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ON THE WEDDERBURN PRINCIPAL THEOREM
FOR NEARLY (1, 1) ALGEBRAS
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Abstract. A nearly (1, 1) algebra is a finite dimensional strictly power-associative

algebra satisfying the identity (x, x, y) = (x, y, x) where the associator (x, y, z) = (xy)z

— x(yz). An algebra A has a Wedderburn decomposition in case A has a subalgebra

S^A — N with A = S+N (vector space direct sum) where N denotes the radical

(maximal nil ideal) of A.

D. J. Rodabaugh has shown that certain classes of nearly (1,1) algebras have

Wedderburn decompositions. The object of this paper is to expand these classes. The

main result is that a nearly (1, 1) algebra A containing 1 over a splitting field of charac-

teristic not 2 or 3 such that A has no nodal subalgebras has a Wedderburn decomposi-

tion.

Introduction. An algebra A has a Wedderburn decomposition in case A has a

subalgebra S^A — N with A = S+N (vector space direct sum) where N denotes

the radical of A. A class of algebras is called a Wedderburn class provided that

each algebra in the class has a Wedderburn decomposition. These include asso-

ciative [1], alternative [9], commutative power-associative [4], Jordan [2], [7],

[10, pp. 106f], and other algebras [8]. The Wedderburn principal theorem for a

class C of algebras states that if an algebra A in C has the property that A — N is

separable, then A has a Wedderburn decomposition.

In this paper, an algebra A is a finite dimensional vector space on which a

multiplication is defined that satisfies both distributive laws and the condition that

aixy) = (ax)y = x(ay) for x, y in A and a in the field. Define x1 = x and xk + i = xkx

for every x in A and every positive integer k. A power-associative algebra A is one

for which xk + m = xkxm for every x in A and all positive integers k and m. If AK

is power-associative for every scalar extension K of the base field, then A is called

strictly power-associative. The radical N of A is the maximal nil ideal of A, i.e.,

the maximal ideal of A consisting entirely of nilpotent elements. For x, y, and z in

A, the associator (x, y, z) = ixy)z — xiyz).

A power-associative algebra A whose base field has characteristic not 2 with an

idempotent e (e2 = e^0) has a Peirce decomposition A = Axie) + Axl2ie) + A0ie)
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where At(e) = {x e A : ex = xe = ix} for i = 0, 1 and AXi2(e) = {x e A : ex + xe = x}

[3, p. 560]. The subset Ai(e) for i=0, 1/2, 1 is also denoted by A(e, i) or, when

unambiguous, by A¡. An idempotent e of an algebra A is called a primitive idem-

potent in case e is the only idempotent in Ax(e). This idempotent e is called ab-

solutely primitive provided e is primitive in AK for every extension K of the base

field of A.

A field A' is a splitting field of an algebra A if and only if every primitive idem-

potent e of AK — NK is absolutely primitive and every element in (AK — NK)(e, 1) for

e primitive can be written as ae+y with a in A' and y nilpotent.

An algebra is nodal provided each element can be written as al +z with a in the

base field and z nilpotent where the set of nilpotent elements is not a subalgebra.

A nearly (1,1) algebra is defined to be a strictly power-associative algebra that

satisfies the identity

(1) (x, x, y) = (x, y, x).

Nearly (1,1) algebras were first studied by Kleinfeld, Kosier, Osborn, and Roda-

baugh [6] as a special type of associator dependent algebras. A nearly (—1,0)

algebra is an algebra that is anti-isomorphic to a nearly (1,1) algebra. The nearly

(1,1) and nearly (-1,0) algebras are generalizations of ( 1, 1 ) and ( - 1, 0) algebras

respectively. The (1,1) and (—1,0) algebras are particular types of (y, 8) algebras.

The properties of nearly (1,1) algebras listed in the remainder of this paragraph

have been proved by them in [6]. A nearly (1, 1) algebra over a field of characteristic

not 2 or 3 has a Peirce decomposition

A = AXX + AX0 + AQX + A00

where Ai} = {x e A : ex = ix and xe=jx} for i,j=0, 1. Also, the subspaces Au satisfy

the following relations where / = 0 or 1 andy'= 1 — i:

(2) AfcAit,
(3) AuA„ = 0,

(4) Afj^Aji,
(5) x% = 0 where xu is in di})

(6) AijAji^Au,

(7) AijAjj^Aij,

(8) A„Ai, = §,

(9) AiiA^Aij + Aji,
(10) AtiAacA„,

(11) Xayij—y¡jXu is in A^ when xu is in Aü and ytj is in Ay.

Defining Gl=A]iAlj for i'=0 or 1 and j= 1 —/, then G = GX + G0 is an ideal of A

withG2 = 0.

Rodabaugh has shown [8, Theorem 6.2] that a (1, 1) or (— 1, 0) algebra over a

splitting field of characteristic not 2 or 3 has a Wedderburn decomposition. Also,

he has shown [8, Theorems 6.1 and 6.3] that if A is a nearly (1, 1) (nearly (—1,0))
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algebra over a splitting field of characteristic not 2 or 3 such that either (a) A-N

is associative where N=Gie) for each idempotent e#l in A or (b) A contains

neither nodal subalgebras nor ideals K with K2 = 0, then A has a Wedderburn

decomposition. In this paper it is shown that several classes of nearly (1,1) (nearly

(—1,0)) algebras are Wedderburn classes. The main result is that a nearly (1,1)

(nearly (—1,0)) algebra over a splitting field of characteristic not 2 or 3 with no

nodal subalgebras has a Wedderburn decomposition.

Main section. We first prove that under rather restrictive conditions a nearly

(1, 1) algebra contains a Cayley subalgebra. This result is used to show that some

nearly (1, 1) algebras have Wedderburn decompositions. This result, in turn, is

extended in Theorems 2, 3, and 4.

Linearizing (1) by replacing x with x + z gives the identity

(12) ix, z, y) + iz, x, y)-ix, y, z)-iz, y, x) = 0

in a nearly (1,1) algebra. Partially linearize (x, x, x) = 0 by replacing x by x+y

to obtain (x, x, y) + ix, y, *) + (j, *, *) = 0. This together with (1) implies

(13) 2(x, x,y) + iy,x,x) = 0

in a nearly (1,1) algebra.

Theorem 1. Let A be a nearly (1,1) algebra containing 1 over a base field F of

characteristic not 2 or 3 with N=Gie)for each idempotent e^l in A. Suppose A — N

is a split Cayley algebra over F. Then A contains a split Cayley subalgebra.

Proof. Since A — N is a split Cayley algebra over F, we may suppose that A — N

= M2 + [w]M2 where M2 is the algebra of all two-by-two matrices over F [10,

Lemma 3.16] and [w] indicates the image of w in the natural mapping /I -> A — N.

Furthermore,

(14) [w]2 = [1]

and multiplication in A — N is given by

(15) ai[w]b) = [w]iab),

(16) i[w]a)b = [w]iba),

(17) i[w]a)i[w]b) = bä

for a, b in M2 where for c = a[uxx]+ß[uX2]+y[u2X] + 8[u22] in M2 with a, ß, y, 8 in F

and {[%]}i,í = i,2 the set of matric units for M2, c = a[u22] — ß[uX2] — y[u2X] + 8[uxx]

[10, Chapter III, §4].

Rodabaugh has shown [8, Proof of Lemma 6.1] that there exists a subalgebra 5

of A such that B^M2 and there exists a basis {ei;}i>/=li2 of B with exx and e22

idempotents such that l=exx + e22. Also, «% is in fiioiA) n fi01(«?y) for fftj;

i,j= 1, 2. Furthermore, [eu} = [utj] for i,j= 1, 2. Also

(18) ei}ekm = 8jkeim   for i, j,k,m= 1,2



104 T. J. MILES [November

where 8jk is the Kronecker delta. Let [/i2] = [w][e22] and [/2i] = M[e11]. Consider

the 8 elements eu, etf,-ffJ, ftjetj for i,j=l, 2 and i#/ Then [eH] = [«„], [<%] = [%],

L/oHMKL and [/¡^w]=[wJ[%] using (15) and (18). Since {[en], [e{/], [/,], t/^]}

is a basis of A — N, {ef(, etj, fi,-, fij-e^} is a basis for an 8 dimensional subspace C of A.

We now show that C is a subalgebra of A isomorphic to A — N under the natural

mapping A -> A — N restricted to C. We do this by examining the multiplication

of basis elements of C.

Since w — wxx + wxo + wox + w00 where wu is in Aij(exx) for i,j = 0, 1, it follows that

[/i2] = [w'io] + Ko] and [f2X] = [w01] + [wxx]. Now [w1o] = [eii]([w10] + [w00])

= [eu][/i2] = [en]([w][e22]) = [w]([exx] " [e22]) = [w][e22] = [fX2] = [h-10] + [w00] using

(15). Thus, [woo] = [0], so [/i2] = [w10], so we may choose fX2 in AXQ(exx). Also,

["ii] = hiKKl + kil) = hi][/2il = [en]([w][exx]) = [w]([exl]-[elx]) = [0]

using (15). Thus, [/2i] = [h,0i], so/21 may be chosen in ^oi(^n)- It is convenient

notationally to let AX2 = AX0, A2X = A0X, and ^22 = ^00, i-C, we replace the subscript

0 with the subscript 2. In the remainder of this proof Atj denotes Atj(exx) f°r

i,j= 1, 2. We have just chosen/, in Ai} for i+j; i,j= 1, 2.

Using (17), we have [fuM = k«l. so/,/¡ - eti is in AT= G(exx). By (6)/y/¡ is in Ati,

so

(19) a, = fufi-eu is in Af n Ait.

Using (11) and the fact A' is an ideal, we have Oj/y-/,^ is in N n ^¡, = G(e11) o Ai}

= (A2XA22 + AX2AX1) n Aij^(Axx + A22) n /4W=0 by (10), so

(20) Oi^y  = /yöi.

By (8),

(21) a,/,, - 0.

From (13) with x=ftJ and y=ffí, (5), (19), and (21), we have

(22) ffli = 0.

This with (20) implies

(23) aju = 0.

Using (12) with x=fj, y = a¡, and z=f}i, (19), (22), (21), (23), and the facts that a¡

is in Nr\Au and N2 = [G(exx)]2=0, we have ai-/X/iai)-(X¡ai)/ií=0, so

ai-fu{fiicd = (fnai)fu is in ^« n ^;;=° by (19)> (7), and (6). Consequently,

(24) at =Mf lad.

Using (12) with x=fij,y=fji, and z=a¡, (22), (21), (23), (19), (24), and the fact that

a¡ is in N n ¿4„ with N2=0, we have a¡ = 0, so by (19)

(25) fufi = elt.



1971] ON THE WEDDERBURN PRINCIPAL THEOREM 105

In (12) let x=eü, y = e¡j, and z=f¡, then use the fact that/,- is in A¡¡, (4), and (18)

to get

(26) e¡jfij = -/,ey.

Next we wish to show that <?«/«, = 0=/,^. If au and btj are in Au, then

0=iau + btj)2=aubij + btfiu, so

(27) aubij = -bijüij.

Let Cj = enfij for j= 1, 2 and i^j. By (6), c; is in Afi. With the aid of (15), we have

[Cj] = [0] so Cj is in N. Thus,

(28) c3 is in Ajj n AT.

Using (11), we have c¡e(i —efic4 is in Ai} n A^=0. This together with (10) implies

(29) c%eti = e„c¡   in A„.

From (12) with x=c„ y = en, and z=ey, (28), (9), (18) and (29), we have

Cj = iCjeji)elj-ieijCj)eji. Properties (28) and (7) imply etJc, is in A(j n N=0. Thus,

cy = iCjCjAeij, so with (29) we know

(30) Cj = (e„c,)eM.

In (13) let x = e;i and v=/;- to get «%cy = 0 with the help of (5), (6), and (8). This with

(30) implies Cj = 0 or

(31) enfij = 0.

Let di=fijeñ. It follows, using (16), that [</«.] = [0], so d¡ is in N. This together with

(6) implies

(32) d, is in Au n JV.

Using (11), we have dfin—ejXd¡ is in An n /V=0 so from (32) and (10) we obtain

(33) dfin = ejidj is in Ait n TY.

In (12) let x=«4 j = e,¡, and z=e„, then employ (32), (8), (18), (32) again, and (33)

to obtain ^«(¿f^fl^tf-fa^/W Using (32) and (7), we have efjdj is in Ai} n JV=0,

so

(34) rf, = idje„)ei,.

Utilizing (12) with x=fu, y = eu, and z = ejh (18), (31), and (27), we get i/,gw

=fii+2e,t(f(je,j)-(fijeij)eji. This with (33) and (4) implies 4e„ is in A„ n ^w=0,
so from (34) 4=0 or

(35) ¿A, = 0.

By (13) with x=fj and y=eu, (5), (4), and (6), we have (<%/,)/, = 2///,«%) is in

Ajj n ^¡¡=0, so

(36) (ey/y)/, = 0.



106 T. J. MILES [November

Equations (27) and (36) imply

(37) (faáfii - 0.

Equation (36) and the line preceding it imply

(38) Mfjeij) = 0.

Using (16), we have

(39) [ftleti] = [w][eij].

We obtain upon employing (39) and (17) UnifiAi)] = [««]• This with (4) shows

that fiifije^-eij is in N n Au = 0, so

(40) fytftAi) = *t-

Equations (27) and (40) imply

(41) UtA/Vfi = -en-

Utilizing (13) with x=et, and y=fj, (5), (4), and (6), we get (/,<?iJ)ei/=2eií(e¡J/;) is

in Ajj n ^¡¡=0, so

(42) IV«)*» = 0,

and eijieijfj) = 0 which with (27) gives

(43) etiifjeu) = 0.

From (39) and (16) we have [C/«e)1)ey]=I_/}4], so with the aid of (4) we get

ifiiett)eij-fii is in Af n An=0, so

(44) (/«■?«>« = fa-

This with (4) and (27) implies

(45) <?»(/>,;) = -f*.

Let gji=fijeij which is in An by (4). Using (12) with x=g;i, y=fjh and z = ey¡, (27),

(4), and (6), we obtain 2^i(/ieyi) + 2eyi(/¡gyi) = (g,i/¡)'?« + ('?>¡/i)í?,i is in ¿yy n ^if

=0, so gjiifjieji)= -ejiifjigji) which with (40) and (18) yields

(46) i fneu)ifne jd = -%.

Notice that multiplication of basis elements of C is (isomorphically) the same

as multiplication of basis elements of A -N from the fact that/y is in Afj, (5), (18),

(25), (26), (31), (35), (37), (38), and (40)-(46). Thus C is a split Cayley algebra.

Corollary. Suppose A is a nearly (1,1) algebra containing 1 over a base field F

of characteristic not 2 or 3 such that N=Gie)for each idempotent e# 1 in A. Also,

suppose A — N is a split Cayley algebra. Then A has a Wedderburn decomposition.
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Proof. By the preceding theorem, A contains a split Cayley algebra C. Since

there is a unique split Cayley algebra over F, C~A — N. The radical of A — N is 0,

so the radical of C is 0. But N n C is a nil ideal of C,so N n C=0. Then a dimen-

sion argument shows that A = C+N, a Wedderburn decomposition of A.

We now strengthen this corollary to the following

Theorem 2. Let A be a nearly (1,1) (nearly (—1,0)) algebra containing 1 over a

base field F of characteristic not 2 or 3. Suppose A — N is a split Cayley algebra over

F. Then A has a Wedderburn decomposition.

Proof. Let Q be the class of algebras B over F satisfying the hypotheses of this

theorem, i.e., (i) B is nearly (1, 1), (ii) 1 is in B, and (iii) B—NB is a split Cayley

algebra where NB denotes the radical of B. Let A be in Q. The proof proceeds by

induction on the dimension of A. Since A — N is a Cayley algebra, dim (A — N) = 8,

so dim ,4^8. If A has dimension 8, then A^A — N. Since rad(A — N)=0, N

= rad A = 0, so A — N=A—0^A, implying A = A+0 is a Wedderburn decomposi-

tion of A. Suppose dim A =n > 8 and assume inductively that every algebra B in Q

having dimension less than n has a Wedderburn decomposition. By Lemma 2.2 of

[8], A has a Wedderburn decomposition if it can be shown that A contains an ideal

M other than 0, N, and A and that Q has the properties: (a) if B is in Q, then

B — NB is simple; (b) if B is in Q and M<= NB is an ideal of B, then B—M is in Q;

and (c) if B is in Q and C is a subalgebra of B whose image in B -» B—NB is a

nonnil ideal of B—NB, then C is in Q. With heavy reliance on the isomorphism

theorems one can show that Q has properties (a), (b), and (c).

If N=G(e) for every idempotent e# 1 in A, then by the corollary to Theorem 1,

A has a Wedderburn decomposition. Note that A contains an idempotent different

from 1. Since ^4— N is a split Cayley algebra, A — Ncontains [an isomorphic copy of]

M2, so A — N contains the matric unit [uxx]. By [8, Lemma 2.1], A contains an

idempotent e such that [e] = [iin]. If c= 1, then [l] = [e] = [«11] contrary to the

definition of [ulx]- Thus A contains an idempotent different from 1, namely e. This

proof will be complete when we treat the possibility that A has an idempotent e^=l

such that N^G(e).

Suppose A contains such an idempotent e. If the ideal G(e)^0, A, then by Lemma

2.2 of [8], A has a Wedderburn decomposition. We know G(e)#/1 since 1 is in A2

but (G(e))2 = 0. Suppose G(e) = 0. Then 0 = G(e) = Gx(e) + G0(e) = AoxA00 + AxoAxx

where for the remainder of this proof Afj denotes Aif(e) for i,j=0, 1. Thus,

(47) AijAu = 0   for / = 0 or 1 and y = 1 -/ when G = 0.

Let axx be in Axx and axo be in Axo. In (12) let x = e, y = axx, and z=axo and apply

(47) to get -ûiio10 + e(û,iia10) = 0. It follows, using (9), that AX1AX0^=AX0. Utilizing

(12) with x = a00inA0Q, y = aQ1 in A01, and z = e, (47), and (9), we havee(a00aox) = 0,

so a00aox is in A00 + A01. By (9), a00aox is in Aox + Axx. Thus, a00aox is in Aox, or

^oo^oic^oi- We now have

(48) AnAij e= Atj   for / = 0 or 1 and y = 1 —i when G = 0.
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Let L = AX0A0X + Axo + Aox + A0XAX0. From the proof of Lemma 4 of [6] together

with (47) and (48) it follows that L is an ideal of A. If L^O, N, A, then A has a

Wedderburn decomposition by Lemma 2.2 of [8]. Consider, then, the three remain-

ing cases.

Case 1. Suppose L = 0. Then ^10=0 = ^oi» so A = AXX + A00. Now Axx is an

ideal of A, Axx /0 since eis in Axx, Axx^ N since«? is in Axx but is not nilpotent, and

AXX^=A since e^l. By Lemma 2.2 of [8], A has a Wedderburn decomposition.

Case 2. SupposeZ. = A^. Then^401cNand A^^N, so takinga Peirce decomposi-

tion of A — N with respect to [e], we have A — N=iA — N)00 + iA — N)xx. Thus

iA — N)oo is an ideal of A — N. But ^-A'is a split Cayley algebra, so is simple, so

iA - N)oo = 0orA-N. Since [1 ] is in A - N but not iA - N)00, iA - N)00 = 0. Hence

A — N = iA — N)xx. Then [e] is the identity of A— N so [e] = [l] implying that e— 1

is nilpotent. However, e—1^0 since e^l, ie— l)2 = e2 — 2«?+l = — e+l ^0, and

inductively (e—l)n = (—l)n+1(e—1)/0, for any positive integer «. This contra-

diction forces us to discard this case, i.e., L^N.

Case 3. Suppose L = A. Then ^i0^oi + ^io + ^oi + ^oi^io = ^ii + ^io + ^oi

+ A00, so AX0A0X = AXX and ^0i^io = ^oo- By Lemma 5 of [6], Axx and A00 are

associative (hence alternative) subrings of A. From the proof of Theorem 4 of [6]

together with (47) and (48), A is alternative. Thus by [10, Theorem 3.18], A has a

Wedderburn decomposition.

We have now shown that A must have a Wedderburn decomposition. By

mathematical induction, any algebra A in Q has a Wedderburn decomposition.

A nearly (—1,0) algebra satisfying the hypotheses of this theorem is anti-isomorphic

to a nearly (1, 1) algebra satisfying the hypotheses of this theorem. Since the latter

has a Wedderburn decomposition, the former does also.

We now modify Theorem 2 to the following result.

Theorem 3. If A isanearlyH, 1) inearly (— 1, 0)) algebra containing 1 over a base

field F of characteristic not 2 or 3 such that A — N is a Cayley algebra and N2 = 0,

then A has a Wedderburn decomposition.

Proof. Since A — N is a Cayley algebra, [9, p. 605] states that there is a scalar

extension K of finite degree over F such that iA — N)K is a split Cayley algebra. We

show that the radical R of AK is NK. R — NK={[x] : x is in R}, where [x] denotes the

image of x in the natural mapping AK ->■ AK — NK, is an ideal of the simple algebra

iA-N)K, so R-NK = 0 or R-NK = iA-N)K. But R-NK^iA-N)K since [1] is in

iA-N)K but not R-NK. Thus R-NK = 0, so R<=NK. Since N2=0, N|=0, hence

NK is a nil ideal of AK, so NK^R. Therefore, R — NK. The remainder of the proof is

the same as the associative case as given by Albert in Theorem 3.23 of [1].

We now prove the main result of this paper.

Theorem 4. If A is a nearly (1,1) inearly (—1,0)) algebra over a splitting field

of characteristic not 2 or 3 such that A has no nodal subalgebras, then A has a

Wedderburn decomposition.
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Proof. Let P be the class of all algebras A satisfying the hypotheses of this

theorem, i.e., A is in P provided

(i) A is an algebra over a splitting field of characteristic not 2 or 3,

(ii) A is nearly (1, 1),

(iii) A contains no nodal subalgebras.

First, we show that F is a decomposable class as defined by Rodabaugh in [8],

i.e., for each A in P

(a) A is strictly power-associative over a field of characteristic not 2 or 3,

(b) ^-AfisinF,

(c) if B is a subalgebra of A whose image in A -> A — N is a nonnil ideal in A — N,

then B is in P,

(d) if A is semisimple (A nonnil and N=0), then A=AX ©• • •© At where each

A¡ is simple with a unity element, and

(e) At(e)At(e)<^ At(e) for r = 0, 1 if e is an idempotent in A.

Let A be in P with base field F. By (i) and (ii), condition (a) is satisfied. A — N is

in P since (i) Fis a splitting field of A— N, (ii) A — N is nearly (1, 1), and (iii) by

Theorem 4.2 of [8], A — N contains no nodal subalgebras since A contains none.

Thus, (b) is satisfied. Suppose B is a subalgebra of A whose image in T: A -> A — N

is a nonnil ideal in A — N. It follows that Fis a splitting field of T(B), of B — rad B,

and of B, so B satisfies (i). Clearly B, being a subalgebra of A, satisfies (ii) and (iii).

Thus, B is in P, so (c) is satisfied. By Theorems 7 and 9 of [6], (d) is satisfied. By (2),

(e) is satisfied. Thus, P is a decomposable class.

By Theorem 2.1 of [8], F is a Wedderburn class if the center C(P) of F is, where

a member A of F is in C(P) provided 1 is in A and A — N is simple. Let A be in

C(P). To show that A has a Wedderburn decomposition, we consider two cases

according to whether 1 is the only idempotent of A or whether A has an idempotent

different from 1.

Case 1. Suppose 1 is the only idempotent of A. Then [1] is a primitive idem-

potent of A— N since if [/] is an idempotent of (A — N)([\], 1), then there exists an

idempotent e in A such that [e] = [/] by Lemma 2.1 of [8], but e=l, so [/] = [1].

Since Fis a splitting field of A — N, every element in A — N=(A — N)([l], 1) can be

written as a[l] + [j] with a in Fand [y] nilpotent. If the set of nilpotent elements

of A — N does not form a subalgebra of A — N, then A — N is nodal, so A is nodal

by Theorem 4.2 of [8] contrary to the hypothesis of this theorem. Thus, the set B

of nilpotent elements of A— N is a subalgebra of A — N. Furthermore, B is an

ideal of A—N. Since A is in C(P), A — N is simple, so B=0 or B = A — N. However,

[l]isin^-7Vbutnot5,so5 = 0.Thus^-A'={«[l] : a is in F}. Clearly ,4 -TVs Fl,

so A = Fl +N is a Wedderburn decomposition of A.

Case 2. Suppose A has an idempotent e#l. Then [e]#[l]. By Theorem 6 of

[6], A — N is alternative. Since [1] is in A — N, A — N is nonnil. Kleinfeld [5] has

shown that a simple nonnil alternative algebra is either a Cayley algebra or is

associative. Consequently, A — N is either a Cayley algebra or is associative.
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Suppose A — A' is a Cayley algebra. If A — N were a division algebra, then [<?]([e] — [1 ])

= íeY — [e] = [0], so [e] = [0] or [<?] = [1] contrary to e being an idempotent different

from 1. Thus, A — N is a split Cayley algebra. By Theorem 2, A has a Wedderburn

decomposition. If A — N is associative, A has a Wedderburn decomposition by

Theorem 6.1 of [8].

We have now shown that C(F) is a Wedderburn class, so P is also. Thus every

nearly (1, 1) algebra satisfying the hypotheses of this theorem has a Wedderburn

decomposition. A nearly (—1,0) algebra satisfying the hypotheses of this theorem

is anti-isomorphic to a nearly (1,1) algebra satisfying these hypotheses so has a

Wedderburn decomposition.
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