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Abstract. Let A = (Atl) be a partitioned positive semidefinite hermitian matrix,

where An is «-square, 1 tsi,j=m. A class of ordered pairs of functions (/i,/a) is given

such that (fi(Ati)) — (f2(Ati)) is positive semidefinite hermitian. Applications are given.

1. Exordium. The field is the complex numbers. For square matrices, A, the

notation A ^ 0 means A is positive semidefinite hermitian. If Ax, A2, and Ax — A2 ä 0,

write Ax^A2.

Let ^4^0 be w«-square, partitioned into m2 «-square submatrices:

(1) A = (Atj),       1 Z i,j S m,

where each Atj is «-square. A number of recent papers, [1], [5], [6], [7], [10], [11],

[12], have dealt with the question: For what functions/taking «-square matrices

to jP-square matrices is it the case that the mp-square matrix

Af = (/(A)) ^ o?

In this article, the following question is considered: For what functions fi,f2

taking «-square matrices to /^-square matrices is it the case that

(fi(Ai,)) ̂  (fi2(Ai})V-

In order to give one answer to this question, a large class of functions is defined.

The class includes generalized matrix functions and generalized trace functions.

Applications of the main result include dominance theorems for principal sub-

matrices of associated matrices and inequalities for the functions themselves, some

of which specialize to new inequalities for generalized matrix functions.

The organization of the paper is as follows: In §2, the main results are detailed.

§3 contains proofs of the more difficult results. In §4, converses and extensions of

the most important result are discussed.
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2. Main results and consequences. Let G be a subgroup of the symmetric group

Sn. Let A be a character on G. Let X=(xij) be a generic «-square matrix. For

lirin, define

(2) er(X) = 2 Ka)ET(Xxoa), • • • » *n<r(n))>

where Er is the rth elementary symmetric function. Of course, er depends on G and A.

When r = n, en = da, the generalized matrix function [8], [15]. (If G = Sn and

A = sgn, d£ = det. If G = Sn and A=l, o"â = per, the permanent. If G = {1} and A=l,

d%=h, the product of the main diagonal elements.)

When r = l, ex = t(¡, the generalized trace function [11]. (If G = {1} and A=l, t£

is the trace. If G is the group generated by the cycle (1 • • •«) and A= 1, t%(X)=f(X),

the sum of the entries of X.)

To make life easier, it will henceforth be assumed that A and all other characters

mentioned are irreducible. For the aficionado, we will attempt to point out when

this assumption is used and how it can be avoided.

2.1. Theorem. Let A^O be the mn-square partitioned matrix of (1). Then

A(¡r = (er(Aii))^0. Moreover, the eigenvalues of ACr lie in the interval fac, firc] where

c, r¡, p. are, respectively, a nonnegative integer depending on G and X, the minimum

and maximum eigenvalue of A.

The number, c, will be determined in the proof.

Theorem 2.1 has previously been proved when r = n and A(l)=l [6], and when

r=l [11].

Now, let

(3) T(G, A) = ^ 2 xi°)°
S      a=G

where 1 e G is the identity element and g is the order of G. With respect to the

group algebra inner product which makes Sn an orthonormal basis, the linear

operator (left multiplication) T(G, A) is hermitian. Since A is irreducible, T(G, X)

is idempotent and hence is an orthogonal projection.

2.2. Theorem. Let G¡, i =1,2, be subgroups of Sn of orders gt with irreducible

characters A¡. Let r be fixed. Let

f = (A((l)/g,y,       i = L 2,

where e* is that er corresponding to G¡ and A(. IfT(Gx, A1)^F(G2, A2) then

(4) ifiiA»)) ^ (f2(Ai})).

In what follows, let us write (fiu K)=iG, X) and (G2, A2) = (/F, x). Since T(G, X)

and T(H, x) are orthogonal projections, T(G, X)^T(H, x) if and only if [4, pp.

148-149]

(5) T(G, X)T(H, x) = T(H, y).

Frequent use will be made of this fact.
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The next result gives a character theoretic equivalence of the condition T(G, X)

ZT(H,x).

2.3. Theorem.  When X and x are irreducible, (5) holds if and only if both of the

following conditions hold:

(*)2A(a)X(a-1rr) = (g/A(l))X(7r),

(**) 2A(Ta)Y(a-y> = 0

for all tt e H and r e G\H. Both sums are over o e G n TT.

In case G^H, (**) is vacuous and we have

2.4. Corollary. IfG^Hthen (5) holds if and only if x\G=(x(l)/X(l))X, i.e., the

restriction of x to G is a multiple of X.

Corollary 2.4 contains the cases that x|G is still irreducible, and that G is con-

tained in TT* = {<re TT : \x(°)\=x(l)}, A = x/xO)- In case G is normal in TT, Corollary

2.4 says (5) holds if and only if A is an irreducible component of x|TT, invariant

under conjugation by elements from H [2, p. 53].

In the context of Corollary 2.4, when x(l) = 1 and r=n, Williamson [16, Theorem

1] proved that the main diagonal elements of the left side of (4) dominate the

corresponding elements on the right side (the case m = 1). Williamson's result was

extended in [13] to the case x(0 = 1> ar>d either x|G = A or G^H* and A = x/x(l)-

2.5. Corollary. If A is linear (i.e., A(l) = 1) and if (5) holds then G<= TT and hence

G<=H* andx\G = x(l)*-

Proof. If GdzTT, choose t e G\TT. From (**) it follows that 2 K°)x(°~l") = ç> for

all n e H. This contradicts (*).

2.6. Theorem. If {oeG : A(ct)/0}cTYcG and if x e X \ H is an irreducible

component, then (5) holds.

Some results are now obtained by making special choices for A, G, X, H and x-

2.7. Corollary. Let Er(X) = Er(xxx, ■ ■ -, xnn) for X=(xll) a generic n-square

matrix. Then

(E^,)) ^ (x(1)/«)(aA))

where er corresponds to any subgroup H of Sn and irreducible character x- In particu-

lar,

(KAU)) ̂  (x(1)/«)(¿AÍA))   and   (trace (Aif)) ̂  (x(l)/«)(iÄ(A)).

Proof. Theorem 2.2 and Corollary 2.4.

2.8. Lemma [12]. Let Alt...,Am be txn matrices. The mn-square partitioned

matrix A = (AfAj)^0.
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Proof.

- ' \    .1

0
aJ

where / is the /-square identity matrix.

One obtains a family of dominance theorems by combining 2.2 and 2.8. As

an application of one of these theorems we have

2.9. Corollary. Let A and B be txn matrices. Let e\ i =1,2, be defined as in

Theorem 2.2. Then

(6) Ct = é(A*A)ei(B*B)-\é(A*B)\2 ä 0.

Moreover, ifT(Gx, Xx)^T(G2, A2) then

il) fafa/gifci H fail)/g2)2c2.

Proof. Apply 2.1 and 2.2 to 2.8. Compare the leading 2x2 principal minors.

If n=l, (6) is the Cauchy-Schwarz inequality. When r = n and A¡(1)=1, (6) was

proved in [8]. Freese [3] extended the result in [8] to the case A¡(1);> 1. When r= 1,

(6) was proved in [12].

Now, let Ynk denote the set of functions from {1,..., «} to {1,..., k}. If B is a

/^-square matrix and if a, ß e Ynlc, we denote by B[a, ß] the «-square matrix whose

i,j entry is the a(i), ß(j) entry of B.

2.10. Lemma. Suppose B^O is k-square. Let Y be a subset of Ynk ordered arbi-

trarily. Let m be the cardinality of Y. Construct an mn-square partitioned matrix,

B(Y), as follows: For a,ßeY, the a, ß block of B(Y) is B[a, ß]. Then B(Y)^0.

Proof. Every principal submatrix of B(Y) is either permutation similar to a

principal submatrix of B or has two equal rows. Hence, every principal submatrix

of B(Y) has nonnegative determinant. It is clear that B(Y) is hermitian when B is.

Again, it is easy to see how to obtain a family of dominance theorems using 2.2

and 2.10. We will give some specific examples of these, but first we pause to provide

some motivation. We define the associated matrix for (G, A). For this definition

we assume that A(l)= 1. Associated matrices with A(l)> 1 have been treated by a

number of authors. However, for our present purposes, the added generality does

not seem worth the added effort.

We say two functions, a, ß e Ynk are equivalent mod G if there is a ct 6 G faSn)

such that aa=ß. From each equivalence class mod G, choose the function which is

A =

■Ax

/It« J

VI

u
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lowest in lexicographic order. (Here we consider a = (a(l),..., a(«)) e Tnk.) Denote

the set of distinct representatives so chosen by A. We let

(8) Ga = {o- e G : ao = a},   ae Tnk,   and   Ä = {a e A : A|Ga = 1}.

Order A lexicographically. Let the cardinality of A be 7Y. Let v{a) be the order of Ga.

If C is ^-square, the associated matrix for (G, A) of C, K(C), is the A^-square

matrix whose a, ß entry (a, ß e A) is (v{a)v{ß))~112 daCT[ß, a] where CT is the trans-

pose of C. Perhaps the most interesting feature of these associated matrices is that

K(Cx)K(C2) = K(CxC2).

2.11. Corollary (Marcus and Katz [6, Theorem 3]). Let A^O be the mn-

square partitioned matrix of (I). Then the mN-square partitioned matrix (K(Atj))^0.

Proof. Apply Lemma 2.10 to AT. Apply Theorem 2.1 with /•=«. Take the

transpose. By a diagonal congruence {v{a)~112, a e A on the diagonal), (K(Atj)) is

obtained.

Marcus and Katz used their result to prove that the block matrix

(9) (trace K(Ati)) ^ 0,

from which they obtained a family of results. Using Corollary 2.7, (9) can be

improved. For example, (trace K(Aij)) ^ N ~ 1(/(Ar(^4iJ))).

2.12. Corollary. Let

(10) r = {« e Tnk : 1 ^ <*(1) < a(2) < • ■ • < «(«) ^ k}.

Order T lexicographically. Let G = An, the alternating group, and A=l. IfB^O (and

k-square) then

(11) 2(de(BT[ß, a])) ;> (d(BT[ß, a])) = K,

where d=det or d=per.

If d=det, K is the «th compound of B (the associated matrix for (Sn, sgn)). If

d=per, K is the principal submatrix of the «th power of B (the associated matrix

for (Sn, 1)) corresponding to the set T. The matrix on the left of (11) is twice the

principal submatrix corresponding to T, of the associated matrix for (An, 1).

Corollary 2.12 is, of course, merely another example of Theorem 2.

In view of Schur's inequalities [15] (e.g., per B^det Bfor all 5^0). It is tempting

to conjecture that the principal submatrix of the «th power of B corresponding to

the F of (10) be comparable to the «th compound. This is not the case as the follow-

ing example shows :
'2   0

B =

0 2

1 1

1    1

1 1

1 1

2 0

0 2
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3. Proofs and byproducts.

Proofs of 2.1 and 2.2. If M=(mij) is «-square, let Kr(M) he the rth Kronecker

power of M (the «'-square matrix whose a, ß entry is Yll= i m<Mmi), a, ß 6 rrn,

where Yrn is ordered lexicographically). If N=(n{j) is another «-square matrix,

M°A will denote the Hadamard or Schur product of M and N, i.e., MoN=(mijnij).

Let {Qia) '• ct e Sn} be the standard representation of Sn by «-square permutation

matrices; the i,j element of Qfa is 8laU). Let Drn<=Yrn denote the subset of 1-1

functions. Let ßrnc:FJrn be the subset of order preserving 1-1 functions. (The set

T in (10) is Qnk.) Observe

(12) rler(M) = rl 2 Xfa  2   ií «*n«*
cgG coeQrn. t = l

r

(13) = 2 A(ff)   2   il m<om™m

r

=    2   AW 2 il   (^V(i)£7C0(i)'"ffl(t)v(i))
aea co,v6Dr„t = l

r

=   2 Ái°)      2     II (ôfa'^oXtMtt'MûXtMf))
(76G û),veDrn í = 1

= 2 K") 2 Wô^-UW)«
<7SG (B.veDrn

(14) =/(C;(G,A)cA-r'(M)),

where (recall) / is the function which sums the elements of the matrix it sees ;

Cr(G, X) = JiaeGXfaKr(Q(a~1)); and primes indicate the principal submatrix

corresponding to Drn.

It is trivial to see that the block matrix (Kr(Aif)) is a principal submatrix of

Kr(A), and that (K'^A^)) is a principal submatrix of (Kr(Au)). Hence, (KÍ(Atí))^Q

with eigenvalues contained in [if, p.'], the interval determined by the minimum

and maximum eigenvalues of KT(A).

Let </ir be the function from Sn to the «'-square complex matrices defined by

(15) W) = UQi°))-

Then <pr is a representation of Sn. It follows that (A(l)/g)Cr(G, A) is hermitian

(equal to its conjugate transpose) and idempotent. Hence Cr(G, A)^0. Thus the

Kronecker product J ® C'r(G, X) ̂  0, where J is the m-square matrix each of whose

entries is 1. Therefore the (wi(r!(?)))-square block matrix

(16) (J S C'r(G, A)) c (K'r(Au)) = (Cr(G, X) o K'r(Au)) ̂ 0.

We now need a special case of Theorem 2.1 :

3.1. Lemma. Let f be the function which sums the elements of the matrix it sees.

IfA = (Aij)^0 then Af=(f(Aij))^0. Moreover, if M=(Mi3)^0 has the same size

and partitioning as A, and if Alt M, then A/^M/.



1972] DOMINANCE THEOREM FOR PARTITIONED HERMITIAN MATRICES    347

Proofs of this lemma are contained in [10] and [11]. However, the following

proof is very short:

Let C be the mnxm matrix whose i'th column contains a 1 in each of positions

n(i—1)+1,..., ni, and zeros elsewhere. Then A/=C*AC.

This proof also works for the case that Ay is «f x nt, «¡ not necessarily equal to n¡.

In view of (14), to prove that Aer^0, it remains to apply Lemma 3.1 to (16) and

divide by r\.

We now supply the bounds for the eigenvalues of Aer Let M be the matrix of

Lemma 3.1 (A^M). It is not difficult to prove that Kr(A)^Kr(M) (see, for ex-

ample, [9]). Hence,

(17) (K'r(Ai¡y) ^ (JÇ(My)).

It follows from (16) and (17) that

(18) (C'r(G, X) o K'MJ) ^ (Cr(G, X) o WM«)).

Take M=r¡I where Tis the w«-square identity and apply Lemma 3.1 to (18). We

obtain that (er(Au)) dominates the w-square scalar matrix each of whose diagonal

entries is rfc where

c = (r!)"1 trace Cr'(G, A)

(19) =(r!)"1   2   IK^YIK«^
CUeDrn "6G t=l

= f/D"1   2     2   A(CT)   where G(w) = {°zG : ooj = w}.

(The notation G(co) should not be confused with Ga.) Let g(u>) be the order of

G(oj) and (A|G(co), 1) be the number of occurrences of the principal representation

in the restriction of A to the group G(œ). Then we have

(20) c =   2     2   AW =   2  SH(A|G(«/), 1),

certainly a nonnegative integer. The upper bound for the eigenvalues of ASr is

obtained in the same way.

To prove Theorem 2.2, extend ¡/<r (see (15)) linearly to a transformation from the

5n-algebra. (In general, if G is a group, by the G-algebra, we mean the group

algebra of G over the complex numbers.) Then </ir is a homomorphism from the

Sn-algebra to the algebra of «r-square matrices. Therefore, (5) implies

(21) (A(l)/g)Cr(G, A) ̂  (x(l)/«)Cr(TT, x).

(Indeed, taking (21) as our hypothesis in place of T(G, X) ̂  7YTT, x), we could avoid

the assumption of irreducibility and obtain a stronger theorem.) A combination

of (14), (16), (21) and Lemma 3.1 yields the result.
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Proof of Theorem 2.3. The idea of the proof is to consider (5) as an equation in

the group algebra and to take advantage of the fact that {ct e Sn} is a basis. Thus

(22) r(CTOx) = ^P      2      A(a)X(7r)«r.
5"        aeGixeH

Now, an e H if and only if a e H. Therefore, (22) breaks naturally into two equa-

tions:

(*yAíM.)      2       Xfaxfaon = T(H,x)   and
6"        oeGnH-.neH

(23) (**)'     2     K°)xM°" = 0.
oeG\H;neH

By a change of variables, (*)' becomes

A(l)x(l)
2       Xfaxfa^)n = T(H,x)

gn oeGnn;n£H

or

—   2   A(CT)x(CT-1"-) = xto   for all 77 e H.
g    oeGnH

In (23), axtTx = a2tr2 if and only if ct1 = ct2t and ir1=r~1ira for some t e G n H.

Therefore, the coefficient of any particular an in (23) is

(24) 2    A(ar)x(r-V).
leGnff

But, (24) must be zero for every a e G\H and n e H. Change a to t and t to ct in

(24) to obtain (**).

Proof of Corollary 2.4. Set n= I in (*) to obtain

ix\G, A) = g-1 2 A(ct)x(ct-i) = x(l)/A(l).
ceG

Hence,

(25) x\G - (x(l)/A(l))A.

Conversely, assume (25) holds. One can easily show that F(G, A) and F(F/, x)

commute. (Indeed, F(F/, x) is in the center of the FFalgebra to which T(G, X)

belongs.) Therefore, their product is an orthogonal projection. But,

T(H, x)(F(G, X)T(H, x)) = T(G, X)T(H, x).

Hence, T(H, x)=^T(G, X)T(H, x)- It remains to prove

rank F(F7, x) = rank T(G, X)T(H, x).
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But, the rank of an orthogonal projection is just its trace. So, let f be the character

of the regular representation of TT. Then, since ${o) = 0 if <r# 1,

trace T{H, x) = (x(l)/h) 2 x(*)i(") = xO)2-
OEH

trace T(G, X)T(H, x) = ^f^ 2 A(") 2 xWiM

g aea

= *ÜL 2 X^X^-1)   from (25)
S      aeG

= X(1)2.    Q.E.D.

As a bonus, we have proved the following extension of a standard orthogonality

relation.

3.2. Theorem. Let G be a subgroup of H. Let X andx be, respectively, irreducible

characters on G and H. Suppose that x|G = (xO)/A(l))A. (T« particular, this will be

true if G is normal in H and if X e %\G is invariant under conjugation by elements of

TT, or if G is an arbitrary subgroup of H such that x\G is irreducible on G.) Then

2A(a)x(a-V) = T^:xW
asa A\l)

for all tt e H.

Theorem 3.2 can also be proved directly using the usual methods [2, pp. 32-33]

or [14, pp. 15-16]. (Indeed, a slicker proof of the converse in Corollary 2.4 would be

to apply Theorem 3.2 directly to (25), obtaining (*).)

Proof of Theorem 2.6.

T(G, X)T(H, x) = ^P-    2    AWxW™
gn       rj£G;neH

= *öj£ü    2    AWrfirW
OfVl o.nsH

= ^(A|TT,x)2xW-

by the orthogonality relations (x is irreducible). Since T(G, X) and T(H, x) com-

mute, their product, (26), is a projection. It follows, since we have assumed

(A|TT, x)^0, that (26) is r(TT, x), i.e., that

(27) (A(l)/g)(A|/T,x) = xO)/"

and we are finished.
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In the context of Theorem 2.6 (when G^H), we have shown that X\H always

reduces; if not, (A|/F, x)= 1 and A(l) = x(l) but g¥=h, contradicting (27).

4. Converses and extensions.

Extensions of 2.1 and 2.2. Consider any A set of the type (8) where we want the

notation such that Ac rrn. The rth Schur function of y = (yx,..., yn) corresponding

to A is defined by

^(v) = 2 Hba(0-

(For example, if G = Sr and A = sgn, A= Qrn. Thus, the Schur function correspond-

ing to this A is ET, the rth elementary symmetric function.)

Now, let H be a subgroup of Sn with character x- Given a fixed Schur function,

Fr, define

SriX)  =   2  Xi^Frfaam, ■■■, Xna(n))
as H

where X=fa,) is a generic «-square matrix. Of course, sr depends on H, x, G, and A.

One can replace er in 2.1 and 2.2 with sr and obtain exactly the same theorems.

The proofs proceed analagously except that some additions are needed to deal with

the more complicated combinatorial structure of the general A set.

Indeed, one could extend 2.1 and 2.2 to even more general functions. What is

needed from the indices of summation is that the set have enough symmetry to

permit the analog of (12)—(13). For example, if «> 1 then

{(/,...,/): 1 iiin}cz rrn

is such an index set which is not a A set. In this case, the analog of (2) is

2 K") 2 **«>•
oeG (=1

Before discussing a converse of Theorem 2.2, we illustrate some of the difficulties

with an example. Let G = S3, A1 = l, A2 = sgn. Then the matrix representation of

T(G, Xx)-T(G, X2) with respect to the ordered basis {1, (12), (13), (23), (123), (132)}

is

0 1110 0

10 0 0 11

10 0 0 11

10 0 0 1 1

0 1110 0

0 1110 0
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clearly not positive semidefinite. However,

"1    1    1"

Cx(G,Xx)-Cx(G,X2) = ± 1    1    1

1    1    1

This shows that the following would-be converse to Theorem 2.2 fails: Letfi,fi2 be

as in Theorem 2.2. Suppose that fi(B)^f2(B) for all n-square B^O. Then T(Gx, Xx)

ja T(G2, A2). However, we do have

4.1. Theorem. Let fi andfi be as in Theorem 2.2 with r=l. If fi(B)^fi2(B) for

all n-square B ̂  0, then

fafa/gi)CxiGx, Ax) è (Aa(l)/ga)Cx(G2, A2).

Proof. For i =1,2, let

Tt = (Xt(l)/gi)Cx(Gt, Xty = (Xtfa/gt) 2 KfaQfa.
asGi

It is an easy computation to show that/(ß) = trace (F¡S). Assume trace (TxM*M)

ä trace (T2M*M) for all «-square M. Let U be unitary such that U*(TX — T2)U is

diagonal. Then

trace (fax - T2)M*M) ̂  0 for all M

if and only if

trace (U*(T1-T2)UU*M*MU)^0 for all M

if and only if

trace (U*(Tx-T2)UM*M)^0 for all M

if and only if

the eigenvalues of Tx — T2 are all nonnegative

if and only if

TfaT2.
Theorem 4.1 is not true when r = 1 is replaced with r=n. I do not know about

1 <r<n.
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