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Abstract. This paper deals with convergence theorems for martingales of strongly

measurable Pettis integrable functions. First, a characterization of those martingales

which converge in the Pettis norm is obtained. Then it is shown that a martingale

which is convergent in the Pettis norm converges to its limit strongly in measure and,

if the index set is the positive integers, it converges strongly almost everywhere to its

limit. The second part of the paper deals with the strong measure and strong almost

everywhere convergence of martingales which are not necessarily convergent in the

Pettis norm. The resulting theorems here show that L'-boundedness can be consider-

ably relaxed to a weaker control condition on the martingale by the use of some

facts on finitely additive vector measures.

Convergence of martingales of Bochner integrable functions has been the theme

of many papers written over the last ten years. On the other hand, aside from the

work of Motivier, martingales of weakly integrable functions have received com-

paratively little attention, possibly because of the apparent lack of a real structure

theory for Pettis integrable functions. The purpose of this paper is to strike a

course halfway between the two areas mentioned above by studying martingales

of strongly measurable Pettis integrable functions. In the first section various

preliminary results are gathered to establish the setting for the remainder of the

paper. The second section characterizes martingales which converge in the Pettis

norm. The existence of such a characterization is a somewhat surprising fact in

itself since there are nonconvergent martingales which are Cauchy in the Pettis

norm. The last section is devoted to the problem of strong pointwise convergence

of martingales of Pettis integrable strongly measurable functions. The results of

this section are general enough to include theorems of Doob, Krickeberg, Chatterji,

and the author dealing with measure convergence and almost everywhere conver-

gence of L1-bounded martingales of Bochner integrable functions.

1. Preliminaries.    Throughout this paper (D, 2, p.) is a fixed finite measure space ;

3£ is a Banach space with continuous dual 36*. A function /: Q -> 3£ is strongly
measurable iff is the almost everywhere [p] limit of measurable simple functions
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of the form ¿J=i x¡xEi, x¡ e X, F¡ eS. A strongly measurable function /: O ->- X

is called Pettis integrable if x*feL\£l, E, /x) (=¿V)) for all x* e X* and if for

each FeE, there exists xE e X satisfying the identity x*(.v£) = J£ x*fdp for all

x* € X*. In this case one writes xE = P-^Ef dp. If also ||/|| eV-fjî), then/is Bochner

integrable and for the purposes of this paper we shall write Bochner-jE/i//x

=P-jEfdp=(Efdfj., the unadorned integral symbol meaning Bochner or Lebesgue

integration. Iff is strongly measurable and Pettis integrable, we define

\\f\\Pl =   sup  f   \x*f\ dp.
nx'iisiJn

After identification of functions which agree on all but possibly a set of /¿-measure

zero, the collection of all X valued strongly measurable functions becomes a

normed linear space which is typically incomplete [12, p. 303]. This space will be

denoted by PX(X) or P,(p, X) or Fi(S, p., X) depending on the context. Pettis has

shown [12, p. 284, Corollary 2.5.1] that iffePx(X), then

lim   UxeWp, - 0.

From this it is easy to prove

Lemma 1.1. Let B be a subfield ofzZ such that the afield generated by B is E.

Then the linear span of the set {x%E : x e X, E e B} is dense in P,(X). (Here v£ is the

characteristic or indicator function of the set E.)

Definition 1.2. Let feP,(L, X) and B be a sub-tr-field of S. geP,(B, X) is

called the conditional expectation off relative to B if P-fE g dp=P-fEf dp for all

Ee B. In this case one writes EB(f) = g.

Some comments on this definition are in order. B is a sub-a-field of E and

geP,(B, X), then from [12, p. 291, Theorem 4.3] it follows that geP^Z, X).

Hence when/e F^S, 1) and EB(f) is defined then EB(f)eP,(zZ, W). Also since EB

is a contraction on L1^) it follows from the definition of || • ||Pl that EB is a linear

contraction on its domain. Now, in view of Lemma 1.1, L1^, X), the space of all

Bochner integrable functions is dense in Pi(£, X). Since EB is defined on all of

L1^, X), EB is densely defined. However, at the time of this writing, it is not

known whether EB is defined on all of Px(zZ, X).

Definition 1.3. Let F be a directed set and {Bx, t e F} be an increasing net of

sub-o--fieldsofZ;i.e. t1^t2 implies B^BT2-{fi, Bx, teTJcP^S, X) is a martingale

if r, á t2 implies FB'i(/Iä)=/tl.

The next two lemmas are the keys to the work of §§2 and 3.

Lemma 1.4. For a martingale {/„ B%, r eT} in Fi(S, X), the following conditions

are equivalent:

(i) limt/T exists in Px-norm.

(ii) There exists fe PMU* BJ> *) (C-Pi(2> *)) such that EBif) =ffor all reT.
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(iii) There exists fe Px(a([Jz Bz), X) such that limz P-$Efz dp=P-\Efdp, E

e U.*»•

Proof. Since Px(°(\Ji Bz), 2c) is a closed subspace of Px(Z, 3£) we can and do

assume that <r((Jt Ät)=2. To prove (i) => (ii) and (iii), note that if lim,/=/in

Pj-norm, then since Pettis integration is a continuous operation, lim, P-\Ef% dp

=P-¡Efdp, for all Ee{Jt Bz. Hence (i) => (iii). Also from the martingale property,

P-¡EfZodp = P-¡Efdp for EeBZu. Hence EB'o(f)=f. Thus (i) => (iii). To prove

(iii) => (ii) => (i), note that the martingale property shows immediately that

(iii) => (ii). Now assume (ii) and let £>0 be given. By Lemma 1.1 there exists

fe = 2ï=i XtXE¡, Ei e Ut Bt such that \\f-f*\\pi<eß- Choosing t0 such that {£j}?.,

<=Bt0 yields EB,(fe)=fc for t^t0 and

n/-/;ik = Wf-fhMf-fU
=  Wf-fsWpx+WEHf-f)^ ¿ 2\\f-f\\Pl < e.

Hence (ii) => (i).

This section will close with an adaptation of the Radon-Nikodym theorem for

the Pettis integral of [10] to a form suitable in the current context. The relationship

between the next result and Lemma 1.4 will become clear in the next section if not

sooner.

Lemma 1.5. Let 20 be a subfield o/S such that ct(20)=2. If F is a countably

additive measure X-valued vector measure defined on S0, then F admits the representa-

tion

F(E) = P-jjdp,       £eS0,

for some fe .Pi(2, 3£) if and only if

(i) F has a bounded range.

(ii) Fis a-continuous; i.e. limB(E)^0 ||F(E)||=0.

(iii) Given e > 0 there exists a weakly compact convex subset K<= H such that for

any S>0 there exists Eoe¿Z0 with ju(D-£'0)<£ and F(E)ep(E)K+8U for all

E<=E0, E e 20> where U is the closed unit ball of 3£.

Proof (Sufficiency). Let F satisfy (i), (ii), and (iii). Since F is /¿-continuous, F

has a /¿-continuous countably additive extension (still denoted by F) to all of 2.

Proceeding as in the proof of [16, Proposition 1, p. 274], there exists a set S0 e2

such that /¿(°-- So) á £ and F(E) e p(E)K for all E<=S0, Eel,. An application of

[10, Theorem 2] produces/e ^(2, X) such that F(E) = P-¡Efdp for all £e2 and

hence for all E e 20. This completes the proof of the sufficiency.

(Necessity). Suppose there exists fePx(Z, X) such that F(E)=P-fEfdp for all

£g20 and let £>0 be given. According to [10, Theorem 1], there exists 5*0 62,

p(ü — S0)<e/2 and a norm compact set K, which may be assumed convex by

Mazur's theorem, such that F(E) ep(E)K for all E^S0, Eel,. For a fixed S>0,
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proceeding as in the proof of [16, Proposition 1, p. 276], one can find F06E0,

p.(Q.-E0)<E such that FCF0, FeS0 implies F(E) e p(E)K+8U. This proves the

necessity of (iii); since (i) and (ii) are clear, this completes the proof of the necessity.

A consequence of the proof of Lemma 1.5 is

Corollary 1.6. Lemma 1.5 remains true if the words "weakly compact" are

replaced by "norm compact".

Another obvious corollary is

Corollary 1.7. Lemma 1.5 remains true ifX is reflexive and the words "weakly

compact" are replaced by "bounded".

2. Mean convergence in P,(2Z, X). The goal of this section is to characterize

martingales which converge in F^S, X)-norm. In the more general case of locally

convex spaces X, Motivier has given conditions under which a martingale

{ft, Bx, t g F} of weakly integrable functions converges weakly in the mean in the

sense that there exists a weakly measurable / such that liirijj'n \x*(f—f)\ dp = 0

for all x* e X*. In the case of Banach space valued strongly measurable functions,

a considerably stronger result can be proved.

Theorem 2.1. Let {/„ Bx, reT} be a martingale in P,(X). The net {/„ reT} is

norm convergent to some function fe P,(X) if and only if

0) supt \\f\\Pl<œ.

(ii) For each e > 0 there is a 8 > 0 and index r0eT such that p(E) < 8 implies

\flXEhi<Ef0r ü¡l T=r0-

(iii) For each £>0, there is a weakly compact convex set A"c X such that for any

S>0 there is an index t0 and a set E0 e Bla, p(Q — E0)<e such that t^t0 implies

P-jEfi dp e p(E)K+8Ufor all F<= E0, E e Bt.

Proof. Again since P(<y({Jx Bt), X) is a closed subspace of P(I., X), there is no

loss of generality in assuming o-({Jx 2?j)=E.

(Necessity). Suppose limT \\f— /||Pl = 0 for some fePx(X). By Lemma 1.4,

EB'(f)=f for each reT. Also since £st is a contraction, [|yi||i>x = ¡|FB'(/)||Pl

^ 11/11 Pl. This proves (i). To prove (ii) note that

Hm Ill/tfilk-ll/XflW = um \\fxE-fxE\\Pl â lim ¡f-f\\Pl = 0
I IT

uniformly in £eE. (ii) now follows directly from the fact that limw(E)_o IL/XeIp^O.

To prove (iii), let £>0 be given. By Corollary 1.6, there is a norm compact convex

set Kc X such that given S > 0, there is E6 e [Jz Bt such that

F-l  fdpep(E)K+8U
Je

for £cE6, £e(J, Bz. For a fixed 8 >0, select r0eT such that Ed e BXo. Then for

t0 ^ t and E e BT, Fe £¿; from the martingale property one has
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P-l   fzdp = P-[ fdpep(E)K+8U.
Je Je

This proves the necessity.

(Sufficiency). Define the set function F on \JZ Bz by

F(E) = lim [ fz dp,       Ee{jBz.
z    J E %

The martingale property ensures that the defining net on the right is eventually

constant for E e \JZ Bz. Thus F is well defined and obviously finitely additive on

(Jt Bz. Moreover

\\F(E)\\ =   sup \x*F(E)\
II**IIS1

^   sup lim sup      \x*fi\ dp ^ lim sup H/xbIIp!-
II**IIS1        t        Je %

Hence (ii) of the hypothesis implies lim/((£)_0 ||F(F)|| =0. Hence Fis /¿-continuous

and is therefore countably additive on (Jt Bz. A similar computation together with

(i) shows that Fis of finite semivariation on [Jz B,. In view of Lemma 1.4 the proof

will be complete if it can be shown that there exists fe Fx(2, X) such that

lim,F-J£/ dp = P-jEfdp for all Ee{Jz Bz. For this, let e>0 be given and let K

be as in (iii). By (iii) for any fixed choice of 6>0, there exist t0 e Fand F0 e BZo,

/¿(Í2 — E0)<e such that

P-[ fdpep(E)K+8U
JE

for EcE0. Thus if Ee{Jz Bz,Ee tx for some 7-^7-oand F(E) = P-$Ef dpep(E)K

+ 8(7. According to Lemma 1.5 there exists fePx (2, X) such that F(E)=P-¡Efdp,

Ee (Jj Bz. In view of Lemma 1.4, this completes the proof of the sufficiency.

The corollary below follows directly from the proof of the above theorem and

Corollaries 1.6 and 1.7.

Corollary 2.2. Theorem 2.1 remains true if the words "weakly compact" are

replaced by "norm compact". If X is reflexive, Theorem 2.1 remains true if the

words "weakly compact" are replaced by "bounded".

Now let {/„ Bz, reT} be sí norm convergent martingale in Px(X) with limit /

Since/is strongly measurable ||/|| (= ||/||*) is measurable. Hence if G„=[||/|| Un],

then {Gn}ca(\JzBx)=2 and Gn f D. Therefore if A: 2 -> R is defined by X(E)

= J"£ 11/11 dp, X is (T-finite. Consequently if £>0 is given there exists n0 such that if

Eo = Gno, p(Q — E0)<e/2 and X(E0) <co. Noting that p and A can be reconstructed

on 2 = <r((Jt Bz) from their values on (J, Bt by use of outer measures, one can see

that there exists a disjoint sequence {5'n}c(Jt Bz such that (Jn Sn^>E0, 2"=i A(SJ

<oo, for, if there is no such sequence, then A(F0)= +co. Now select m such that

KUn^mSn)<e/2   and    put   Ex = \JnSmSn.   Then    A(F1)<oo    and    /¿(Q-Fj)
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= l^(ü-[JnSri)+p(\JnSn-E1)^p(ü-E0)+p([JnimSn)<e/2 + e/2 = e. Since {Bx,

t e T} is increasing, there exists r,e T such that E, e B% for tï t±. Now consider

the martingale {fxEl, Bx, reT,r^T,} since Urn, ||/T—/||Pl = 0, EB\f)=fx for all t

and for r^. EBifxEl) = EB,(f)XEl=fxXEl. But Jn ||/XäJ ^ = A(F1)<co. Hence

/y£l gLHX). It follows that lim, \\flXE1-fxE1\\L1=0. Hence HmxfxXE=fxE1 strongly

in /¿-measure. Since p(Q — E1)<e and o 0 is arbitrary, it follows that liirii/,=/

strongly in /¿-measure. This proves the first part of the following theorem:

Theorem 2.3. Let {/„ Bx, reT} be a convergent martingale in P,(X) with limit f

Then limx fx=f strongly in p-measure. If T=N, the positive integers with natural

order, then limn/„=/strongly a.e. [p].

Proof. Only the second assertion needs a proof. Returning to the end of the

above argument one has limn ||/nY£l-/xi;|z.1 = 0. An appeal to a theorem of A. and

C. Ionescu-Tulcea [7, p. 198] and Neveu [11, p. 32] shows that limn/nx£l =fxE1

strongly a.e. [p]. Again, since /¿(Ü — E,)<e and e > 0 is arbitrary, it follows that

lim„/n=/strongly a.e. [/¿].

For some Banach spaces X, for instance separable dual spaces and reflexive

spaces, the basic theory of convergence of L1(E, X) martingales is very similar to

the theory of convergence of LX(E, R) martingales [3]. Unfortunately in the case

of P,(2Z, X) martingales there seems to be no nontrivial conditions one can place on

X to obtain a simple theory of convergence. For even when X is a separable Hubert

space, trouble can occur.

Fact 2.4. If X is a separable infinite dimensional Hubert space and p is Lebesgue

measure, there is a nonconvergent norm Cauchy martingale in P,(Borel sets, X).

Proof. The example is a small adaptation of an example originally due to G.

Birkhoff and later used by Pettis for a similar purpose. Let {xxj} be an infinite

orthonormal set in X. Set

yt(s) = xtj       for s e [(j- 1/2', 2/-1/2< + 1)],

= -Xii   fors6[(2/-l/2'+1,y/2,)])

= 0 for s e {0, 1},

for.7=1,2-  -2'.

Put/„(s) = 2P=i y\(s) for s e [0, 1]. Clearly {/„} is a martingale in F^Borel sets,

X). Moreover

Ç1 2'
II^II?! =  sup       \x*y,\ dp = sup   2 \x*(xi,)\2-i

llx'IISlJo IIJCIISI i = l

Ï 2"¡ sup  (¿ |x*(xi;.)|2Y'2(2')1/2,

by the Cauchy-Bunyakowski-Schwarz inequality,

^ 2-'(l)2"2 = 2"i/2.
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Hence ||/„-/m||Pl^2?=m+i 2"i/2 and {/„} is Cauchy in P^norm.

Now suppose {/„} converges in Pi-norm to/eP^Borel sets, X). Then according

to Theorem 2.3, limn/n=/strongly a.e. [/¿]. This is impossible since

lim ||/n|| = -fco   a.e. [p.],
n

This example serves to illuminate the role of (iii) of the hypothesis of Theorem

2.1. When X is reflexive or is a separable dual space, (iii) of the hypothesis is satis-

fied for all ^-bounded martingales [16, Theorem 5, p. 281]. The above example

shows that the situation, even in the reflexive or separable dual case, is touchy

enough to require the explicit presence of (iii) of the hypothesis of Theorem 2.1.

The next section extends Theorem 2.3 to a wider class of P^bounded martin-

gales.

3. Strong measure and pointwise convergence. This section is devoted to studying

strong pointwise and measure convergence of martingales in Pi(3£). For the case

of weak measure and pointwise convergence, this problem has been investigated

by Métivier in [9]. For motivation, consider an Ll(X)-bounded martingale

{/„, Bn,ne N}. In [16, Theorem 4, p. 279], it was shown that if {/„, Bn, n e N}

satisfies (iii) of the hypothesis of Theorem 2.1, then limn/n exists strongly almost

everywhere. Such a martingale has two properties worth noting: If F(E)

= limn J£/n dp, Ee {Jn Bn, F is continuous relative to some finitely additive finite

measure on (Jn Bn, namely its variation. Consequently [17, Corollary 3],

P(Un Bn) is contained in some weakly compact set. This suggests that possibly

F^ä^-boundedness can be relaxed to one of these conditions placed on F. The

following theorem shows that this possibility is indeed a certainty.

Theorem 3.1. Let {/„ Bz, t e F} be a martingale in Pi(2, X) such that

(i) sup, \\fz\\Pl <co,

(ii) {P-)Efi dp : Ee Bz, t e T} is contained in a weakly compact set L<= X, and

(iii) for each e > 0 there is a weakly compact set A^<= X such that for each 8>0,

there is an index t0 and a set E0 e BZo, p(£l — E0)<e such that t^t0 implies

P-Js/ dp e p(E)K+ 8U for all £cE0, E e Bz.

Then the net {/„ t eT} converges strongly in measure to fePx(L, X). If T=N

with natural order, then limn/n=/strongly a.e. [p] as well.

Proof. Without loss of generality assume o({Jz PT)=2. Write B={JZ Bz. Accord-

ing to [6, IV, 9. 10-11] there exists a totally disconnected compact Hausdorff space

Qx such that Bx, the field of all clopen subsets of Sx, is isomorphic to B under a

Boolean isomorphism a:B~>Bx. Moreover every finitely additive real valued

set function on B± is countably additive. If /¿x is defined on Pj by px(a(E)) = p(E),

EeB, and then extended to a(51)=21, it is not difficult to establish the following

facts. If cc(x£) = Xa(E) for EeB, then <p has an extension as an isometry to

TM(Q, 2, /¿) = FM(2, p), the space of/¿-measurable scalar valued functions on Q

such that for Fe2, there exists S e¿Zx such that <p(xe) = Xs a.e. [/¿J and if S'e21
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there is FeE such that Xe = <p~1(xs) a.e. [p.]. Moreover cp: TM(p)^TM(p,)

establishes an isometric isomorphism between the spaces indicated. Furthermore

<p\L1(p) is onto L1(p1) and establishes an isometric isomorphism between these

spaces. Also since

ll/IU = sup j£ l/l dp/p(E) : EelZ,p(E) > o}

for feLm(p), it follows that <p establishes an isometric isomorphism between Lx(p)

and L^fa,). Finally if {fn}<^TM(p) is such that limnfn=f a.e. [p.,], then for each

£>0, by Egoroff's theorem, there exists FeE, p(Q.-E)<e such that \\(fn-f)xE\\<o

-^0. Hence |(<p(/n)-<p(/))xs||«->0 for Sel,, chosen such that <p~1(Xs) = Xe

a.e. [p]. Since p,(Q. — S)<e, it follows that <p(fn)-^9(f) a-e. [p.,]. Similarly if

{•pCO^FAfijUi) is such that <p(/„) -> <p(/) a.e. [p,], then /„ -*f a.e. [p]. The same

line of reasoning can be extended in view of [12, Theorem 4.3, p. 291] to show

P,(p, X) and P,(px, X) are isometrically isomorphic under an isometric isomor-

phism 0:/-»-/from P,(p, X) onto P,(p,, X) which satisfies

p.[ fdp = P-\     fdp   for EeB.
JE .'<r(E)

Accordingly, if {/„ Bx, r £ F} is a martingale in P±(p, X), then {/„ Bx, r e T}, where

Bx = o(a(Bx)) is a martingale in P1 (p„ X).

Now suppose {/„ Bx, r e T} is a martingale in P,(p, X) and satisfies the hy-

pothesis of the theorem. Set F(E) = lim, P-)Efx dp for EeB. Fis finitely additive

and condition (ii) shows that F(B) is contained in a weakly compact set. An applica-

tion of [17, Corollary 3] establishes the existence of a finite nonnegative finitely

additive measure v on B such that iimv(£)_0 ||F(F)|| =0. Define v, on B, by v^a(E))

= v(E) for EeB. v, is countably additive and hence has a countably additive

extension, still denoted by vu to all of 1Z1. Similarly define F, on B1 by F,(u(E))

= F(E) for EeB. Obviously F, is ^-continuous on B,. Now invoke condition

(iii). From (iii) it follows that for each e>0 there is a weakly compact set K<^X

such that if 8>0 is given, there is a set E0eB, p(Q.-E0)<e such that F(E)

ep(E)K+8U for all £c£0, EeB. Hence F¿S)e p,(S)K+8U for all S^a(E0),

S e B, and /^(Qj. — <*(F0)) < £■ At this point, write A1=/x1 + f1. For S e B,, one has

ft1(,S) = (A1(S))0*1(S)/A1(S)) if A^SVO. Hence for Sc«(£0), 5 £ B, F,(S) e XX(S)K,

+ 8U where K,={ßx : 0^/Sá 1, x e K}. Obviously K, is weakly compact. Since

Kx is weakly compact, Lemma 1.5 applies and provides a function g£Fi(A1; X)

such that F1(S) = P-$sgdX, for S e B,. Now let h = dp,/dX1 and hx = E\h). Then

{/i,, jS„ t e T} is a convergent martingale in L1(X1) with limit h. Moreover

P-jsfz dp,=P-¡sfxh dX,=P-\sfxhx dX, for all Se o(Bx) for each fixed r e F. By

the martingale property P-$sfxhxdX1 = F1(S)=P-jsg dXx for S e a(Bx). Hence

F-Js /,At i/Ai=F-Js g dX for all S £ o(a(Bx)) = Bxfor each fixed reT. Accordingly

lim F-f fxhxdX1 =P-\ gdXx
i       Js Js
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for all Se(J, Bz. By Lemma 1.4, \imzfihz=g in Pi(Ax, X). An appeal to Theorem

2.3 shows that lim,fzhz = g strongly in Aj-measure. Hence lim,fhz = g strongly in

/¿j-measure. Now px[h = 0] = 0 since h = dpx/dXx. Thus limzfzhz/hx=g/h strongly in

/¿^measure. But since EB<(h) = hz, lim, hz = hin Aj-measure and hence in /¿i-measure;

i.e., lim, hz/h= 1 in /¿j-measure. It follows that limzfz=g/h strongly in /¿i-measure.

From the remarks at the beginning of the proof, one finds that {/„ t £ F} is strongly

Cauchy in /¿-measure.

Now examine g/h again. Put So = [h^0]. Then /¿^Qj —50) = 0 and

lim   Xx(S n S0) = 0.
Kl(S)-.0

Put Xx(S) = Xx(Sn S0), S e ct(Pj). Then dXx/dpx =l/h. Hence P-\s g dXx = ¡s g/h dpx

for S<=S0- Hence g/h ePx(px, X). Choose zePx(p, X) such that P-\Ezdp

= P-¡a(E)g/h dpx, for Ee{Jz Bz. Then the fact that limzfi = g/h strongly in /¿x-

measure implies lim,/, = z strongly in /¿-measure.

If T=N, the proof that limn/n = z e Px(p, X) strongly a.e. [p] is the same as the

above if measure convergence is replaced by almost everywhere convergence.

Theorem 3.1 and its proof have three easy corollaries.

Corollary 3.2. In the statement of Theorem 3.1, (ii) may be replaced by

(ii)' There exists a finite nonnegative real valued finitely additive measure v on

(J, 5, with the property that for each e>0 there exists a 8 > 0 such that ||P-J£/, dp\<e

whenever Ee Bz and v(E)< 8.

Proof. The only use of (ii) in the proof of Theorem 3.1 was to guarantee the

existence of such a measure.

Corollary 3.3. If X is reflexive, then in the statement of Theorem 3.1, (ii) may

be dropped^2).

Proof. Bounded sets in reflexive Banach spaces are contained in weakly compact

sets.

Corollary 3.4 [16]. If{fz, Bz, reT} is an L\p, X)-bounded martingale satisfy-

ing (iii) of the hypothesis of Theorem 3.1, then {/„ Bz, reT} converges strongly in

measure to feLx(p, X). If the index set T=N, then limnfn=f strongly a.e. [p] as

well. If X has the Radon-Nikodym property with respect to p, (iii) may be dropped.

Proof. To prove all but the last statement, note that an F^bounded martingale

is Pi-bounded and that if i'(F) = lim,J£ ||/,|| dp for Fe(J, Bz, v satisfies (ii)' of

Corollary 3.2. The last statement is a consequence of [16, Theorem 5, p. 281] which

says that if X has the Radon-Nikodym property, (iii) is automatically satisfied for

F^bounded martingales.

As a consequence of the last corollary, one sees that most of the classical and

(2) Professor J. Diestel has remarked that if 3E contains no copy of c0, then (ii) may be

dropped.
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recent theorems ([2], [3], [7], [14], [15] and [16]) on the measure and almost

everywhere convergence of F^SJ-bounded martingales are subsumed by the

results of this section. It should be noted, that even the case that 3£ = the scalars,

Theorem 3.1 yields a new proof of the classical almost everywhere convergence

theorem of Doob.
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