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Abstract. Sufficient conditions are given for the existence of an analytic variety

at an element <f> of the spectrum of a commutative Banach algebra with identity. An

associated graded algebra first considered by S. J. Sidney is used to determine the

dimension of the analytic variety in terms of the closed powers of the maximal ideal

which is the kernel of </>.

1. Let B be a complex commutative Banach algebra with identity. We shall

denote the spectrum of B, the space of all multiplicative linear functional on B,

by £(P). If <p is an element ofL(B), we denote by Bé the maximal ideal which is the

kernel of <p. We shall be concerned with finding properties of B<¡, which are sufficient

for the existence of an analytic variety in E(£) at <p and with studying the variety

thus obtained. By an analytic variety at <p we mean the image of a one-to-one

continuous mapping Pof a subvariety Vcontaining 0 of a domain in some Cinto

2(P) such that F(0)=<p and such that for each b e B, b ° F is holomorphic on V.

Our investigations center on the sequence of powers B$ of B^, that is on the ideals

generated by n-fold products of elements of P0 and on the sequence of Banach

spaces BJ(B$)~, (Bl)~/(B%)~,... when the first of these is finite dimensional. In §2

we obtain a general condition sufficient for the existence of an analytic variety in

2(P) at <p (Theorem 2.5). We then study this variety more closely, obtaining its

dimension at 0 in terms of the sequence of dimensions of the spaces (B$)~/(B% + 1)~

(Theorem 3.5). We also show that the variety obtained from Theorem 2.5 is the

largest which can be embedded in S(P) at <p in the sense of having a maximal germ

atO.

In §4 we apply the general criterion of Theorem 2.5 to show that if the linear

space Bq/B% is finite dimensional, then there is an analytic variety in £(P) at <p

which is a neighborhood of <p in the metric topology for 2(5). This result has also

been obtained by Andrew Browder [1]. It follows from Theorem 3.5 that in this

situation the variety is nontrivial if and only if (BD~ =£(B¿+1)~ for all n.
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Gleason [4] proved that if 5^ is algebraically finitely generated, that is if there are

elements gu .. .,gteB^ such that B(t, = Bg1-\-VBgt, then there is an analytic

variety at <f> which is open in the Gelfand topology for 2(5). It is easy to see that if

B0 is generated in the above sense by gu ..., gt, then dim (BJBf) ^ t, so that

Theorem 4.1 is a generalization of Gleason's result. Indeed the hypothesis of

Theorem 4.1 is strictly weaker, since it is not in general true that varieties obtained

from Theorem 4.1 are open in the Gelfand topology (Example 5.1).

On the other hand, it is possible for <f> to be an element of an analytic disc which

is open in the Gelfand topology and yet have dim (BJ(B$)~) fail to be finite

(Example 5.3). Thus the sufficient conditions so far obtained are far from being

necessary, even for open analytic structure.

The material of this paper, except for §4, is essentially contained in the author's

doctoral dissertation presented to Yale University. The author wishes to thank

Professor E. L. Stout for much helpful advice and patient encouragement in the

preparation of this dissertation.

2. In this section we develop our approach to finding varieties and prove a

theorem giving sufficient conditions for the existence of a variety (Theorem 2.5).

We begin with a simple observation. Here &[V] denotes the algebra of functions

holomorphic on V, a subvariety of a domain in some C.

Proposition 2.1. Let B be a commutative Banach algebra with identity, and let

<S> : B -> 6[V] be a homomorphism whose range separates the points of V. Then the

dual mapping O* : V —> 2(5) is an analytic variety in 2(5). If the range of <D is dense

in @[V] in the topology of uniform convergence on compact subsets of V, then O* is a

homeomorphism. Conversely, if F: V-> 2(5) is an analytic variety, then there is a

homomorphism 0: 5-> &[V] such that <b* = F.

We remark that <D[5] is contained in the algebra of bounded holomorphic

functions on V. In fact, ||0(6)||vg |A|| since for any z e F, A ->- ®(b)(z) is a multi-

plicative linear functional.

The homomorphisms which we shall now construct will carry a subset

{w1;..., wr} of B$ onto the coordinate functions in C. Thus <D will have dense

range and <J>* will be the inverse of a restriction of the canonical map of 2(5) onto

the joint spectrum of wu ..., wr.

Let $ be an element of 2(5). We shall suppose from now on that dim (5^/(5^)")

= r is finite. The following proposition demonstrates that for finitely generated

Banach algebras this condition is automatically satisfied.

Proposition 2.2. Let B be a commutative Banach algebra with identity. If poly-

nomials in 1 and bu ..., br are dense in B, then for each </> e 2(5), the classes ofa¡

= A¡ -&,($) span BJ(B$)~. Consequently dim (BJ(B$)~)^r for all <f>e 2(5).

Proof. Let b e 50 and e > 0 be given. There is a polynomial P in r indeterminates

with no constant term such that \\b-P(au ..., ar)\\ <e. Hence \\b-P+(B$)-\\q<e,
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where |-||a denotes the quotient norm in BJ(B$)~. Thus the span of

ax + (Bl)~,..., ar + (Bl)~ is dense in BJ(B$)~. Since the span is finite dimensional,

it is also closed and must exhaust Bé/(B2)~.

The direct sum 2"= o © ((Bl)~l(Bl+1)~) is a graded linear space if the elements

of (Bl)~ l(Bl+1)~ are taken as the homogeneous elements of degree n. Here we take

Bl = B. Following [10] we define a multiplication with respect to which this sum

becomes a graded algebra. (Consult [11] for this and related matters.) Let a and b

be representatives of elements [a] of (P£)-/(PJ+1)~ and [b] of (B$)-/(B$+1)-

respectively. Thus ae(B%)~, be(B§)~ and abe(B%+q)~. The class of ab

mod (By + 1)~ depends only on [a] and [b] and we define [a][b] to be the element

of(B$+q)-/(B$+v + 1)- so determined.

If {Wu ..., Wr) is a basis for BJ(BD~, then there is a natural homogeneous

homomorphism A of degree 0 of the graded algebra C[X{,..., Xr] of polynomials

in r indeterminates into 2»-o ©((£*)~/(Ä5+1)~) such that A/Xft-- -IJ»)

= W^1 ■ ■ ■ WÏ™ for all monomials in the A"s and IP's. The following result [10,

Theorem 1] is basic to our construction.

Theorem 2.3. The homomorphism A maps C[Xi,..., Xr] onto

Ï 0((*S)-/(*3+1)-).
n = o

It is easily verified that for each n, the number of monomials of degree n in r

indeterminates is the binomial coefficient CB+r_i,„. Thus for each n,

dim ((PJ)"/(P3+1)~) = C'n+r_ijn and the homogeneous monomials of degree n in

Wi,...,Wrspan(BD-/(Br1')-.

We remark that 2™=o © (•05/#2+1) mav De given a similar graded algebra

structure and that the analog of Theorem 2.3 holds if dim (BJB2) is finite. In

particular, dim (BJBD is then finite for each n.

Suppose that wu ..., wr e B^ are representatives of a basis for BJ(B$)~. We

shall now associate with each be B polynomials in wu ..., wr. Such a polynomial

has the form 2nianJ8(»M'<i) where (i)=0i, • • -, Q, wm = w{1- ■ -w\' and |/|=25=i h-

We say that such a polynomial p is a partial sum for b of degree n with respect to

{wu ..., wr} if b-p e (By x)~. We write b ~np.

For each be B and each n there is at least one partial sum for b of degree n.

This is clear for n = 0. If p' is a partial sum of degree n— 1, then b—p' e(P$)~.

Since the homogeneous monomials of degree ninwu .. .,wr are representatives of

a set which spans (BD'¡(Bl+1)~, there is a homogeneous polynomial/>„ of degree

n such that b—p'—pn e(B%+1)~. Thus ¿> ~n/>'+/V Each element has a unique

partial sum of degree n for each positive integer n if and only if for each n the

homogeneous monomials of degree n in wu .. .,wr are representatives of a basis

for (BD~/(B0 + 1)~. By the remark following Theorem 2.3, this occurs if and only if

dim ((BD-/(By1)-) = Cn+r-i,n for all ».

This situation arises for the uniform closure of the polynomials on the closed
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unit polydisc in C. If <f> is the origin and wu ■ ■ ■, wr are the coordinate functions,

then/ ~np if and only if p is a partial sum of the Taylor series for/about 0.

We collect a few simple properties of the correspondence b ~n p.

Proposition 2.4. Suppose that wlf ■ ■ •, wr are representatives of a basis for

Ból(Bf)-.Ifa,beB,i„XeCanda~np,b ~nq, then

(1) a + b~np+q,

(2) Xa ~n Xp,

(3) ab ~npq.

We are now ready to state a first set of conditions sufficient for analytic structure.

Theorem 2.5. Let B be a commutative Banach algebra with identity and let <j> be

an element o/2(5) such that

(1) for some positive integer r, dim (BJ(B2.)') = r, and

(2) there are representatives {wlt..., wr} of a basis for BJ(B2)' and a positive

number M such that for each element b of B there is a constant C(b) and, for each n, a

partial sum 2msn ßm^ for b of degree n such that \ßin\ ̂  C(b)Mw for each (i) with

I» la».
Then there is a subvariety V of the polydisc A = {z e C : |z(| < Í/M, i=l,..., r}

and a homeomorphism 0* of V into 2(5) such that <£*(0) = <7> and for each be B,

h o <t>* is holomorphic on V.

It is convenient to set down at this point a lemma which will be useful in the

identification and study of the variety V. We denote the ring of germs of holo-

morphic functions at the origin in C by r&. If/is holomorphic in a neighborhood of

the origin, we denote the germ of/at the origin by/.

Lemma 2.6. For each n, the subset fn of elements 2 /W° of rG such that

2ms« rV e W + 1)~ is an ideal in r^-

Proof. Since (55+1)" is a linear subspace of 5, ßn is a linear subspace of r<9.

If/=2 AozCi> e fn and if (/c) is any multi-index, then the sum of the terms of degree

at most n in the power series expansion of z(fc)/is z(W 2msn-i;ci Ai)z<f)- But

w(k) 2nisn-i*i ßmwU) is the difference of wM I]Uunßmww and wm 2n-i*i<w*n ßmwii)>

both of which are in (53+1)_. Hence ^/e/n. By linearity pfefn whenever

fe fn and p is a polynomial in r§. Finally, let g=~Zymzm ef(P. Then for any

fe ,/„, the terms of degree at most n in the power series expansion of fg are the

same as those of/2nisn Yu)Z(i)- But from the previous remark,/^nisn y«)Z(i) e ßn-

It follows that </„ is an ideal in r@.

Corollary 2.7. /={2 j8(i)z(i) e r<5 : IMenß(i)w(i) e(By1)~ for each «} is an

ideal in ß.

Proof of Theorem 2.5. Fix be B. Let {Pn} be a sequence of polynomials in r

indeterminates such that, for each n, pn=Pn(wi,. ■., wr) is a partial sum for b of
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degree n satisfying (2). On any closed polydisc D(y)—{z : |z,| ¿y, i= 1,..., /•} with

y<\\M the sequence of polynomials /„=5n{z1,..., zr} in r complex variables

satisfies |/n(z)|^C(A)2uisn(Afy)|i|^C2"=o-Kn for My<K<\ and some C>0.

Hence a subsequence of {/„} converges uniformly on compact subsets of A to a

holomorphic function/ We may thus define a mapping Y of 5 into &[A] by Y(A)

=/■

Now let I={fe 0[A] :feß}, and let V be the subvariety of A of common

zeros of elements of/. We assert that Kis the variety we seek, that is, that the map

<D: 5-> 0[V] obtained by setting <&(b) = Y(b)\ Kis a homomorphism.

We show that O is multiplicative. Suppose a, b e B, xV(a)=f xF(b)=g, Y(ab) = h

where/(resp. g, A) is obtained as the limit of a sequence of polynomials/n (resp. gn,

hn)=Pn(zu ...,zr) where pn (resp. qn, rn)=Pn(wu ...,wr)~na (resp. b, ab). It is

easy to see thai piqj — rk e (5™ + 1)~ whenever w^min {i,j, k). Hence figj — hk e ßm.

It follows from the Closure of Modules Theorem [6, Theorem IID3] that fg- h e J'.

But this implies yg- A el, that is, <b(o)<!>(b)=fg\ V=h\V=<&(ab). A similar argu-

ment gives that <D is linear and the proof is complete.

We remark that although f=Y(b) depends in general on the choice of the

sequence {Pn}, <t> is independent of this choice. Indeed if also qn=Qn(w1,..., vvr)

is a sequence of partial sums for satisfying (2), and if a subsequence of gn

= ôn(zi, • • •, zr) converges to g, then an argument similar to the above leads to

/-fe-/.
On the other hand, it is easy to see that for/= *F(A) = 2 /3(¡)z(í) we have for each »,

f—fn e fn- Hence b ~n 2uis« ßmwitt for each n. We shall make use of this remark

in the proof of Proposition 2.8 and again in §4.

The nature of V is not yet at all clear. In fact, it is not even clear whether V

contains any points other than 0. We shall see in the next section that the dimension

of F at 0 is related to the structure of B^. In particular, it is positive if (5J)"

^(55 + 1)- for all«.

We note that (2) in the hypotheses of Theorem 2.5 cannot be omitted. Indeed,

Sidney [10, Example 5.18] has constructed a Swiss cheese algebra whose spectrum

contains an element <f> such that dim ((5J)"/(55+1)~) = 1 for each n. We show next

that at least (2) does not depend on the choice of {w1;..., wr}.

Proposition 2.8. Let {Wlf..., Wr) and {Yu ..., Yr} be bases for BJ(B$)~ and

let {w,,..., wr} and {yu .. .,yr) be representatives. If (2) holds with respect to

{wu ..    wr} then (2) also holds with respect to {yu .. .,yr}.

Proof. Let Y denote the mapping of 5 into 0[A] constructed as in the proof of

Theorem 2.5 with respect to {w1;..., wr}. For k = \,...,r we have W(yk)(z)

= 2 Sfc(j)Zw. Then the matrix (8fc>(()), k = l,..., r, \i\ = 1, is nonsingular. Thus the

Jacobian matrix of the holomorphic mapping F(zu ..., zr) = (Y(y1)(z),..., ^(jvXz))

is nonsingular in a neighborhood of the origin in Cr. We have then an inverse map
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G defined in a neighborhood A' of the origin in C [6, Theorem IB7], and for each

b e B the function Y'(b)(1)=x¥(b)(G(Q) is holomorphic in A'.

We assert that if Y'(¿>) has the power series expansion 2 ^miw, then for each n

2uisn ««)/" is a partial sum of degree n for b with respect to {yu ..., yr}. We have

that yk ~n 2iiisn iwi/" with respect to {m^, ...,wr} for fc=l, ...,r so that

substitution of these polynomials into 2m sn *m/n yields a polynomial/? of degree

n in Wi,.. .,wr such that p—2wsn «to/0 e W+1)~- On the other hand, the co-

efficients ofp are the same as those of degree at most n in the power series expansion

of W(b)(F(z)) = x¥(b)(z). Thus, by the remark following the proof of Theorem 2.5,

b-pe(B$ + 1)~. It follows that ¿>-2msn «c»/0 e W + 1)~ as asserted. It is clear

that for some Mu \a(i)\ ¿ C'(b)Mf for all (i) and all be B. Thus (2) is also satisfied

for these partial sums with respect to {yx,.. .,yr}.

3. Our principal objective in this section is to relate the dimension at the origin

of the variety V obtained in Theorem 2.5 to the structure of B^. We shall also show

that no variety with a larger germ at the origin can be embedded in 2(5) at <p. This

notion will be made more precise later.

We begin by stating two theorems on graded algebras [11, Chapter VII, Theorems

41 and 42]. For these theorems and the rest of the section we assign to the zero

polynomial the degree — 1.

Theorem 3.1 (Hilbert-Serre). Let P = 2 © Rnbe a graded algebra which is the

homomorphic image of a polynomial algebra C[XU.. .,Xr] modulo a homogeneous

ideal I. Then there is a polynomial n of degree at most r—\ such that 7r(«) = dim Rn

for all large n.

Theorem 3.2. If the degree of the polynomial -n is s—\, then s is the greatest

transcendence degree over C of the quotient rings C[XU ..., Xr]/P where P is an

isolated prime ideal of I.

By Theorem 2.3 if <peZ,(B) is such that dim (B<¡¡/(Bl)-) = r, and if the set

{Wi,..., Wr) is a basis for B^/(Bl)~, then there is a natural homogeneous homo-

morphism of C[Xu . - -, Xr] onto 2"=o © ((BD~l(Bl + 1Y). Thus there is a poly-

nomial it of degree at most r— 1 such that -rr(n) = dim ((BD~/(B$ + 1)~) for all large«.

We have also the following result.

Corollary 3.3. If{Wu..., Wr) is a basis for BJ(B2) ~ then there are s elements

of this set (which we may take to be Wu ..., IPS) such that for each n the set of

homogeneous monomials of degree n in Wu..., Ws is linearly independent in

(BD~ ¡(Bt, + 1Y. It is not possible to find s+\ elements of this set with this property.

Proof. Let P be an isolated prime ideal of/such that the transcendence degree of

C[Xu ..., Xr]/P=C[Yi, ...,Yr] (where Yt is the P residue of Xt) is s. We may

assume that {Ylf ■ ■ ■, Ys) is a transcendence basis of C[YX,..., Yri over C Since

I<=P there is a natural homogeneous homomorphism of 2™= o © ((BD~l(Bl + 1)~)
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onto C[Yi,..., Yr] such that Wt is carried onto Yhi=l,...,r. Now it is clear that

Wu ...,WS have the desired property, since any algebraic relation among

Wx,..., Ws would induce the same relation among Yx,..., Ys. The last assertion

follows from the fact that if Wi,..., Ws+1 were as in the conclusion, then

dim ((5S)"/(5J5+1)-)^ Cn+S,n, a polynomial of degree s as a function of n.

Theorems 3.1 and 3.2 are also relevant to the dimension of a germ of a variety

in C. If s<r we may consider ß as the subring of ß of "functions depending on

only the first s variables." Then the dimension of the prime ideal 0 in ß (and of the

irreducible variety V such that 0 is the ideal of the germ of V at the origin) is the

unique integer s such that in a suitable coordinate system 0 n ß = (0) and ß/0

is integral over ß [6, Chapter III].

If J is an ideal in ß and if Jtj is the maximal ideal in ßjJ, then

2"=o © C^Jr/*^jr+1) may be given a graded algebra structure in the same manner

as 2n=o® ((BIY l(Bl+1)~), and is the homomorphic image of C\XU ..., Xr],

Thus there is a polynomial trj such that TTj(n)=dim (*<$}/Jif}+1) for all large n.

Proposition 3.4. Let 0 be a prime ideal in ß. If the dimension of0 is s, then the

degree ofirg is s—I.

Proof. It is clear that the degree of tt& is at most s—\, for otherwise as in the

proof of Corollary 3.3 there would be s'>s such that 0 n s.0=(0). We prove the

other inequality by induction. If the dimension of 0 is 1, then we have 0 c\ 10=(0)

and we must show Ji^j^Jty1 for all n. If for some n, Jl£=Jf£+r, then z"

6 f|"-i (0+-^'), that is, for each y there \sfie0 such that/J-z? has total order

at least j. Then / -> z" in the topology of simple convergence and it follows that

zï e 0 [9, Theorem 6.3.5], a contradiction.

Now suppose that the theorem has been proved for all k < s, that the dimension

of 0 is s, and that the degree of n& is t — 1 < s— 1. If / is the kernel of the homo-

geneous homomorphism of C[Xlf..., Xr] onto 2ñ°= o © (-^/*^+1), then after

suitable relabelling, no polynomial in Xu ..., Xtisin I. On the other hand, as in

the proof of Corollary 3.3, for eachy> /1 contains a polynomial in Xx, ■ ■ -, Xt, X¡.

Let J be the ideal in ß generated by 0 and z¡, let 0' be a prime ideal associated

with J and let /' be the kernel of the homogeneous homomorphism of

C[Xu ...,Xr] onto 2"=o © 0^rA4r+1). Then /<=/' and Xt e I'. Hence for any

prime ideal 5'=>/', each Y¡ = Xt+P' is algebraically dependent on FÍ,..., Y¡-u

Hence the degree of the polynomial tt&. is at most t-2. On the other hand, the

dimension of 0' is 5—1 [6, Theorem III C 14]. This contradiction completes the

proof.

We are now ready to identity the dimension at the origin of the variety found in

Theorem 2.5.

Theorem 3.5. Let 5 be a commutative Banach algebra with identity and let <f> be

an element o/2(5) which satisfies the hypotheses of Theorem 2.5. Let s-l be the
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degree of the polynomial v such that ir(«) = dim ((BD~l(B% + 1)~) for all large n.

Then s is the dimension at the origin of the variety V constructed in the proof of

Theorem 2.5.

Proof. Let J be the ideal in ß generated by the germs of functions in the ideal /

of Theorem 2.5. Then the variety of J is the germ of Kat the origin. It is clear from

the definition of / that J is contained in the ideal ß of Corollary 2.7.

In order to show that the dimension of V at the origin is at least s it suffices to

show that J n ß = (0), for then #n/ = (0) for some prime ideal & associated

with J. We shall in fact show that ß n S0 = (O). Suppose /= 2 j8(i)z(i) e / n ß.

Then 2m = i A¡)W«> e(P|)". But the set {wx + (B%)- : i=l,...,s} is linearly in-

dependent. Hence ßw=0 for all (/') such that |/| = 1. By induction on |{'| and

Corollary 3.3 it follows that ßm = 0 for all (i), and thus that / n ß = (0) as asserted.

For the opposite inequality, let 0* be a prime ideal associated with J of maximum

dimension. It suffices, in view of Proposition 3.4, to construct a homogeneous

homomorphism of degree 0 of 2"= o © ((BD'KBV1)-) onto 2"=o©(^A4£+1)-

The homomorphism <£>: P-> @[V] induces a homomorphism A: P.->- ß/0 such

that A[B^JÍ9. Thus A[Bl)cJt^. Once we show that A[(P5)-]c^, then A

will induce the desired homomorphism.

If f$J(lp, then there is a linear functional t on ß/SP such that t annihilates

JfJr while t(f)^0. Thus to show A[(53)~]c-^ it suffices to show that any linear

functional t on ß/0* which annihilates some J(£ is continuous in the sense that if

/„ -> 0 uniformly on some neighborhood N of the origin on the variety of 0>, then

t(fn) -*■ 0. To see this we remark first that t induces a linear functional r on ß by

T(g) — t(g+^)- Since t annihilates Jtn, t is a linear combination of partial deriva-

tives at the origin of order less than n. Also, there is a neighborhood IP of the origin

in C and a constant K such that each fe&[N] extends to FeO[W] with ||P||

í¿K 11/11 [6, Corollary V B 4]. Hence a sequence {/„} converging uniformly to 0 on

N extends to a sequence {P„} converging uniformly to 0 on IP. Then t(fn) = r(fn)

-> 0 and our assertion is established, concluding the proof.

It is an immediate consequence of the next result that the variety V obtained in

Theorem 2.5 is the largest analytic variety in S(5) at <p in the sense that there is no

analytic variety V in S(P) at <p whose germ at the origin properly contains the

germ of V. We denote by U the open unit disc in the complex plane.

Theorem 3.6. Suppose that the hypotheses of Theorem 2.5 are satisfied for an

element <p of E(P) and that V is the variety thus obtained. If 6*: U -> S(P) is any

analytic disc in S(P) at <p, then there is a neighborhood U'^U of the origin such that

0*[[/']c:(D*[K].

Proof. 6* induces a homomorphism B of B into &[U] by 6(b)(z)=^S(9*(z)). Let

a: 2(P) -> Cr denote the canonical map onto the joint spectrum of the elements
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h>i, ..., wr chosen as in Theorem 2.5. Let U' be a neighborhood of the origin such

that o[8*[U']]<= A.

We assert that if fe <S[A], f(z) = J,ßi{)zw and if, for each n and some element b

of 5, b ~npn where y>n = 2iiianA<)W(i>, then

(+) 6(b)(z) = f(o(6*(z))).

For any n, b—pn e (B$+1)~. Hence 6(b—pn) has a zero of order n+ 1 at the origin.

Since 6(b —pn)(z) = 0(b)(z) —pn(a(6*(z))), this implies that the first n coefficients of

the Taylor series about zero of the two sides of (+) agree and the assertion follows.

If we take/to be an element of the ideal /of the proof of Theorem 2.5 this gives,

for any z in U',f(o(6*(z)))=8(0)(z) = 0 and it follows that o[6*[U']]^ V. Now for

any A e 5 and z e U', if we take f=Y(b) and recall T(A)| V= <S>(b) we have B(6*(z))

= 0(A)(z) = O(A)(a(0*(z))) = £(O>(0*(z)))). Thus 6*(z) = ®*(a(8*(z))) is in <D*[F].

It follows from Theorem 3.6 that an alternate definition of the variety V in

Theorem 2.5 would have led to the same result. For suppose in the situation of

Theorem 2.5 that we define V to be the subvariety of A consisting of the common

zeros of all functions of the form 50F(A,.),..., YÍA))-^^,..., An)) where

bu ■ ■ -, bne B and P is a polynomial in n indeterminates. Then b -> *F(A)| V is a

homomorphism so that V is an analytic variety in 2(5) at <f>. It was essentially

verified in the proof of Theorem 2.5 that each function of the above form is in /.

Hence V<^ V. On the other hand, from Theorem 3.6 this inclusion cannot be

proper. Thus V= V. The original definition, of course, had the advantage that the

variety clearly does not depend on the choice of the functions Y(A).

4. We shall now apply the results of the previous sections to prove

Theorem 4.1. Let B be a commutative Banach algebra with identity and let <f> be

an element o/2(5) such that dim (B^B2.) is finite. Then 2(5) contains an analytic

variety at <f> which is a neighborhood of<f> in the metric topology. The variety is non-

trivial if and only if(Bl)~ ^(5J+1)" for all n.

Proof. We shall show that if wx,...,wr are representatives of a basis for

BJ(B2) ~ with || w{ || = 1 for each /, then there are positive numbers M and C such

that for each element b of B^ and for each n there is a partial sum/yn = 2|i|anÄoM;<i)

for b of degree n such that

(1) |j3(()| SCMw\\b\\ for each (/) with |/| in,

(2) for all 4>e 2(5) satisfying \\<p-^\\ %\DM we have \(b-pXW)\ ¿C(±)n+1\\b\\.

Here Z) = max (2r, 16).

From (1) we will have that the hypotheses of Theorem 2.5 are satisfied and thus

that there is an analytic variety in 2(5) at <f>. The last assertion of the theorem

is then immediate from Theorem 3.5. From (2) we will have that for elements of

the metric neighborhood N={>fi : \\<p->p\\^DM}, B(tp) = limpn(^)=limfn(a(^))

=xF(b)(a(tfi)). Here/n(z) = 2iiiän/WCi) and a is as before the map of 2(5) onto the
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joint spectrum of wu ..., wr. Thus every function of the form PÇ¥(bi),..., ^(¿?n))

— Y(P(bi,..., bn)) vanishes on the set o[N]. By the remark following Theorem

3.6, o[N]^V. For any <p e N, <t>*(a(<p)) is the homomorphism b -> <S>(b)(a(ip))

= h(>p). Thus A<= <P*[K] and we will have that 3>*[K] is a metric neighborhood of <p.

We now establish (1) and (2). First we note that for any integer n it suffices to

show that the assertion is true for all b in a dense subset of B. For suppose the

assertion true for each element of a sequence {bk} with bk -> b. Letpk be the partial

sum of degree n for bk. For any (/') with |i|á«, the (i')th coefficients of tnt pks are

uniformly bounded. Hence a subsequence of them's converges to a polynomial/»

of degree n in wlt..., wr. Since bk-pk e (By1)' for each k,b—pe (By1)' and it

is clear that p satisfies (1) and (2).

For each beB$, ¿> = 2i¡i=i /Wv(0 + ¿>2, b2e(Bl)~, where the ßm are uniquely

determined. For each (i) the linear functional b -> ßm is continuous since it

annihilates the closed subspace (Bl)~ of finite codimension in B^. Hence there is a

number L such that \ß{i)\ úL\b\ for each b and each (/) with |i | = 1. Since ||w,|| = 1,

we have also ||¿a||g(rL+l)|*||.

We denote by B^ ®y B$ the completion of the algebraic tensor product of B#

with itself in the greatest cross norm. This is defined by ||2«; ® bt\\ =inf {2 \\aj\\ \\bj\\}

where the infimum is over all representations of the element of the algebraic tensor

product [3]. Let T: B^ 0, B$ -> B$ be the linear mapping which for elements of

the algebraic tensor product is defined by P(2 ßy ® bj) = 2 aA- T is norm-

decreasing and the range of Pcontains B%. By assumption B% has finite codimension

in B0. Thus the same is true of the range of T and it follows that the range of T is

(B$Y [5, Corollary IV. 1.13].
Now by the Open Mapping Theorem there is K>0 such that for each b e (B2)~

there is an element a with T(a) = b and ||a|| ^ AT||6||. Moreover, for each b in a dense

subset of (B2)' we may assume that a belongs to the algebraic tensor product,

that is that 6 = 2 Qfij with a¡, c¡ e Bé and 2 \\<*j\\ ||cy|| ̂ZT||è||.

We use this remark to expand certain elements b of B^. We have

(3) 6=2  ßmwm+b2,       b2e(Bl)'.
m = i

For b in a dense subset of B0,

(4)        b= 2 ßuytt+I«a,    2 HI kl áK\\b2\\,
ui=i i

(5) -  2 A»"(i, + 2(2  «Mi>rffí+dM2 Ym*»+*).

where dh e¡ e (Bf)'. Thus

(6) b= 2 ßm^+ 2 [   2     (2 *í*trM-»)]*°+bto

where b3 e (Bf) .
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By induction, for any n we may for a dense subset of B0 iterate this process n

times at each step replacing each element of (5f)~ in a sum such as (3) or (5) by a

sum of products of elements of 5^, each represented as in (3). We may then collect

terms as in (4) to obtain a representation

b= 2 /v+¿n+l,    A„+16(5r1)-.
HIS"

We assert that then \ßm\^CN^[KL(rL+\)\w\\b\\ for each (/) with lg|i|gn.

Here C= l/K(rL+1) and NU) is the number of terms which must be collected to

form j8(0w(i). Nm=l if |/| = 1 and it will be seen below that N(n¿(4r)w for all (/').

Thus we will have (1) with M=4rKL(rL+1).

If |/1 = 1, we have seen that \ßm\ ̂ L\\b\\ ¿ CM \\b\\. Now suppose that the assertion

is true for n — 1 and that for b e B¿, the above process has been iterated n times.

Then it has been iterated n -1 times for each a, and c¡ appearing in (4). Thus

fj =       2      ai,mwm + di,n, Cj =       2      Yi.U)win + ef,n
lilgn-l UlSn-l

with dUn, eUn e (5J)- and

k«>l è CNmlKIÁrL+l)]wia}\\,       \Y/M\ i OUßOJ(rL+l)V»[e,\

for each j and each (/) with 1 ̂  | /1 ¿ n — 1. Now, for 2 S \ i \ Ú «,

Ao =      2      Œ ai.mYj.(t-k))
(0)<<fc)<(o V y /

so

\ßU)\ ̂ C2JV(i)r*X(rL+l)]'"2 NI NI ^ CNlü[KIÁjrL+1)]1"||A||
í

as asserted, where we note Nm=2m<m<m NmN„.k).

We now determine the integers Nm. For r=\, that is in case Ari = 2ic=1i AyVj_fc

it is well known that JVj=(2i—2)!/i'!(i— 1)! (see, for example, [7, p. 25]). In the

general case a slight modification of the argument in the above reference yields

iV(i) = [(2|i|-2)!/|i|!(|i|-l)!][|i|!//1!.. ./r!]. Since the first term in this product is

no more than 4m and the second no more than rm, we obtain the generous estimate

Jï8aW
To complete the proof we verify that (2) also holds for all A in a dense subset of

B,¡,. We have A = 2m = i ßmw(i)+b2, b2 = Jtajcj as before. Now

&(*)l è 2 NI loi ll¿--AII2 ^ (i/c)||^-^n|A|

i CM2\\<p-rp\\2\\b\\ ï C(i)2||A||

if \\<f>-011 <>\DM. Thus (2) holds for n = 1. Suppose that it holds for n-1. Then,

returning to the computation for (1), we may assume in addition that \dj¡n(ip)\

^C(i)"NI. |é,,„(<A)| ^C(i)1<v|| for all <? such that \\<p->p\\ é$DM. Then

b=  2  Ad^+IVi-  2  Ao^+A-i
li| = l i Hlgn
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where

bn+i=     2     [2{2«/.c»y/.«-»)K
n + lS|i|s2n-2   L(fc) V ; II

+2 K»    2    y^.coO

+ 2 K" 2 K3.(»M;<,)) + 2^.^.n-
i    \ lg|(|Sn-l /       j

Hence if |<¿-^|| Si DM,

2n-2

|£n + l(-A)|   Í       2      (C, + m-i.mCJ»/»||^-0||»||6|)
m = n + l

+ 2(i)1*|| "2 (C^"||^-0||") + C(i)a»|¿||
m = l

^ C(i)n+1||è||[(rn+1//)n + 1)n2 rm(l/2D)m+4n2 (ißDT + QT'1]
L m=0 m=l J

é Cí¿)»+1||6|[i(l/(l -r/2D)) + (2/D)l(\ -1/2/)) + }]
^ C(i)n+1||*|[i+i+i] = C(i)"+1||é||.

Here we have used the inequality Cm+r-limSrm valid for all positive integers r and

m. Thus (2) also holds and the proof of Theorem 4.1 is complete.

A point derivation on B at <p is a linear functional on P which annihilates the

constants and Pj. A consequence of Theorem 4.1 is then

Corollary 4.2. If every point derivation at <p is bounded, then £(P) contains an

analytic variety at <p which is a neighborhood of<p in the metric topology.

Proof. By assumption P| = (P$)~. Moreover, dim (BJB$) is finite, for otherwise

any unbounded linear functional on BJB$ would induce an unbounded point

derivation at <p.

5. We consider now three uniform algebras. The first demonstrates that the

analytic structure obtained from Theorem 4.1 need not be open in the Gelfand

topology, and that <p may be an element of the Silov boundary.

Example 5.1. In C2 let Xbe the union of the sets £)1={(z1, z2) : Iz^ ^ 1, z2=0}

and £>2={(zj,z2) : Z! = 0, |z2-l|^l}, and let A be the closure of the polynomials

on X. (0, 0) is in the Silov boundary of A. Let A0 denote the maximal ideal of

functions which vanish at (0,0). lffeA0, then f=fi+f2 where /i,/2 eA and

/i|^2=/2|-£>i=0. Since (0, 0) is a peak point for A\D2,f2 e p|"=i A\ [2, Theorem

4.1]. Since A\Di is the disc algebra,/! e A% if and only if/1 = zjg, ge A. Hence

dim (A0/Ao) — l for all n, {Zi + A2,} is a basis for A0/A2 and the function i>* of

Theorem 2.5 maps the open unit disc U onto Ux{0}.

The other two examples will be drawn from a class of uniform algebras studied

by S. J. Sidney [10] whose relevant properties we first briefly describe.
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Let /be an index set, let Z=ü {A : /' e /} be a product of closed unit discs, and

let T denote the product of circles which is its distinguished boundary. We denote

by P the closure on Z of the polynomials in the coordinate functions and by P0 the

maximal ideal of functions which vanish at the origin. Let P be a uniform algebra

with Silov boundary V. Then we shall be interested in the uniform algebra A which

is the closure on T x Z of C(r) <g> Pg1 + P <g> P. Here C(L") denotes the algebra of all

complex valued continuous functions on Y and <g> denotes the algebraic tensor

product. S(/i) may be identified with (2(P) x {0}) u (r x Z) and the Silov boundary

for A is T x T. lf<p = (ip, 0) for some <p e Z(P)\I\ then for each n, (AD~ is the closed

linear span of C(r) <g) Pg\ and B¡®Py' for j=0,...,«. (We recall B$=B,

P°o=P.)

Example 5.2. It is possible for <p to be isolated, even though dim (AJA$)=l.

In fact for any k we may choose A so that dim (A'it,/Aid,+ 1)=l forj= I,..., k—l but

A% = Aky1. We choose Z to be a single closed disc, take m = k, and let B be the

algebra of bounded analytic functions on the open unit disc. It follows from the

work of Hoffman [8, p. 100], that 2(P) contains an element >p not on the Silov

boundary such that P^ = B%. (We are indebted to S. J. Sidney for bringing this to

our attention.)

We verify first that if/is in the closure of C(T) <g> Pk then/e f|"=i ¿l- This was

shown by Sidney for elements of C(r) % Pk. In general, /=lim/; with

/ e C(T) <g) Pk. Fix n. Then /• = 2il=fc1 gtj ® z' + 2 «¡ ® et with et e PS*. On each

disc {y}xZ we have for each i, | g„(y) - gim(y) | ^ max {\f(y, z)-fm(y, z)\ : zeZ)

= \\fj—fm\\- Hence for each i=k,..., nk— 1, the sequence {gtj} converges to gt.

Now/=2 gi <8> z* + h, where h is in the closure of C(L") (g> Pgfc, is in A\ since this is

true of each g¡ <g) z* and h = (l <g> zk)n'1h' for some A' in the closure of C(r) (g> Pq.

We next assert that {1 <g) z + A%) is a basis for AJA*. We note first 1 <g) z £ .¿J

since 1 <8> z is orthogonal to A% in P2(/i x w) where ¡i is a representing measure on

T for i/( and m is normalized Lebesgue measure. On the other hand, an argument

similar in spirit to that of the preceding paragraph yields that any/e A$ may be

written f=a(l ® z) + 2f=o h¡ (g) z'+g where each hf e B^ = PJ and g is in the closure

of C(F) (g Pk. Hence 1 ®z + A% spans y40/yi|.

By Theorem 2.3, dim (A^/Atfx) = 0 or 1 for each/ Ify ̂  A: -1, then 1 <g) zJ is orthog-

onal to ^+1 in L'bixm). 1 ® z" g C(r) ® Pg«=n»-i ^3- Thus dim(^/^+1)

= 1 for j^k— 1 and =0 for j^k as asserted. It follows from Theorems 3.5 and

4.1 that <£ is isolated in 2L4).

Example 5.3. We close with an algebra whose spectrum contains a disc as an

open subset in the Gelfand topology with the property that for <p in this disc,

dim (AJ(A2)~) is not finite. We take A to be an algebra of the same type as in the

previous example, where now / is an infinite index set and P is the disc algebra.

Then H(A) = (D x {0}) u (TxZ) and <¿=(0, 0) is the center of an open analytic

disc. On the other hand, if m again denotes normalized Lebesgue measure on the

unit circle and if A is the normalized Haar measure on T, then it is not difficult to
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verify that for each i el, 1 0z, is orthogonal to (A2,)    in l?(m x A). Hence

{1 ® Zi + (A%)~ : ie 1} is an infinite linearly independent subset of AJ(A$)~.
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