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MONOFUNCTORS AS REFLECTORS
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Abstract. In a well-powered and co-well-powered complete category X with

weak amalgamations, the class M of all reflective subcategories with a monofunctor

as reflector forms a complete lattice; the limit-closure of the union of any class of

elements of M belongs to M. If JT has injective envelopes, then the set-theoretical

intersection of any class of elements of M belongs to M.

1. Introduction. Let JT be a well-powered and co-well-powered complete

category. It is well known that for all limit-closed subcategories(2) 9C of JT the

full subcategory s$" of all subobjects of objects of 3C is a reflective subcategory of

Jf. We say that JT has amalgamations^) iff for any two monomorphisms

mt: A^ Bt (/= 1, 2) there is a commutative square of the form

my*    \»i

A C

m2\l,   yn2

B2

where nx and «2 are monomorphisms. If we assume that Jf has amalgamations,

then any limit-closed subcategory 3C with sáT=Jf is reflective; more generally, a

limit-closed subcategory 3C for which the reflector of 3f onto &f is a monofunctor

is reflective and has itself a monofunctor as reflector (Theorem 1). We denote by

M the class of all reflective subcategories with a monofunctor as reflector. Thus

a limit-closed subcategory 3C belongs to M if and only if sJ" belongs to M. M is

partially ordered by inclusion and has a smallest element. We show that the limit-

closure of the union of any class of elements of M belongs to M (Theorem 2);

therefore M is a complete lattice. A category with injective envelopes always has

amalgamations. In these categories the set-theoretical intersection of any class of

members of M also belongs to M (Theorem 4).
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In the category of all modules over a ring R a limit-closed subcategory 3C belongs

to M iff there is a torsion-theory (0, J) with sJ" = ü. If Jf" is the functorcategory

[#, ©], where ^ is small and © is the category of sets, then 9C belongs to M iff

%3C is the category of all separated presheaves with respect to some Grothendieck-

topology.

2. The reflectivity of limit-closed subcategories. The following remark will be

useful in the sequel. In a category with amalgamations every bimorphism is an

essential monomorphism. For given a bimorphism b and a morphism x such that

xb is a monomorphism, we find a commuting square

byr \"i

xb^./"2

where n1 and n2 are monomorphisms. But b is an epimorphism, therefore the

equality n1b = n2xb implies n± = n2x. So x is a monomorphism.

Lemma 1. Let Jf be a well-powered and complete category with amalgamations.

IfSC is a limit-closed subcategory and?M'=Jf", then 3C is reflective, and has a mono-

functor as reflector.

Proof. For any object K of Jf there is a monomorphism m : K-> A" with A" in SC.

Let m factorize as

where m" is the smallest subobject of X which lies in 3C and through which m

factorizes.

(a) m' is a bimorphism. We only have to show that m' is an epimorphism.

Given x¡: X' -* K' with x1m' = x2m' we find a monomorphism u: K' -> X" with

X" in SC. The equalizer e of uxx and hx2 belongs to SC, and w' can be factorized

through e, therefore e must be an isomorphism. But uxx = ux2 implies x1=x2,

because u is a monomorphism.

(b) Every morphism a: A"-> Y with Y in SC may be factorized through m'. Let P

be the product of X' and Y with the projections px:P'-> A" and p2: P-> Y and

define z : A^ -> P by p^z=m' and />2z=<*• The last equality implies that z is a mono-

morphism. P is an object of SC, therefore z factorizes as K^.P' -Si» P where z"

is the smallest subobject of P which belongs to SC and through which z can be

factorized. In (a) we have seen that z' is a bimorphism and therefore an essential

monomorphism. But

(*) (Piz")z' = m'

is a monomorphism, therefore p±z" is a monomorphism. The equality (*) also

shows that pxz" is a subobject through which m' factors. Becausep-j." belongs to 3C,
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pxz" must be an isomorphism. If we define a' =p2z"(pxz")  x we get the equality

a'm' = P&"(Pi¿r)-1{Piz''z') = p2z"(pxz")'1(pxz")z' = p2z"z' = a.

(c) m' is a reflection of K into X. In (b) we have seen that every morphism

a: K-> Y with Y in X may be factorized through m' and according to (a) this

factorization is unique, because m' is an epimorphism.

(d) The reflector of Jf onto 3C is a monofunctor. Let k: A->■ B be a mono-

morphism in Jf. The reflections a of A and b of B define a commutative square

and k' is the image of & under the reflector Jf -> X. But k and b are monomorphisms

and a is an essential monomorphism, so k' is a monomorphism.

Remark 1. The proof discloses a special feature of categories with amalgama-

tions. We have constructed the reflection by taking any monomorphism m: K^ X

with X in X and factorizing through a subobject of X. The subcategory ® of the

compact spaces of the category SB of all completely regular Hausdorff spaces

gives an example where the reflections are bimorphisms but not essential mono-

morphisms.

Remark 2. In the proof of Lemma 1 we did not need the existence of infinite

products. Also the existence of finite products may be avoided if Jf has pushouts:

the assertion of Lemma 1 remains true if Jf is a well-powered category with

arbitrary intersections, pullbacks, pushouts and amalgamations. We have only to

change the proof of (b). Instead of forming the product of X' and Y we take a

pushout â: X' -> Q and m: 7-> Q of a and m and a monomorphism u: Q -> X"

with X" in X. If in the following diagram px and p2 are pullback-morphisms with

respect to uä and urn, we get a morphism z with pxz = m' and p2z = a.

>X"

The object P belongs to X (because X', Y and X" are in X), therefore P, px, p2, z

have all properties we need for continuing the proof of (b).

In a well-powered and co-well-powered complete category Jf every subcategory

which is limit-closed and subobject-closed is reflective [1], [5], [8]. In particular,
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if SC is any limit-closed subcategory, s& is a reflective subcategory of Jf, and SC

is reflective in ¿f if and only if SC is reflective in sSC. With Jf also sSC is well-

powered and complete. In order to apply Lemma 1 we have to impose a condition

onto sS* which implies that s#" has amalgamations. If X has amalgamations and

the reflector onto s& is a monofunctor, then %SC has amalgamations: given two

monomorphisms m¡: A -> Bt (i=l,2) in &f, these morphisms are also mono-

morphisms in Jf, therefore we find in JT monomorphisms «,: B¡—^ C with n-jn^

= n2m2. If c: C-> C is the reflection of C into siT, en, is the image of «, under

the reflector JT -> sS\ We have assumed that this functor is a monofunctor, so

c«! and cn2 define an amalgamation of m± and m2 in &#\ This proves the first part

of the following theorem :

Theorem 1. Let Jf" be a well-powered and co-well-powered complete category

with amalgamations. Let SC be a limit-closed subcategory of X. If %3C has a mono-

functor as reflector, then SC is reflective and has a monofunctor as reflector. Con-

versely, if SC is reflective and has a monofunctor as reflector, sSC has a monofunctor

as reflector.

It remains to show that a reflective subcategory SC has a monofunctor as reflector

if and only if sSC has a monofunctor as reflector. Let U2 : SC ->- sSC be the inclusion-

functor and Sx'.Jf ->sSC, S2:sSC^-SC be the reflectors. SC is monoreflective in

s^"(4), therefore S1 is a subfunctor of U2S2Su As a right adjoint functor U2 is a

monofunctor, so if S2Si is a monofunctor, also U2S2Si is a monofunctor—but

every subfunctor of a monofunctor is a monofunctor, so 5X is a monofunctor, sSC

satisfies the conditions of Lemma 1 (sSC replacing Jf) and therefore S2 is also a

monofunctor, so S2SX is a monofunctor.

Remark 3. It should be noted that there are limit-closed subcategories SC where

the reflector Jf —> sSC is not a monofunctor, but nevertheless sSC has weak amal-

gamations (and therefore Lemma 1 can be applied): the subcategory ¿C = sSC=i$

of the torsionfree groups in the category © of all groups has amalgamations (the

free product of two torsionfree groups with amalgamations of a common subgroup

is a torsionfree group), but the reflector © -> g is not a monofunctor (there are

groups generated by torsion-elements which contain torsionfree subgroups). We

have restricted our attention to subcategories with a monofunctor as reflector

(and not to the wider class of reflective subcategories having amalgamations)

because of Theorem 2 and Theorem 4. We do not know if the reflective subcategories

with amalgamations form a lattice.

(4) 3t is a monoreflective (epireflective, bireflective) subcategory of & means that 9C is a

reflective subcategory and moreover for every object L in & the reflection morphism is a

monomorphism (epimorphism, bimorphism). The notion of a monoreflective subcategory

should not be confused with the concept of a reflective subcategory with a monofunctor as

reflector. In fact, in a category with amalgamations every monoreflective subcategory has a

monofunctor as reflector, but the converse need not be true.
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3. The lattice M. We assume throughout this section that JT is a well-powered

and co-well-powered complete category with amalgamations.

Let M denote the class of all reflective subcategories with a monofunctor as

reflector. Theorem 1 shows that a limit-closed subcategory X belongs to M if and

only if sX belongs to M. M is partially ordered by inclusion and has a unique

minimal element: the subcategory of Jf" which contains just the terminal objects

of jr.
If <& is any subcategory of Jf, the limit-closure \J& is defined as the smallest

limit-closed subcategory of Jf which contains *&.

Theorem 2. If{Xi ; ie 1} is any class of elements ofM, and X is the limit-closure

of the union of the X¡, then X is an element of M.

Remark. In general, the limit-closure of a class of reflective subcategories need

not be reflective. In a well-powered complete category every limit-closed sub-

category X is the limit-closure of the reflective subcategories contained in X: for

every object X in X the limit-closure l(X) (the smallest limit-closed subcategory

which contains X) is a reflective subcategory—this is a consequence of the special

adjoint functor theorem of Freyd [10]. But in [6] Herrlich has constructed a limit-

closed subcategory of a well-powered and co-well-powered complete category

which is not reflective.

Proof of Theorem 2. We want to show that sX has a monofunctor as reflector;

then the assertion is a consequence of Theorem 1.

Let K be an object of Jf, and let S={e¡ : K -> P¡ ; i e 1} be the class of reflections

of K into the subcategories sX¡.

(a) If J is a subser of the index-class / such that every quotient e¡ in S is equiva-

lent to a quotient eß withy in /, then the reflection of Jf into sX may be constructed

in the following way: we form the product P=Y]jejEj with the projections

p¡: P-> Ej and define/by Pjf=e¡. If we factorize/as

where m is the smallest subobject of P through which / can be factorized, e is a

reflection of X into sX.

(b) If there is given a monomorphism k:K-^K', then the reflection classes

S'={el : K->Eù i el) and S'={e¡ : K' -> E¡ ; / e /} both contain only a set of

nonequivalent quotients, because Jf" is co-well-powered. Therefore we find a

subset J of I such that every quotient et in S is equivalent to a quotient e¡ with

j e J and every quotient e¡ in i' is equivalent to a quotient e'¡ with / e /. For every

j e J we define k¡ by e)k = k¡e¡. k¡ is the image of k under the reflector Jf -*■ sXt. This

is a monofunctor (Theorem 1), therefore the morphisms k¡ are monomorphisms.

The product \~[js} k}: P^P', where P = l]jsJ Ej and P'= Y\iej E'} is a morphism

which satisfies the equality (n k¡) f=f'k where / and /' are defined as in (a).
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Moreover Y\k¡ is a monomorphism. Factorizing /= me and f'=m'e' as in (a)

gives us the following commutative diagram:

e is an extreme epimorphism, m' is a monomorphism, therefore we find k* with

k*e=e'k and m'k* = ([~l k,)m. The first equality shows that k* is the image of k

under the reflector Jf -> &f, the second equality implies that k* is a monomor-

phism (because F] &y and m are monomorphisms).

As a consequence we have the following:

Corollary. M is a complete lattice.

Proof. M is partially ordered and has a unique smallest element. In this situation

the existence of arbitrary unions in M implies the existence of arbitrary intersections

in M.

In order to show that the intersections in TV/ are just the set-theoretical inter-

sections of the elements of TV/, we need a new assumption : the existence of injective

envelopes. This will be done in the next section.

4. Categories with injective envelopes. Let us remind ourselves of some defini-

tions. An object / is called injective, iff for every monomorphism m: A -> B and

every morphism a: A^-I there is a morphism b: B-> I with bm = a. A category

Jf" has (enough) injectives, iff for every object K in Jf there is a monomorphism

m: K-> I with / injective; Jf has injective envelopes iff always such a morphism

exists which is an essential monomorphism. It is well known (see for example [3]),

that a category with finite products and injectives has amalgamations, so in the

sequel we need not mention this assumption.

Lemma 2. Let JT be a well-powered and co-well-powered complete category. If

J is any class of injective objects oj*JT, then the limit-closure uf ofiJ is a reflective

subcategory with a monofunctor as reflector.

Proof. We stt SC=\J.

(a) For every object Y in sSC there is a monomorphism u.Y-^-I where /

belongs to SC and is injective in Jf. Y is an object of si^/, therefore a subobject of

a product of elements of./. Let u: Y-> I be a monomorphism where lis a product

of elements of J. SC is the limit-closure of J, so /belongs to SC; the elements of J

are injective in Jf, a product of injective objects is injective, so / is injective in Jf.
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(b) sX has a monofunctor as reflector. Given a monomorphism m : A -> P in

Jf, we look at the reflections a of A and b of B into sS\ There is a morphism m'

such that the following diagram is commutative

and m' is the image under the reflector Jf -* sX. A' is an object of sX; according

to (a) we find a monomorphism u: A' ->■ / where / belongs to X and is injective

in X. m is a monomorphism, / is injective, so there exists a morphism x with

xm = ua. x: P-*- / can be factorized through ¿>, because / belongs to sX: x=x'b.

But the equality ua=xm=x'bm=x'm'a implies u=x'm' (because a is a reflection

morphism). m is a monomorphism, so rri is a monomorphism.

(c) We want to apply Lemma 1 with sX instead of Jf. sX is well-powered and

complete, (a) implies that sX has enough injectives, so sX has amalgamations.

Therefore X is a reflective subcategory of sX and the reflector of sX onto X is a

monofunctor. The reflector of Jf onto X is the composition of the reflector

Jf -> sX and sX->X. Both functors are monofunctors, so X has a monofunctor

as reflector.

In the presence of injective envelopes we can characterize the elements of M in

the following way:

Theorem 3. Let Ctf be a well-powered and co-well-powered complete category

with injective envelopes. Then the following assertions are equivalent for a limit-

closed subcategory X:

(i) X is an element of M,

(ii) X is closed under injective envelopes,

(iii) for every object X in X there is a monomorphism X —> I in X, where I is

injective in X.

Proof, (i) -> (ii). Let «j: X-+ /be an injective envelope with XinX.lfc: I-> I'

is the reflection of / in X, cm is the image of m under the reflector S: Jf -> X.

But w is a monomorphism and 5 is a monofunctor, so cm is a monomorphism. m

is an essential monomorphism implies that c is a monomorphism. The injectivity

of / gives us a morphism r with re—I,, c is a reflection, so the equality crc=c

implies cr=lr. Therefore c is an isomorphism and / belongs to X.

(ii) -*■ (iii). Trivial.

(iii) -»■ (i). Let J be the class of injective objects of JT which belong to X. Lemma

2 implies that u/ is a reflective subcategory with a monofunctor as reflector. But

SL</=Shf, so the assertion follows from Theorem 1.
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Property (ii) is hereditary with respect to intersections. Therefore we get the

following theorem as an immediate consequence of the equivalence of (i) and (ii)

in Theorem 3 :

Theorem 4. Let Jf be a well-powered and co-well-powered complete category

with injective envelopes. If {.f, ; i e 1} is any class of elements of TV/, and SC is the

(set-theoretical) intersection of the SC¡, then SC is an element of TV/.

5. Locally minimal and locally maximal elements of M. Let Jf be a well-

powered and co-well-powered complete category with injective envelopes. If we

look at all reflective subcategories SC with fixed if=sáT, there is a biggest sub-

category, namely £C, but there is also a smallest subcategory: the limit-closure of

the injective objects of ¿f which belong to £?. The following theorem characterizes

these subcategories. We start with the category =£? and denote by TV/0 the class of all

reflective subcategories SC of j£? with sSC=J¡C.

Theorem 5. Let Jif be a well-powered complete category with injectives. IfiSC is a

limit-closed subcategory, the following assertions are equivalent:

(i) SC is the limit-closure of the injectives ofä?,

(ii) SC is the smallest element of MQ,

(iii) SC belongs to TV/0 and has no proper bimorphisms.

Proof, (i) <-> (ii). Let J be the class of all injectives of =S?. =S? has enough in-

jectives, therefore we have sJ =££, but then a fortiori sl(j^) =3?. Lemma 1 implies

that l(J) belongs to TV/0. If SC is any element of M0, then SC contains all injective

objects of if; given an injective object /, we look at the reflection c: /->/' of/

into SC. SC is monoreflective, therefore c is a monomorphism and the injectivity of

/ implies that c is a coretraction. But monoreflective subcategories are epireflective,

so c is also an epimorphism and therefore an isomorphism. So we have shown that

./, and therefore u/, is contained in SC.

(i) -+ (iii). We first observe that the limit-closure uf of the injectives of J£? is

just the full subcategory SC of all objects X for which there exists an equalizer-

diagram

u

(*) X-î-W J

v

where /and J are injective. Clearly, SC is contained in uf. So we have to show that

SC is limit-closed. But J is product-closed, so it is easy to see that SC is product-

closed. It remains to verify that SC is closed under the formation of equalizer-

diagrams

a

z ~   *■
X-> Xi X2.

~b*
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For every Xt we have equalizer-diagrams of the form (*), say

Xt^+It        Jt

vt

where /¡ and Jt are injective. In particular, I2 is injective and ex is a monomorphism,

so we can find morphisms a': Ix-> I2 and b'\ Ix-+12 with a'ex = e2a and b'ex = e2b.

One verifies that the morphism exz is the limit of the following diagram

h

yi ̂    „>

and this implies that there exists a diagram of the form (*) for X. (Look at the

usual construction of limits by means of products and equalizers.)

Now given a bimorphism b: X^- Y in X=\J', we take an equalizer-diagram

of the form (*), where / and J are injective. b is a monomorphism, / is injective,

so there exists a morphism d with db = e. But equalizers are extreme monomorphisms,

so the epimorphism b must be an isomorphism. So all bimorphisms in u/ are iso-

morphisms.

(iii) -> (ii). We show that a subcategory X with the properties of (iii) is a

minimal element of M0. Given an element Y of M0 which is contained in X. The

equality s^=^C implies that <% is a monoreflective and therefore bireflective sub-

category of=Sf. But then <& is also a bireflective subcategory of X. All bimorphisms

of X are isomorphisms, so the reflections of X into W are in fact isomorphisms

and X=<W.

We call a reflective subcategory X locally minimal (maximal) iff X belongs to M

and X is minimal (maximal) in the class of reflective subcategories with fixed sX.

Thus the locally minimal subcategories of Jf are those of the form u/, the locally

maximal subcategories are those of the form si^f, where J is a class of injective

objects. In a category without proper bimorphisms, another characterization can

be given using the following theorem :

Theorem 6. Let Jf be a well-powered and co-well-powered complete category

with injectives. A reflective subcategory is locally minimal if and only if the reflector

maps monomorphisms onto regular monomorphisms^).

Proof. We need the following result which is essentially due to Kelly [7] :

(6) A monomorphism m is regular, iff m is the equalizer of two morphisms.
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Lemma 3. Let & be a well-powered complete category with amalgamations. Then

every morphism x may be factorized as x — me where e is an epimorphism and m is a

regular monomorphism.

Proof of the lemma, (a) Every regular monomorphism is the equalizer of two

monomorphisms. If m is the equalizer of a,: X-> Y (i = l, 2), we take the product

Z of X and Y with the projections x: Z-> X and y:Z-> Y, and define a[ by

xa'i = lx and ^a¡ = a¡. The last equation shows that a\ is a monomorphism, and it is

easy to see that m is the equalizer of a\ and a2.

(b) The composition of two regular monomorphisms is a regular monomorphism.

Let m: X -^- Y be the equalizer of a¡: Y'—> A, and n: Y —>Z be the equalizer of

¿>¡: Z-> B (/= 1, 2). We can assume that the a, are monomorphisms. The existence

of amalgamations gives us a commutative diagram, where all morphisms are

monomorphisms :

Z

y x
"^ y x,

a^y   \

r -
xz/

Therefore we have monomorphisms n':A-^-A' and a[:Z^-A' with a[n = n'aK

(i= 1, 2). We define C as the product of A' and B with the projections pA, : C-> A'

and pB : C -*■ 5, and for / = 1, 2 we define c, : Z ->■ C by />¿.c¡ = a¡ and /?Bc, = ¿>,. nm is

the equalizer of Cj and c2: we have the equality cinm = c2nm, and given u with

Ci«=c2«, we have

biu = pBC}U = pBc2u = b2u,

and therefore we can factorize u as u=nu'. Now the equality

n'axu' = a[nu' = ai« = pAc^u = pA^c2u = a'2nu' = n'a2u'

implies aiu' = a2u', because n' is a monomorphism. Therefore we can factorize u'

as u' = mu", and u = (nm) u" gives us the factorization we have looked for.

(c) Given an arbitrary morphism x: A -> B in SC, take the smallest subobject m

of B which is a regular monomorphism and through which x factors, say x=me.

m exists, because our assumptions imply that the regular monomorphisms are

closed under intersections. From (b) it follows that e is an epimorphism. This

proves the lemma.

If SC is locally minimal, then, according to Theorem 5, SC has no proper Dimor-

phisms. SC satisfies the conditions of Lemma 3, so every monomorphism of SC is a

regular monomorphism, and the reflector S: Jf" -> SC maps monomorphisms to
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regular monomorphisms. Conversely, if X is reflective and the reflector S: X -> X

maps monomorphisms onto regular monomorphisms, S is, in particular, a mono-

functor and so X belongs to M. If b is a bimorphism of X, b is a monomorphism of

X, so b = S(b) is a regular monomorphism of X. But a morphism which is an epi-

morphism and a regular monomorphism must be an isomorphism. So X has no

proper bimorphisms and X is locally minimal.

Corollary. Let X be a well-powered and co-well-powered complete category

with injectives and without proper bimorphisms. Then

(a) A reflective subcategory is locally minimal if and only if the reflector preserves

regular monomorphisms.

(b) A reflective subcategory is locally maximal if and only if it is epireflective and

the reflector preserves monomorphisms.

Proof, (a) Lemma 3 implies that every monomorphism of ¿f is a regular

monomorphism, so (a) is a consequence of Theorem 6. (b) In a well-powered and

co-well-powered complete category without bimorphisms the epireflective sub-

categories are just those limit-closed subcategories X which satisfy the equality

X=sX[ll].

Remark. If X is a reflective subcategory of Jf and the reflector S: Jf -> X

preserves regular monomorphisms, then S preserves equalizers of cokernel pairs.

For given a cokernel pair qx, q2 (of a morphism x), and the equalizer m of qx and

q2, then qx, <72 is also the cokernel pair of «t, that is

my \fl,

is a pushout diagram. But as a left adjoint, S preserves pushouts, so

S(m)y\S(qx)

S(mY^./S(q2)

is a pushout diagram in X, and S(qx), S(q2) is the cokernel pair of S(m). But S(m)

is a regular monomorphism, so S(m) is the equalizer of this cokernel pair: S(m)

is the equalizer of S(qx) and S(q2). If X has cokernel pairs, S preserves regular

monomorphisms if and only if S preserves equalizers of kernel pairs.

6. Applications, (a) Module categories. Let P be an associative ring with 1

and 9JlB be the category of all P-modules. In studying the localization of rings the

concept of a (hereditary) torsion-theory (3?, 1) [2], [9] has been useful. As Gabriel

[4] has shown, every torsion-theory (a8, 2) determines a reflective subcategory S

with J = s«? and with an exact functor as reflector. Both £ and S are reflective
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subcategories with a monofunctor as reflector and the following proposition shows

that the elements of M are just those limit-closed subcategories SC with ^çfçi

for a suitable torsion-theory (see also [12]).

Proposition 1. For a limit-closed subcategory SC of 9JlB the following properties

are equivalent:

(i) SC is reflective and has a monofunctor as reflector,

(ii) there is a torsion-theory (0, Ê) with sSC=£,

(iii) there is a reflective subcategory i with an exact reflector and S^SC^si.

Proof, (i) —>• (ii). According to Theorem 3, SC is closed under essential extensions,

therefore sSC is closed under products, subobjects and essential extensions, and it is

well known (see for example [13]) that these properties characterize the class Ü of

a torsion-theory (0, 3).

(ii) -> (iii). Take for S the reflective subcategory S with 2L = sS and with an

exact reflector constructed by Gabriel. Then SC^sS and we have to show that S

is contained in SC. But S is an abelian category and contains therefore no proper

bimorphism. Applying Theorem 5 for ¿£ = â shows that S is contained in every

reflective subcategory <& with %<W=Ü. But ¡L has a monofunctor as reflector, so SC

is in fact reflective (Theorem 1), and S is contained in SC.

(iii) -> (i). We have the equality &S = sSC and S has a monofunctor as reflector,

so the assertion is a consequence of Theorem 1. The locally maximal elements of

M are just the subcategories J, where (0, â) is a torsion-theory, the locally minimal

elements are the reflective subcategories with an exact reflector (=the localizations

of Gabriel). It is easy to see that in general these are not the only elements of TV/—

for example in the category Wz of all abelian groups the full subcategory of the

/»-divisible torsionfree groups (where p is a prime) is a reflective subcategory with

a monofunctor as reflector, but is neither locally minimal nor locally maximal. This

is a special case of the following construction :

Proposition 2. Let (0, 2) be a torsion-theory in WR and 0' be a subcategory

of0. Then the full subcategory SC of all objects X of Q with Ext (P, X) = 0 for all

P e0' is a reflective subcategory with a monofunctor as reflector.

Proof. We only have to show that SC is limit-closed. SC is product-closed, so we

consider the case where k: K-> A\ is the kernel of x: ^ -> X2, where x is a

morphism in SC. If x=me is the factorization of x in an epimorphism e and a

monomorphism m, the exact sequence

0 —> K-^> Xi-^Q —> 0

determines an exact sequence

0 -> Horn (P, K) -> Horn (P, XJ -> Horn (P, Q) -> Ext (P, K) -*' Ext (P, XJ.



1971] MONOFUNCTORS AS REFLECTORS 305

Q is a subobject of X2 in X, so belongs to M, P is an object of £?, therefore we

have Horn (P, g) = 0. Ext (P, ^ = 0 now implies Ext (P, K) = 0.

(b) Functor-categories. Let ^ be a small category and [^, <3] the category of all

functors from ^ into the category @ of sets. If t is a Grothendieck-topology on '€,

we denote by Jt the full subcategory of the separated presheaves, by <ft the full

subcategories of all sheaves with respect to t [14]. Both It and «ft are reflective

subcategories with monofunctors as reflectors and the elements of M are just those

limit-closed subcategories X with St^X^It for a suitable topology:

Proposition 3. For a limit-closed subcategory X offä, @] the following proper-

ties are equivalent:

(i) X is reflective and has a monofunctor as reflector,

(ii) sX = J2t for a Grothendieck-topology t,

(iii) there is a reflective subcategory ë with a reflector respecting finite limits and

êçXçsê.

The proof is quite similar to (a) and will be omitted.

The locally maximal elements of M are just the categories of the separated pre-

sheaves, the locally minimal elements are the categories of all sheaves with respect

to a topology.

(c) Categories of topological spaces. We call a full subcategory of the category

% of all topological spaces a category of topological spaces. There are some

categories Jf of topological spaces which satisfy the assumptions of Theorem 1 :

The category of all Pi-spaces and the category % itself both have amalgamations.

However there are only trivial subcategories of the form sX which have a mono-

functor as reflector :

Proposition 4. Let X be a category of topological spaces which contains all

discrete spaces. A reflective subcategory with a monofunctor as reflector is either

monoreflective or contains only spaces with at most one point.

Proof. We may assume that the subcategory X has a monofunctor as reflector

and contains a space X with more than one point. First we notice that for a discrete

space D the reflection morphism rD : /) —>- D' into X is a monomorphism : for given

two distinct points dx and d2 in D we find a (set-theoretical) map D i> X which

does not identify dx and d2. But D is discrete, so x is continuous. Therefore we can

factorize x through rD, and rD does not identify dx and d2. Now for an arbitrary

space K in Jf we find a bijective map b: D -^ K where D is discrete. We have the

equality rKb = R(b)rD where rK and rD are the reflection morphisms and P : Jf ->■ X

is the reflector. R is a monofunctor, so R(b) is a monomorphism. This implies that

rKb is a monomorphism. b is bijective, so rK is a monomorphism.

(d) Categories with only coretractions as monomorphisms. If every monomor-

phism of ¿f is a coretraction, then every functor Jf -> £? (where £? is an arbitrary

category) is a monofunctor. In this case Mis the class of all reflective subcategories.
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The assumption is verified in every abelian category of global dimension 0, for

example in the module-categories TlR where R is (artinian) semisimple. However,

if in J¡f every monomorphism is a coretraction, the same assertion is true in every

full subcategory, and so every reflective subcategory is even epireflective.
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