generalizations

of the Banach and Lebesgue-Hausdorff Theorems on analytic representation

(see [1], [9], and [6, pp. 392-394]). These results, in turn, can then be applied to

obtain extensions to nonseparable spaces of the "classical" theorems on the

extension properties of Borel measurable mappings, including a generalized form

of the Lavrentiev theorem (cf. [8]). The author hopes to publish the details in a

subsequent paper.
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