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1. Introduction. Let D be a domain in the complex plane, and let H°°(D) be

the algebra of bounded analytic functions on D. When equipped with the norm of

uniform convergence, H°°(D) becomes a uniform algebra, whose maximal ideal

space will be denoted by Ji(D). The domain D can be identified with an open

subset of Jt(D), by identifying a point Xe D with the homomorphism "evaluation

at A." Each function in H'C(D) has a natural continuous extension on Jt(D), which

is given by its Gelfand transform.

There are two questions associated with Jt(D) which arise naturally. The first

is the corona question, which asks whether D is dense in Jt(D). Carleson [2] proved

that the open unit disk A is dense in ^#(A). Stout [9] and others extended Carleson's

theorem to finitely connected planar domains, and, more generally, to finite open

Riemann surfaces. We will present a technique which gives some information on

this count for infinitely connected domains, and which shows that the corona

conjecture is true for a certain class of infinitely connected domains. And we will

show that if the corona conjecture fails for some domain, then it already fails for

domains of particularly simple types, for instance, for a domain obtained from the

open unit disk by excising a sequence of disjoint closed subdisks which converge

to a prescribed point. The technique involves expressing Hco(D) as essentially a

countable direct sum of the algebra //"(A), and invoking Carleson's result.

The second question involves determining to what extent an analytic structure

can be introduced into subsets of J((D). Define an analytic disk in Jt(D) to be the

image of A under any one-to-one map T of A into Jt(D) which has the property

that/o Pis analytic for each/e HCC(D). Define an analytic set in J((D) to be any

connected set which is a union of analytic disks. Then D is an analytic subset of

Jt(D), and it is natural to ask what the other analytic subsets of J((D) are.

To approach this problem, the notion of a Gleason part is decisive. Two homo-

morphisms <p, <p e Ji(D) are said to be in the same Gleason part if

sup{W)-0C/)| \feH~(D), ¡/I á 1} < 2.
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By Schwarz's lemma, each analytic subset of J?(D) is contained in a single Gleason

part. The basic problem of analytic structure in Ji(D) might be phrased as follows:

Are the Gleason parts of Jt(D) all analytic subsets of Jt(D); and, if so, in what

way does the analytic structure of each Gleason part reflect the analytic structure

of Dl

Now the first information on the parts of ^#(A) is contained in the paper of

I. J. Schark [8], where it is shown that Jí(b¿) contains analytic disks distinct from

A. In [5], Hoffman showed that each Gleason part of Jl(ts) is either a single point

or an analytic disk. Later, in [7] Hoffman gave a description of exactly how the

analytic disks in J{(&) arise. He also indicated that his description carried over to

Jt(D) whenever D is a finite open Riemann surface. One of our principal objects

is to obtain information on this point for a class of infinitely connected domains.

Up to now, these are the only infinitely connected domains for which a reasonably

complete description of Ji(D) is known.

The domains which we will consider in this paper are obtained as follows. Let

V be a domain in the complex plane and let {A„} be a sequence of closed disks

contained in V with centers an which cluster on dV. We say that the A„ are hyper-

bolically-rare if there are disjoint closed disks Dn with centers a„ such that

AncD„c v, and such that

V rad An

Note that by shrinking slightly the radii of the Dn we may further assume that

n-°o  d(an, dV)

We will show that if the corona conjecture holds for V and U is obtained from V

by deleting a hyperbolically-rare sequence of disks then the corona conjecture holds

for U. Further, in this case, each Gleason part of J£(U) is a single point, an analytic

disk, or is obtained by identifying with each point of a Gleason part of Ji(V) the

origins of a number of distinct analytic disks. In particular, if each Gleason part of

Ji(V) is an analytic subset, then each Gleason part of M(U) is an analytic subset.

Perhaps the simplest infinitely connected domains are obtained by deleting from

the open unit disk a sequence of disjoint closed disks with centers on the positive

axis which accumulate only at the origin. These domains, called L-domains, were

studied by Zalcman in [10]. Let D be such a domain obtained by deleting the disks

An with centers an and radii rn. Zalcman showed that if 2 rJan < °°> then

277Í JdD    £

defines a homomorphism of HX(D), and that this homomorphism is in the same

Gleason part as D. In the announcement [1] we consider the case when 2 rn/an<ao
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and an+x/an<c< 1 for some constant c and all «. In this case the A„ are hyper-

bolically-rare in A\{0}. We show that the Gleason part containing D is equal to the

disjoint union of D and a set homeomorphic to ß(N) x A with ß(N) x {0} identified

to $0. Further each fe Hco(D) is analytic on each "slice" of ß(N)x A. All other

Gleason parts are single points or analytic disks. Here /3(A) is the Stone-Cech

compactification of the integers A, and ß(N)=ß(N)\N.

Our analysis of HX(U), when U= V\(J An with {A„} hyperbolically-rare in V,

will follow the following outline. In §2 we write each/e HX(U) as a sum of Cauchy

integrals around the holes An and describe the relationship between the boundary

behavior off and the behavior of this set of Cauchy integrals. In §3, we show that

there is a natural embedding <D of Ji(V)\Vinto Ji(U) with the property that for

each i/j e Ji(V)\V, <I>(i/i) is an extension of </) to HX(U). In §4 we study the algebra

Z/M(Ax A) of bounded functions on Ax A which are analytic on each "slice"

Ax{«}. Let AZo(U) be the fiber algebra of restrictions of functions in H'*(U) to the

set of homomorphisms in Ji(U) which take the value z0 on the coordinate function

z. In §5 we show how to represent AZo(U) as a subalgebra of//°°(A x A) © AZo(V),

modulo a closed ideal. In §6 we use this representation to prove the corona theorems

for H°°(U) and to describe the Gleason parts of HX(U). In §7 we consider the

special case V— A. Finally in §8 we consider to what extent our methods work when

sets more general than closed disks are removed from A\{0}.

2. Decomposition of H"(U). From now on we assume that V is a complex

domain for which the corona theorem holds, and that U is the domain obtained

from V by deleting the hyperbolically-rare sequence of disks {An} contained in V.

Our analysis of //'"(t/) will be based on the following lemma.

Lemma 2.1. If e>0 and M>0 are given, there exists an integer A such that:

Iffn e ff-(AS),/»((») = 0, and \\fn\\ ÍM, then

2  \fm(z)\ <e, zt U  Dn,

2      |/m(z)|<«,        zeDn.

Proof. Here Acn is the complement of An on the Riemann sphere. Define Ln(z)

=(rad An)/(z-«n). We have |Ln(z)| ^(rad An)/(rad Dn) for z <ß Dn. If/n g H°>(àcn)

with ||/n|| á M and/n(co) = 0, Schwarz's lemma gives that |/n| ^M|Pn| in A£. Hence

if we choose A such that 2 (rad An)/(rad Dn) < e/M then for z ^ Unëw Dn we have

2 i/»(z)i ^ 2 M¡L¿z)\ ^m2 S^2<-,
»äff nèJV niNlcíuLJrt

proving the first statement of the lemma. The second is proved similarly.

For/6 Hœ(U) and «^ 1 we define

PtfiM       1    f    /(¿) d£        7cAc
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Pn is a projection of T¥œ((7) onto the functions in H°°(A£) which vanish at oo. If

fie HX(U) extends analytically to i/uA„ then Pn(f)=0. In particular, we have

PjPk = 0   ifj^k.

Let 8 be chosen such that for every n the disk of radius (1 + S) rad An and center an

is contained in U u An. We have in this disk minus An, for each/e HX(U),

¿7Tl Ju-a„|=(l + ó)radA,,    Z—t,

Hence on ôAn we have

MV/WI í UW+¿ J W
¿"l J|?-a„|=a + <i)raiiA„       |£ —z|

^(1 + 1/8)11/11.

We have shown that supn \\Pn\\ <oo.

We can now apply Lemma 2.1 to the sequence of functions {Pnf}. By that lemma

2"=i ^n/will converge uniformly on compact subsets of Uto an element of //"(t/)-

Then/—2™= i Pn/will define an analytic function on U which extends analytically

to V. Let P0/be the analytic extension of/—2t?=i -Pn/to V. P0 is then a projection

of 7/°°(i/) on HX(V) which is orthogonal to P¡ when;^ 1.

The following lemmas describe the boundary behavior of the Pnf

Lemma 2.2. Let z0e dV. Given e>0 there is a 8>0 such that

ze U\(J Dn   and   \z — z0\ < 8 /(z)-(Po/)(z)-2(^n/)(Zo) < e.

Proof. By Lemma 2.1 2"= i Pnf converges uniformly on ({J Dn)c and defines a

continuous function there. The lemma follows.    |

We have already noted that in the definition of hyperbolically-rare we may assume

that

n-oo d(an, dV)

By Schwarz's lemma we have that

sup{|/(z)-/(an)|:zei)n}  '
d(an, dV) » »

for each feHm(V). If we define the variation of/ on Dn to be VarDn(/)

= sup {\fiz)-fiw)\ : z,we Dn) we thus have, for each/e H°°(V),

lim VarDB(/) = 0.

Lemma 2.2 now gives the following lemma on cluster sets.
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Lemma 2.3. Ifz0edVandfeH™(U), then

Cl (P0/ z0, V) + 2 (PJ)(z0) = Cl (/ z0, v\ ^ A.)-

Proof. Here Cl (/ z0, A) = {X | there is a sequence {zn}<=A with lim zn=z0 for

which lim/(zn) = A}. By Lemma 2.2 we have the above equality with V replaced

by V\{J Dn on the left. As VarDil(P0/) ->■ 0 as «-»oo, we can replace V\\J Dn

byK.    |

The following lemma is similar to Lemma 2.2 but describes the behavior of the

Pn/in (J A,

Lemma 2.4. Given e>0 andM>0 there is an N0 such that iffe //""(i/), ||/|| ÚM

and n ̂  A0 then

f(z)-(PJ)(z)- 2 PmfM < e

for z e Dn.

Proof. By Lemma 2.1 we can choose Nx such that ^miNumi¡n |Pm/(z)| <e/2 for

z e Dn with « ^ Nx. We can now choose A0 ä Nx, such that

rzjf (Pm/))VarD I > (Pmf)   <e/2

for « ̂  A0. This A0 works.

3. The distinguished homomorphisms. We will identify a function in Hm(V)

with its restriction to U and, in this way, consider HCC(V) to be a subalgebra of

//"([/). There is a natural mapping P of Jt(U) into ^(K) which is defined by

restricting each element of Ji(U) to H°°(V). R is, of course, continuous. For

</. eJ((\J), we define the "fiber at </i" to be ^(U) = R-1(iji). JÍJJJ) is the set of

homomorphisms in Jl(ll) which extend 0 to H"(U). Our first theorem will tell us

that each >/s in Jt(V)\V can be extended to H°°(U) in a way which varies con-

tinuously with </>. Identifying each element ¡ft of Ji( V)\ V with the extension <D(</i)

given by this theorem gives a canonical embedding into J((U). <5(¡/<) will be called

the "distinguished" homomorphism at <ji. This definition is motivated by the

example where V= A\{0} and the A„ have centers on the positive axis which converge

to 0. Such domains, called L-domains, were studied by Zalcman in [10]. He showed

that, in this case,

•"-¿W
defines a homomorphism of HX(U) which is in the fiber at the origin. He called

this homomorphism the "distinguished" homomorphism at 0. Each function in
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/¿"""(A^O}) extends analytically to A so that we may identify J(0iV) with the point

0. Then

0>(0)(/) = Po/(0) +2>n/(0)
71=1

„=o 2^i JSAn     f 2wi Jarj     I

= *0(/)       (A = A0),

so that O(0) and <I>0 are the same homomorphisms.

Theorem 3.1. For ifi e Jf(V)\\J Dn, define

<*#)(/) = rW)+ 2 (r<SMz))>
71=1

for fie H™(U). Then $ is a homeomorphism of J¡Í(V)\\J Dn into J(iU) and

Ri<$>i$))=$ for each «/. e JtiV)\\J Ai-

Note. Here z is the coordinate function on V.

Proof. <P(</i) is evidently a continuous linear functional on Hm(U), for each

>/> e Jt(V)\\J Dn, so that O is a bijection of Jt(V)\\J A into the dual of H°>(U).

If W>}ci'(I/)\U A converges to </> then i/>A(z) converges to </>(z). As {^(z)} will be

contained in the closure of V\(J A and each 2rT=iPn/is continuous on this set,

we have that 2"= i ¿VW*)) converges to 2"=i PnM(z)) for each/e H'iU). It

follows that 3> is a continuous mapping of J?(V)\{J Dn into the dual of HX(U)

when this dual space is equipped with the weak* topology. Now for if> e V\(J Dn

we have i>(«/i)=i/r, so that $(</>) is multiplicative for all </> in a dense subset of

■^(V)\U A (dense by the corona theorem for V). Continuity now gives that each

<t>(ip) is multiplicative. That $(</r) eJ($(U) is also now clear. |

For a complex number z0 define the "fiber at z0" in Jt(V) to be the set

JiZü(V) = WeJt(V)\</>(z) = z,\

Define JtzJJJ) similarly. As we have identified z0 and "evaluation at z0" for z0 e U,

we have given two definitions of the fiber JtZa(U). These two definitions agree and

we have for z0e U that ^0(C/)={z0}.

Theorem 3.2. Let z0 e 8V with z0 not in the closure 0/{<*„}. Then each element of

JtZo(V) has a unique extension to HX(U) and 0 defines a homeomorphism ofJiz^V)

onto JtZa(U).

Proof. Let </> e JtZo(U). For each/e H<°(U), 2"= 1 PJ"-2"= 1 Pnf(z0) is analytic

in a neighborhood of z0 and vanishes at z0. It follows that this function is divisible

by z—z0 and is hence in the kernel of ¡/>. Thus

•AGO = KPoD+42 P«A = Wo/)+ 2 pnfi^o)
\n = 1 / n = 1

and if1 is hence a "distinguished" homomorphism.
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We have noted that we may assume that Var^ (/) -*■ 0 for each fe HX(V). A

simple consequence of this is the following :

Lemma 3.3. If {zA} is a net in V which converges to >fje^(V)\V and each

zA e \J D„, then </> is in the closure of{an} in Ji(V).

We state this lemma so that we may prove the following extension of

Theorem 3.2.

Theorem 3.4. Each <f¡ e J(( V)\ V which is not in the closure of{an} in Jt(V) has a

unique extension to HX(U) which is contained in the closure of U in J((U).

Note. Since we will show that the closure of U, in J((U), is equal to J((U), the

extended homomorphism of Theorem 3.4 is, in fact, unique.

Proof. Let {z>}<= Uhea net which converges to an element of Ji^(U). By Lemma

3.3 {zA} is eventually in I/\U Dn, and hence, by Lemma 2.2, converges to O(</0.   I

This is a convenient place to state the following result which is due to Gamelin

[4]. AZo(U) is the algebra of restrictions of functions in //°°({7) to J¿Za(U).

Theorem 3.5. AZo(U) is a uniformly closed algebra with maximal ideal space

JiZa(V). For eachfe //°°(t/),/(^0(t/))=Cl(/, z0, V). In particular,

sup \RJ14V))\ =sup|Cl(/z0,i/)|.

Using Theorem 3.5 we can prove the following technical lemma which will be

needed later. The mapping defined by Ln(z) = (rad An)/(z—<xn) maps the complement

of An onto the open unit disk and is equal to 0 at oo. Fix zQe 8 V. By Lemma 2.1,

for each Pc/v",

hP = 2Ln-^Ln(zo)
neP nsP

will converge uniformly on compact subsets of U to a function in //°°([/). Let

h=hN. Note that hP was so defined that hP+hPc=h and Cl (hPhPc, z0, U)={0}. By

Theorem 3.5 this means that N.B. hPfiP<: vanishes on Jf,JJJ).

Lemma 3.6. If </> e J¡fZo(U) is such that 4>(hP)^0, and/e//°°(K) is such that

\f(an)\<efor allneP, then W)\ úe/\^(h)\.

Proof. It is easy to see that Cl (hP, z0, V\{J P/n)={0} and that sup |C1 (hP,z0, U)\

g 1. It follows that sup |C1 (fhP, z0, U)\ ̂  e. Hence, by Theorem 3.5, \>l>(f)<l>(hp)\ ^ <*.

Now ij>(hP)>/>(hPc)=0 and </>(«?) # 0 so that */i(hP°)=0. From h=hP+hP° it now follows

that <f,(h) = 4>(hP) + >{i(hPc)=4>(hP). We thus have that \4>(f)èe/\4>(hP)\=e/\^(h)\.
N.B. Proof. Let z¡ e V, z¡ -> z0. By passing to a subsequence we may assume that

Zi e Unep Dn, say, since if all z( ^ (Jn6p Dn, then clearly 2neP Ln(zx) -+ 2n£p Ln(z0)

and hence lim «P(z¡)=0. Now if all z¡ e \JneP Dn then Lemma 2.1 gives

2 Ln(zi) -* 2 L»(zo)
níP niP

and hence lim «pc(z¡)=0.
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4. The algebra //"(Ax TV). Let //"(Ax TV) be the algebra of bounded func-

tions on Ax TV which are analytic on each "slice" Ax{«}. if "(Ax TV), when en-

dowed with the supremum norm, is a Banach algebra. We denote the maximal

ideal space of this algebra of Jiï(Hx(A x TV)) and consider A x TV to be a subset of

.^(//"(AxTV)) by identifying each (A, n)e Ax TV with the corresponding point

"evaluation at (A, n)" in .#(//"(AxTV)). For each point i/ieJ^iA) and each

ne TV define the point (</>, n) e.^(//"(AxTV)) to be that homomorphism of

//"(AxTV) for which (<M)(/) = </-(/(•, «)) for each /e//"(AxTV). The set

J?iA)x{n} defined in this way is a subset of .^(//"(AxTV)) which is homeo-

morphic to ^(A). This subset is equal to the closure of A x {n}, is both open and

closed, and is the maximal connected subset of ^(//"(AxTV)) which contains

A x {«}. The set^#(A) x TV thus obtained contains those homomorphisms //°°(A x TV)

which are independent of the behavior of each fie //°°(AxTV) in the limit as

n —> 00. Our first theorem will describe the remaining set of homomorphisms of

//"(Ax TV) by decomposing it in a manner similar to the decomposition of

^#(A) x TV into the sets .#(A) x {«}.

We will identify /" with the subalgebra of //"(A x TV) consisting of these func-

tions which are constant on each "slice" Ax{«}. The maximal ideal space of/00

is equal to |3(TV), the Stone-Cech compactification of TV. Hence we obtain a con-

tinuous mapping S of ^(//"(A x TV)) into ßiN) by restricting each homomorphism

of //"(Ax TV) to /". For each w e ßiN) let 3>(m) = S-\o>), and for each A<=ßiN)

let 3¡iA) = S-\A).

Theorem 4.1. {^(to) : w e ßiN)} is a decomposition of ^#(//°°(AxTV)) into

maximal connected sets. Each 3>ioj) is a generalized peak set. For ne TV, Sdiri)

=J?iA)x{n}.

Proof, For each P<=N define the function IP e//"(AxTV) by /P(A, n) = l if

neP and /P(A, n) = 0 if n e Pc. We consider the point eu e ßiN) to be both a homo-

morphism of /" and an ultrafilter on TV. It is easy to see that for each to e ßiN) we

have

<*(«) = n /fKI)-
Peto

This shows that S(co) is a generalized peak set. Now the restriction of //"(A x TV)

to Q>iw) is a Banach algebra with maximal ideal space S(«j), so that, by a general

theorem on Banach algebras, to show that 9¡io>) is connected it suffices to show that

for each/e//"(AxTV) the set/(^(cu)) is connected. If ^(a>) is connected it is

obviously maximal with this property.

Let weßiN). For each fie //"(AxTV) let /„ e //"(AxTV) be defined by

MK ")=/(A, ")-/(0, n) + "({/(0, •)}). We have

Asi»)) =fjßio,)) = n/«(£l(i)) = n cicada))).
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This last set is connected since each set Cl (fJJP 1(1))) is connected and these sets

are a filter base. That 3i(n) = JÍ(A) x {«} for ne N is obvious.

We note that {3>(o>) : o> e ß(N)} is not the antisymmetric decomposition of

M(HX(A x A)). For iffe //"(A x A) is such that/(-, n) maps A conformally on

the rectangle with vertices (0,0), (0, 1/n), (1,0), (1, 1/n) then/is real and non-

constant on each S>(io) with w e ß(N).

The algebra //œ(A x A) in many ways resembles the algebra //"(A). In particu-

lar, a corona theorem holds for //°°(A x A).

Theorem 4.2. Ax A is dense in the maximal ideal space ^#(//°°(Ax A)) of

//"(Ax A).

Proof. Suppose/^ .. .,/„ e Ha(AxN) satisfy |/i| + • • • +|/n| ^8>0 on Ax A.

We must find gx,...,gne //"(A x A) satisfying £/& = 1. By Carleson's solution

of the corona conjecture for the unit disk A, there are functions glm,..., gnm

e //"(A x {m}), such that Jj=xfjg,m= 1 on A x {m}, and such that |gim| g M, where

M depends only on S. The gjm then determine functions g¡ e H "(A x A) which do

the trick.    |

Now //°°(A) can be considered a subalgebra of C(Y), where Y is the maximal

ideal space of Lco(8A, dO). In fact, H°°(A) is a strongly logmodular algebra on Y,

in the sense that every u e CR( Y) is equal to log |/|, for some/e //°°(A). Regarding

Hx(Ax{m}) as a subalgebra of C(Yx{m}), we see that //"(AxA) becomes a

subalgebra of the Cech compactification ß(YxN) of YxN.

Theorem 4.3. //"(Ax N) is a strongly logmodular algebra on ß(Yx A).

Proof. Let u e CR(ß(Yx A)), and let um he the restriction of m to Yx{m}. There

is/m e //"(A x {m}) such that log \fm\=um, regarded as functions on Yx {m}. The

fm determine a function/e //"(A x A) such that log |/| =u on Yx N and hence on

ß(YxN). That does it.

As a consequence of Theorem 4.3 and Hoffman's paper [5], we can state the

following corollary.

Corollary 4.4. Each Gleason part of H "(A x A) is either a single point or an

analytic disk.

Define a function Ze//°°(Ax A) by Z(A,«) = A. Clearly ||Z|| = 1.

Theorem 4.5. The subset of Jt(Hx(Ax A)) on which \t\<\ is homeomorphic

to Ax/SA.

Proof Define a mapping G : A x ß(N) -* J?(Hœ(A x N)) by G(A, œ)(f) = o>(f(X, ■ ))

for ail (A, co) e A x j8(A) and fe //"(Ax A). G is obviously bijective. For each

(A,n)eAxA we have G(A, «) = (A, «). We claim that G(Ax|3(A))=^-1(A).

Clearly G(Axß(N))^t-1(A). Each element of Î.-\X) vanishes on the ideal of

functions in H °° ( A x A) which vanish on {A} x A and hence defines a homomorphism
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of //"(A x N) I {A} x TV. By the definition of G, this homomorphism must be among

Gi{X}xßiN)), so that G({X}xß(N))^Z-1(X) and G(Axß(N))^E~1(A).

The projection on A x ßiN) defined by (A, a>) ->- A is equal to Z o G and the

projection on A x ßiN) defined by (A, <x¡) -> w is equal to 5 » G. Hence C7 is an open

mapping. For 0<r< 1, let Ar = {z | \z\ f^r}. Then G(Arxß(n))=Z~1(Ar) is compact

so that G is a homeomorphism on Ar x ßiN). That G is a homeomorphism now

follows from the fact that a set O in A x ßiN) is open if and only if for each r,

0 n (Ar x ßiN)) is open in Ar x j3(TV).    |

We identify each point (A, w) with its image G(A, to).

We remark that Ax{oi}c§(íd), but that Ax {to} is not dense in 3i(oS). In fact,

let Ye //"(Ax TV) be defined by Y(X, n) = Xn. Then Y vanishes on each Ax{co}

with co e ßiN)\N but has modulus 1 everywhere on the Shilov boundary and

hence, as 3)(oS) is a generalized peak set, at some point of 3¡(m).

Let //0"(AxTV) be the subalgebra of //"(AxTV) consisting of those functions

which are equal to 0 on the set {0} x TV. //"(A x TV) is equal to the Banach space

direct sum of Hq(AxN) and /". This decomposition is given by f=g + h where

giX, n)=fiX, n)-f(0, n) and //(A, n)=/(0, n). Let ^(/70"(AxTV)) be the maximal

ideal space of the algebra obtained by adjoining the constants to Hq(AxN). We

have //0"(A x TV)=Z//"(A x TV).

If ^ is a nonzero homomorphism of //"(AxTV) then ip(z)^0 and if>(f)

=^(z/)/^(z) defines,a homomorphism of //"(AxTV). To check that this is a

homomorphism it suffices to show that

wg)im = <i>(zf)4>(zg)/(<i>{z))2-

This follows from the formula tf>(zf)tfi(zg) = >/'(z)if>(zfg), which holds since z, zfi zg,

and zfg are in //"(A x TV). This construction shows that the extension $ is unique.

The space ^(//0"(AxTV)) is thus obtained from Ji(Hx(AxN)) by identifying

Z _1(0) to a point. We note that the extension of a homomorphism of //¿¡°(A x TV)

to //"(AxTV) is also determined in the following way. For P<=TV let ZP(X, n) = X

if neP and ZP(A, n) = 0 if n e Pc.

Lemma 4.6. Let >/> eJf(Ha'(AxN)). If <\>(ZP)±0 and fe //"(AxTV) satisfies

\f(z, n)\^eforneP then \Kf)\ = e-

Proof. Suppose that g e //"(Ax TV) vanishes on Ax P. Then gZP=0 so that

i/>(g)4>(ZP)=0 and hence */>(g)=0. Hence i/i determines a homomorphism of

//"(A x P). Since/is invertible on A x P with inverse bounded by 1/e we must have

5. The isomorphism theorem. Fix z0e8V and let 21 =//"(AxTV) © AZQ(V)

be the Banach algebra of all (u, v) with u e //"(A x TV) and v e AZo(V), with addition

and multiplication defined coordinatewise, and norm equal to ||(w, v)\\ =

max (\\u\\, \\v\\). Identify (w, 0) and u, and (0, v) and v. AZo(V) was defined in §3 and

//"(AxTV) in §4.
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We define a closed ideal 3? in 91 as follows : (u, v) e j£f if and only if v=0 and for

each £ > 0 there is a 8 > 0 such that

|oen — z01 < 8 => \u(z, n)\ < e   for all z e A.

We are going to represent AZ0(U) as a subalgebra of %/3?.

Define a linear mapping P: HX(U) -» 91 by T(f) = (u, v) with

u(z, «) = PJ(L-\z))+ 2 PmñO,
min

V = Po/Ko(F)+ J  Pmf(Zo).
m = l

Suppose that/e //°°([/) vanishes on J?Zo(U). Then there is a S>0 such that ze Í7

and |z—z0| < 8 implies that |/(z)| <e. There is a S'>0 such that if |<*„—z0| <8' and

z e A has modulus greater than |, then L~1(z) e Dn\An and |L„ 1(z)-z0\ < 8. We

can also choose 8' to have the property that |an-z0| <S' implies that «> A0 where

the A0 is from Lemma 2.4. By Lemma 2.4 and the maximum modulus principle

in A we now have that \an — z0|<8' implies that \u(z,n)\<2e for all zeA. By

Lemma 2.3

C1 (^°/+Î/n/(Zo))   ={0}

and hence, by Lemma 3.4,

Pof\^0(V)+ 2 Pmf(z0) = 0.
m=l

Hence (u, v) e ¿£ so that T induces a linear mapping from AZo(U) into 9I|J5?.

Theorem 5.1. Let 0 be the mapping 0: AZo(U)^ %\Se defined by &(f\^Zo(U))

= (u, v) + ££ where

u(z, n) = Pnf(L-\z))+ 2 PJK),
min

v = P0f\Jt*0(V)+2 Pmf(z0).
m = l

0 is an isometric (algebra) isomorphism of AZo(U) onto a subalgebra ofñ\£C.

Proof. 0 is defined by @(f\JfZo(U)) = T(f) + ¿e so that 0 is a well-defined

linear mapping. Let f0-f\J?Zo(U) and ||/0||^M. Lemma 2.3 and Theorem 3.5

give that ||y|^M. If 8 is chosen such that ze U and |z-z0|<8 implies that

|/(z)| <M+e, and 8' is chosen for this S as before, then Lemma 2.4 gives that

\u(z, n)\ ̂ M+2e for all z g A. This shows that || 0(/o)|| ^ ||/0||.

Let z„ be a sequence in U for which zn->z0 and/(zn)^- ||/0||. If an infinite

number of the z„ are in U\\J Dn then Lemma 2.3 shows that \v\ = ||/0|| and hence

that||0(yo)||^H| = ||/o||.
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If an infinite number of the zn are contained in |J Dn, then arguing as before

using Lemma 2.4 gives that || 0(/o)|| ^ |/0||. Thus 0 is an isometry.

Let fix, f2 e //"(£/) and let T(/1)=(«1, t>x), T(f2) = (u2, v2) and T(ff2) = (u3, v3).

Let/3 =/i/2. If 8 is such that \an—z0\ < 8 implies that n is larger than TV0 of Lemma

2.4, the Lemma 2.4 gives, for fixed n with \an-z0\<8 and ze A with modulus

close to 1,

IßtLUHßiß-vtiA < *,      i =1,2,3.

Hence for \z\ close to 1,

\u3(z, n)-Ux(z, n)u2(z, n)\ ^ \fxf2(L-l(z))-u3(z,n)\

+ \(ux(z, n)-fx(L^(z)))f2(L-\z))\

+ \ux(z, n)(u2(z, n)-f2(L-\z)))\

By the maximum modulus principle we have

\u3(z, n)-Ux(z, n)u2(z, n)\ < e(l + \\fx\\ + \\fi2\\ +e)

for all n such that |a„ — zQ\ < 8 and all z e A.

By Lemma 2.2 we will have that

°o(/l/2)(z)+ 2 Pn(flf2)(Zo)-(PofÂz)+ 2  Pnfx(z)](PoUz)+ £ PnMz0))
n = l \ n = l / \ n = l /

goes to 0 uniformly as z -»■ z0 for all z e U\\J Dn. This limit then goes to 0 as z ->■ z0

for all z e V so that, by Theorem 3.5, this function vanishes on ^C0(K), and hence

v3 = VxV2. We are done.

Theorem 5.2. Each homomorphism of Q(AZo(U)) is the restriction of a homo-

morphism ofñ\£C.

Proof. Let m0 e^Zo(U). We first consider the case when m0 is a distinguished

homomorphism. Let ttx'. 311.S?-»- AZo(V) be the homomorphism defined by

Kx(u, v) + £P=v. Then R(m0) ° nx is a homomorphism of 3i|j£? and for/e //"(£/)

withT(/) = (M, »)

J?(i«o) » ̂ (©(/^„(t/))) = Jî(m0)(r)

= R(m0)(p0f+ 2 ^n/(zo))
\ n = l /

= /î(m0)(Po/)+ 2 Pnñzo)
71=1

= <D(/?(m0))(/) = m0(f).

Hence -R(m0) ° 7rx extends m0 ° 0"1 to 3l|^.

Q(AZo(U)) is  a pretty  large  subalgebra  of 3I|jS?.  In  particular,  we have
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®(AZo(U))=>Ho(AxN) + ¿C Indeed it is particularly easy to see that if

g e HS'iA x A) then

f(z) = 2g(Ln(z), n)-2g(Ln(z0), n)

defines an element of //"(£/) for which &(f\^0(U))=g+áC.

Let m0 eJiZo(U) he a homomorphism of AZo(U) which is not a distinguished

homomorphism. Then there is an/e //"([/) for which

m0(f) i m0(P0f)+ 2 Pnf(z0).
n=l

Let g=f-Pof-1.f=iPnf(zo)- Then by Lemma 2.3 and Lemma 2.4 and a little

calculation (the "main term" (P0g)(an) is zero here!)

®(g\^Z0(U))eHQ-(AxN) + 3

and m0(g)^0. This shows that the homomorphism which m0 induces on

H¡?(AxN) + & is nonzero. This homomorphism is given by a nonzero homo-

morphism of Hq(A x A) which vanishes on =Sf, which in turn is the restriction of a

homomorphism of //°°(AxA). Let i/j he such a homomorphism of //°°(AxA).

Since 0 is nonzero on //0°°(Ax A) it will satisfy </i(Z)^=0, where Z(A, n) = X. Let

tt2: 91 ->- //°°(A x A) be defined by tt2(u, v) = u. Now </> ° 7r2 vanishes on =£? and so

induces a homomorphismp of 9Í13. We will show thatp extends m0° 0_1to9t|jS?.

Let/e //"(t/) and let g=f-PQf-If=xPnf(z0)- Then

®(g |^2o(C/))e//0"(AxA) + ^

so that, by the choice of <fi, we will have m0(g)=p(®(g\JifZ0(U))). If we could show

that m0(f)=p(@(f\JÏZ0(Y))) for all/e //°°(K) we would be done.

In §4 we observed that the subalgebra of //°°(Ax A) of functions which are

constant on each slice Ax{«} is isometrically isomorphic to /". Let w0 he the

homomorphism of /°° determined by the value of </> on this algebra.

Let P: ß(N) -^-J¿(V) he the continuous extension of P(«) = an defined by

F(œ)(f) = œ({f(*n)}) for all oj e ß(N) and fe H»(V).

Suppose that we knew that P(a>0) = P(m0). For/e HX(V) we have 0(/1 JtZo(U))

= (u,v) + 3 where u(X, n) =/(«„) and v=f\J(Z0(U) because all the terms in the

sum defining «(A, «) vanish, save (P0/)(an) =/(a„). Hence if F(oj0) = R(m0) we would

have

p(®(f\^0(u))) = piiu, v)+j?) = m

= "0({/(«n)}) = PK)CO

= R(m0)(f) = m0(f).

We will use Lemma 3.6 and Lemma 4.6 to show that F(u>0) = R(m0). For Pc A

let «i> = 2„ef> Ln-2nep Ln(z0)- Let «=«N. It is easy to see with the help of Lemmas

2.1 and 2.4 that

Q(hP\J?ZQ(U)) = ZP + J?
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where ZP(X, n) = X if neP and ZP(X, n) = 0 if n ePc. Hence by Lemma 4.6, toQ is

characterized by the fact that m0ihP)=/=0 and fie //"(F) with |/(a„)| ^e for n eP

implies that |o»0({/(aj})| ^e. Suppose that/e//"(F) and \m0(f)\>e. Note that

m0(h) = >P(Z)¿0. Let

P = {n | \f(an)\ Ï e\m0(h)\}.

By Lemma 3.6 if m0(hPc)^0 then

|Wo(/)| Ï «|«o(/i)|/|i«o(/i)| = «•

Hence m0(hPo)=0 and mo(hP)=mo(hP) + m0(hPc)=m0(h)=i/)(Z)^0. Hence by

Lemma 4.6 we have

\F(co0)(f)\ = K({/K)})| è «|m0(A)|.

In particular we have that F(w0)(f)=0 implies that m0(f)=0 for all/e//"(K),

i.e., F(w0) = R(m0). The theorem is completely proved.    |

6. The corona theorem and the parts theorem.

Theorem 6.1. Suppose that V is a complex domain and U is obtained from V by

deleting a hyperbolically-rare sequence of closed disks. If V is dense in Jt( V) then

U is dense in Jt(U).

Proof. Let m0 e J(Zo(U). If z0 e (J 8An then that m0 is in the closure of U follows

from the corona theorem for A. Assume that z0e dV.

If m0 is a distinguished homomorphism it is immediate that m0 is in the closure

of U. For if {zÄ} is a net in F which converges to R(m0) and z'A is a point in V\\J A

whose distance to zA is not more than twice the distance of zA to V\(J Dn, then {z'A}

converges to m0.

Now assume that m0 is not distinguished. As in the proof of Theorem 5.2, let p

be an extension of m0 ° 0"1 from &(AZo(U)) to 3l|.S? and let </< be a homomorphism

of//"(A x TV) for which p((u, v) + &) = x/j(u) for all (u, v) e 31. Let/1; ...,/„ e //"([/)

and e>0 be given. Let 9(fi\J?Z0(U)) = (ui, vJ + lC For q e TV let /, e//"(AxTV) be

the function defined by Iq(z, n) = 1 if n â q and Iq(z, n) = 0 if n<q. Note that tfi(IQ) — 1.

Also remember that Z e //"(A x TV) was defined by Z(A, n) = X and we have that

</>(Z)^0. By the corona theorem for //"(AxTV) there exists a (A, k) e Ax TV for

which

|m((A, /c)-^(«,)| < £   for i = 1.n,

|/9(A, *)-0(/,)| < e,       |Z(A, fc)-#Z)| < 10-

In particular we have that k>q and \X\ ̂  |i/r(Z)|/2. If <? was chosen sufficiently

large the last two inequalities guarantee that Lk :(A) e AW- Hence if q is larger

than the TV0 of Lemma 2.4, then Lk \X) e U and, since w0(/() = ^(«0,

\fi(Lk\X))-m0ifid\ â lÄIi^-nCA,*)!
+ |u¡(A, A;)-^)! < 2e   for i = 1,..., n.       |
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With the aid of the representation of AZo(U) as a subalgebra of 9t|=S? we can

describe the fiber JtZa(U) in some detail and, in particular, can characterize the

Gleason parts of ¿0ZQ(U). To begin with, each homomorphism of 9Í is of the form

(u, v) -> i/j(u) where <p e *#(//"(A x A)) or (u, v) -> <p(v) where <p e J(Za(V) so that

we can identify the maximal ideal space of 91 with the disjoint union of

,/#(//°°(A x A)) and JtZo(V). The maximal ideal space of St|jSP can then be identified

with the set of homomorphisms of 91 which vanish on .5? and hence with the disjoint

union of J(Za(V) and a subset X of J¿(HX(A x A)).

For A<=ß(N) let 2(A) he as defined in §4. Let F:ß(N)^Jf(V) be the con-

tinuous extension of P(«) = an. It is easy to see that X=@(F~1(JfZo(V))).

Since each homomorphism of Q(AZo(U)) extends to 911if we can identify JtZ[fJJ)

with the space Y obtained from JÏZQ(V) u X by identifying points which are not

separated by Q(AZo(U)).

Theorem 6.2. J(Z!fl]) is homeomorphic to the space Y obtained from

JiZlfV)\J 2(F-\J(Za(Vyf) by identifying along F, i.e. by identifying for each

i/> e JtZo(V), the set {</i} u ({0} x P"1(1/')) to a point. Each element of AZo(U) will be

analytic on each analytic subset of Y.

Proof. Q(AZo(U)) contains //„"(A x A) + JS? and //¿"(AxN) + & separates the

points of A'\({0}xP"1(^2o(I^))). Also Z+& is nonzero at each point of

A'\({0}xp-1(^Zo(K))) and is zero on JiZa(V), so that each point of JtZa(V) is

separated from each point of X\({0} x F-\J(Zo(V))). &(AZo(U)) contains @(AZo(V))

and Q(AZa(V)) separates the points of JfZa(V). If F(w) eJ?Zo(V) then for

fe //"([/) with T(f) = (u, v) we have (since L„-1(0)=oo and (Pn/)(oo)=0),

(0,oJ)(u) = JIpof(an)+       2       PmfbJi)

CO

= cu({P0/(an)}) + 2 Pmf(zo)   (Lemma 2.1 and the fact <xn -> z0)
ro = l

= F(œ)(P0f)+ f Pm/(z0) - F(a>)(v).
m = l

This calculation shows that for each >/> eJ(Zo(V) the points of the set

ty}u({0}xF-^))

cannot be separated and that (0, cui) and (0, o>2) can be separated if F(a>x) =£ F(w2).

That does it.   |

Corollary 6.3. Let i/t e JfZo(V). If>/> is not in the closure of{an} in J((V) then

Jt^(U)={(b(m)}, i.e. </> has a unique extension to //°°(C/) [Theorem 3.4]. If $ is in the

closure of{an} in Ji(V) then Jt^(U) is homeomorphic to ^(P_1(^)) with 0 x F'1^)

identified to <¡>(<¡i).
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Let P be a Gleason part of //"(£/) and suppose that $(^)eP. Clearly P, when

considered as a subset of Y, contains AxF_I(f) (with Ox.F-1(0) identified to

0(0)). In fact, as the function Z+=Sf with the aid of Theorem 4.5 shows, we will

have P n JT,iU) = AxF~*(0) (with Oxf-1(^) identified to 0(0)).

If P n **;({/) ̂  0 but 0(0) £ P we will have

P n A([/) c ^(F-i(0))\Axf-H0).

The functions Zp + i? show that if a part intersects 3¡(F ~ H0))\(A x F_1(0)) it must

be contained entirely in this set. Corollary 4.4 shows that each part in this set is

either a single point or an analytic disk. Hence we have

Theorem 6.4. Let P be a Gleason part of//"(£/)• Let ^>eJ((V). If0(0) eP then

P n Jt^iU) is homeomorphic to Ax F'\>ji) with 0xF_1(0) identified to 0(0). Each

fie //"(£/) will be analytic on each "slice" of A x F"1(0). If P n JtJJJ)± 0 but

0(0) $ P then P<^J(yiU) and P is either a single point or an analytic disk.

Our final statement of the parts theorem is the following :

Theorem 6.5. Let P be a Gleason part of //"(£/)• If P contains no distinguished

homomorphism, then P is either a single point or an analytic disk. Let P0 be the

Gleason part that contains U. IfP^P0 contains a distinguished homomorphism then

RiP) is a Gleason part ofiH^iV) and P is homeomorphic to the space obtained from

RiP) uAx F-\RiP)) by identifying, for each 0 e RiP), the set {0} x P,"1(0) to the

point ifß. Each fie //"(C/) will be analytic on each set A x {to} with o> e F~1iRiP)).

For each z0 e 8V, P0 n JfzfU) is a Gleason part of AzfU) and

RiP0 n JtZoiU)) = RiP0) n JfZoiV).

P0 n J(zflJ) will be homeomorphic to

iRiP0) n Jt^iV)) u A xF~\RiP0) n JtZaiV))

with, for each 0 e /?(P0) n JtJ^V), the set {0} x F_1(0) identified to the point 0.

7. The unit disk. When V is the unit disk A, the Gleason parts of U depend

only on the nature of the sequence {«„} relative to the hyperbolic geometry of A.

This is a consequence of Theorem 6.5 and Hoffman's [7] characterization of the

Gleason parts of //"(A). We will consider several examples where the geometric

nature of {an} is easy to describe.

Let x be tne hyperbolic metric in A.

Define a "flower" to be an analytic set of the form AxK with {0} x K identified

to a point, where K is a closed subset of j8(TV)\TV. For each A e A let Kx be a closed

subset of ßiN)\N. Define a "garden" to be an analytic set of the form

A u \J {A x KA : X e A} with each {0} x Kh identified to A. Call a garden an "A-

garden" if Kx= 0 for A $-A and KX={X} for A e An. Here A is a subset of A. Call

an yi-garden an "interpolating garden" if A is an interpolating sequence. Call a

garden a "congested garden" if each K*. has cardinality 2C.
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Theorem 7.1. Per i/=A\|JAn with An hyperbolically-rare in A. Let <xn

= center An.

(1) Each Gleason part of H"(U) is either a point, a flower, or a garden.

(2) If{an} is interpolating, then each Gleason part o///"(£/) is either a point or

an interpolating garden.

(3)//

lim   inf x(«n» «J = °°

then each Gleason part of HX(U) is a point or a flower.

(4) If{an} is interpolating and

lim   inf  x(«„, «m) = oo,

then each Gleason part of Hm(U) is a point, an analytic disk, or two analytic disks

with the origins identified.

(5) If{an} is invariant under a discontinuous group of conformai maps of A which

act transitively on {an}, then each Gleason part of HX(U) is a point, a flower, or an

{an}-garden.

(6) If{an} is hyperbolically dense as \z\ ->- 1, i.e. if

lim sup inf x(z, <*„) = 0,
Í-1    |Z|g<5      71

then each Gleason part o///"([/) is a point, a flower, or a congested garden.

Proof. (1) Since each part of //"(A) is a point or an analytic disk, (1) is a re-

statement of Theorem 6.5.

(2) An interpolating sequence intersects no point part of //"(i/) and intersects

an analytic disk of H°°(U) in an interpolating sequence.

(3) Such a sequence intersects a nontrivial part of //"([/) in at most one point.

(4) Follows from (2) and (3).

(5) Such a sequence intersects a nontrivial part of H°°(U) in a set conformally

equivalent to {an}.

(6) Such a sequence intersects every point of ^#(//co(A))\A.

8. General domains. In the announcement [1], we considered domains obtained

by removing from the punctured disk A' = A\{0} a hyperbolically-rare sequence of

disks {An} which accumulate at 0. Our methods are greatly simplified in this case.

We will now consider a domain obtained from A' by deleting a sequence of

closed sets {En} for which Fn<= An with {An} a hyperbolically-rare sequence of closed

disks which accumulate at 0. In this case we will also call the F„ hyperbolically-rare.

Let D = A'\U Pn. If/e //"(P) then

_L r m ¿e
2m JgAn   z-£

is an analytic function on A£ which extends to a bounded analytic function on ££.
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If we denote this function by Pn/the resulting mappings Pn from //"(A into

//"(£•£) are uniformly bounded. Let //"({££}) be the uniform algebra of all {/„}

with/ne//"(££) and ||{/„}||=sup ||/„||<oo. Let Hf^EZ}) be the algebra of all

{/„} e //"({£•£}) with/n(oo)=0 for all n. Let JtiH<"i{Ecn})) be the maximum ideal

space of //"({££}) and J?iHôi{Ec})) be the maximal ideal space of the Banach

algebra obtained by adjoining the constants to Z/0"({££}). Now //"({££}) can be

identified with the Banach space direct sum of //0" ({££}) and /". For each

0 e^(//0" ({£•£})) let w be the ultrafilter of all P<=TV for which 0({/„})=O for all

{/„} e //0"({/i¿}) with/n=0 for ne P. Then w defines a homomorphism of /". It is

easy to see that the linear functional on //"({££}) defined by 0 and w is a homo-

morphism and that this homomorphism is the unique extension of 0 to //"({££}).

This shows that ^#(/70"({££})) is obtained from .^(//"({££})) by identifying the set

of homomorphisms which vanish on Hôi{E$}) to a point. Now the E° can be

identified with a subset of ./#(//"(££)) by identifying each point A e El with the

homomorphism {/„} ->/n(A). Denote this homomorphism by (A, n). The closure

of Ecnx{n} in .#(//"({££})) is an open-closed subset of Ji(Hx({Ecn})). Let X be

the set obtained from

J/(H<°({E$))\U Cl (Enx{n})
n

by identifying the set of homomorphisms which vanish on //0" ({££}) to a point

and let A be the restriction of Ho({E°]) to X with the constant adjoined. Our

methods now give, exactly as in [1], that the fiber algebra at 0 in //"(A is iso-

metrically (algebra) isomorphic to A.

In order to use this to prove a corona theorem we need the following definition :

For each complex domain D, 8 > 0 and integer n, let C(8, n, D) be the smallest

constant for which given fix, ...,/„ e //"(A with ||/,|| ^ 1 and 21/1 = 8 there are

gx,.. .,gne //"(A with  \\gi\\ ̂ C(8, n, D) and 2/i& = l- If no sucn constant

exists let C(8, n, D)=co.

Note that the constants Ci8, n, D) are preserved under conformai equivalence.

We have

Theorem 8.1. Let En be a hyperbolically-rare sequence of closed sets contained

in A which accumulate at 0 and let D=A'\\J En. Then D is dense in JiiD) if and

only if each E% is dense in J¿iE$) and for each 8, n there is an integer TV0 such that

sup Ci8, n, ££) < oo.

This theorem follows easily from the fact that the given condition is equivalent

to the density of Un E° x {«} in .#(//"({£„})).

Any complex domain A can be written as a union of an increasing sequence

{A} of finitely connected domains. It follows by a simple normal families argument,

that if supm Ci8, n, Dm) < oo for each 8, n, then D is dense in JiiD). Now each

finitely connected domain is conformally equivalent to a domain bounded by a
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finite number of disjoint circles. Hence we have that if the corona theorem fails for

some complex domain then there is a sequence of domains Dn, each of which has

as boundary the disjoint union of a finite number of circles, such that for some

8,n, supm C(8,n, Dm) = co.

Combining this with Theorem 8.1 gives

Corollary 8.2. If the corona theorem fails for some complex domain, then it

fails for a domain obtained from the open unit disk by removing a sequence of closed

disks which accumulate only at 0.

When D is obtained from A' by removing a hyperbolically-rare sequence of

closed disks which converge to 0, the Gleason parts of Hm(D) are particularly

easy to describe. In particular [1], the Gleason part of Hco(D) containing D,

denoted by PQ(D), is equal to the union of D and a set homeomorphic to A x ß(N)

with {0} x ß(N) identified to the point <p0, where /3(A) is the Stone-Cech compactifi-

cation of the integers A, ß(N)=ß(N)\N, and <p0 is defined by

">-¿JL
JdD       £

We have the following similar result for more general domains.

Theorem 8.3. Let D be obtained by removing from A' the hyperbolically-rare

sequence of closed sets En which accumulate at 0. Let An be a hyperbolically-rare

sequence of closed disks for which En<^ An. Let y(En) be the analytic capacity ofEn. If

lim sup (y(F„)/rad An) > 0,

then the Gleason part ofHx(D) containing D contains in the fiber at 0 a set homeo-

morphic to Axß(N) with {0}xß(N) identified to the homomorphism <p0 defined by

*M) = A Í f(£) d£
£

Proof. Let

<neN  —-t-r— > = urn sup —3—7- >•
{ rad A„     2 * rad AJ

There will be an P>0, and r>0, and for each n eP a function/, e //"(P^) such

that |/n|| ^ 1,/n(oo)=0, and/, is one-to-one on {z | |z - center A„| äP rad A„},

mapping that set one-to-one including Ar={z | |z| ^r}. For each A e Ar and neP

let G(A, «) be the homomorphism {gm} -> gn(z) where z is the unique point in

{z I |z- center A„| ^P rad A„} for which fn(z) = X. The resulting mapping

G: ArxP->-*#(//c0({P£})) is continuous and hence extends continuously to

Ar x ß(P). If Xx ¿ A2 then for each neP

{fm}(G(Xx,n))-{fm}(G(X2,n)) = Xx-X2

and hence for all co e ß(P)

{fmH.G(Xx,o>))-{fm}(G(X2,o>)) = Xx-X2.
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Also G(XX, ojx)^G(X2, w2) if cuj/cua since //°°({P£}) contains /°°. Hence G is one-

to-one on Arxß(P) and is hence a homeomorphism. The theorem now follows

from the representation theorem.

Theorem 8.4. Let U be a planar domain which contains 0 and for which each

C(8, n, U) is finite. Let D be a domain obtained by removing from A' a hyperbolically-

rare sequence of closed sets En which accumulate at 0 and for which each E„ is

conformally equivalent to U. Then D is dense in J((D). The Gleason part P0(P) of

Hm(D) which contains D contains in the fiber JtQ(D) a set which is homeomorphic to

U x ß(N) with {0} x ß(N) identified to the distinguished homomorphism <t>0. Each

function in H°°(D) will be analytic on each slice of Ux ß(N). If U is a Gleason part

of Hm(U) then P0(D) n J?0(D) is homeomorphic to Uxß(N) with {0}xß(N)

identified to <J>0 with each function in Hm(D) analytic on each slice of U x ß(N).

Proof. D is dense in J((D) by Theorem 8.1. The algebras //°°({F£}) and

//°°(t/xA) are isometrically (algebra) isomorphic so that we may use the latter

algebra in the representation of the fiber algebra. Let T be the mapping of

l(ff°((/xiV)) into Jt(JJ) obtained by restricting each homomorphism of

//"(£/x A) to the subalgebra of all functions which are constant on each set of

the form {z}x A. Let S be the mapping of ^(//°°([/x A)) into /8(A) obtained by

restricting each homomorphism of H"(UxN) to the subalgebra of functions

which are constant on each set of the form Ux {«}. Let G be the continuous mapping

of Jt(Hm(Ux A)) into J?(U)xß(N) defined by G(>/0 = (P(</-), S(</>)).

Suppose that </> e M(H^(Ux A)) and T(<¡¡) e U. Let (zx, nA) be a net in Ux A

which converges to */>. Then zA converges to T(t/>) and «A converges to S($). Using

Schwarz's lemma it is immediate that (P(</0, «a) will converge to </j. It follows that

i/i is given by the mapping {/„} -> S(</>)({ fn(T(>/>))}). Let H be the mapping of U x ß(N)

into l(ff"(i/xff)) given by H(z, «>)({/„}) = w({/„(z)}). We have shown that for

</ieH(Uxß(N)), G-1(G(>/J))={4>} and that G o H is the identity on Uxß(N). It

follows by the elementary topology that H is a homeomorphism. The theorem now

follows by the representation theorem.
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