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THE DOMINION OF ISBELL

BY

BARRY MITCHELL

Abstract. A well-known characterization of epimorphisms in the category of rings

with identity is imitated to give a similar characterization of epimorphisms in the

category of small pre-additive categories. From this one deduces IsbelFs "Zigzag

Theorem" concerning epimorphisms in Cat.

If/: A -> B is a morphism in a category, then the dominion off is a morphism

u: D -> B which equalizes any pair B~j^C equalized by/ such that if «': D' -> B

is any other such morphism, then there is a unique morphism v: D' -> D satisfying

vu = u . Clearly « is a monomorphism if it exists, and taking u'=f we see that/

factors through u. The morphism/is an epimorphism if and only if its dominion

is the identity on B, and if/is an equalizer, then its dominion is itself. The dominion

of/is the same as the equalizer of its cokernel pair, providing that the latter exists,

where the cokernel pair off is the pair of morphisms a, ß in the pushout diagram

A > B

f
a

B->P

If/factors as an epimorphism followed by a monomorphism, then its dominion

is that of the monomorphism.

Let U: C-> D be a morphism in Cat, or in other words a functor between small

categories. Then U can be factored as C —*■ C —> D where C" is the subcategory

of D generated by the set theoretic image of U (consisting of compositions of

morphisms in the image) and clearly C->C is an epimorphism. Hence for the

purpose of studying its dominion, we may assume that U is the inclusion of a

subcategory. In [6] Isbell proved the following remarkable theorem.

Zigzag Theorem. Let C be a subcategory of a small category D. Then a morphism

s e D is in the dominion ofC in D if and only if for some m ä 1 there is a commutative

diagram in D (where all arrows are directed downwards)
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O)

2m-l

where x,au a2m.1ym, axeC, 1 ̂ i^2m— 1, and x1a,y1=s.

A commutative diagram (1) in D satisfying the given conditions is called a

zigzag of length m in D over C with value s. Note that if m= 1, the condition of

commutativity is redundant. It is an amusing exercise to show that the presence

of such a zigzag forces two functors from D to agree at s providing they agree on

C. Isbell proved the other direction by giving an explicit description of the cokernel

pair of the inclusion C—> D. However the details involved in this attack appear

to be somewhat difficult to write down.

In this note, we shall describe dominions in the category Addcat of all small

(pre-)additive categories. This amounts to a straightforward imitation of the simple

and elegant proof of Silver [8] characterizing epimorphisms in the category of rings

with identity, and would not be worth recording if it were not for the fact that it

yields the zigzag theorem as a corollary. The morphisms ax of the zigzag correspond

to the passage of scalars through a certain tensor product sign. This is just one of

several instances where a nonadditive theorem can be deduced easily from the

corresponding additive theorem. Another striking example is Freyd's proof [3] of

the nonadditive Hubert basis theorem—finitely generated commutative monoids

are finitely related (due originally to Redei).

In §1 we recall how to tensor covariant and contravariant abelian group valued

functors, and show how this is used to construct additive Kan extensions relative

to an additive functor U ("covariant ¿/-extensions" in the terminology of Cartan

and Eilenberg). In §2 we give two lemmas on adjoints, one of which shows how the

problem of finding dominions can sometimes be handled by a change of categories.

In §3 we give the description of the dominion of an additive functor and show how

to deduce the zigzag theorem from it. The zigzag theorem for "categories without

identities" is obtained in §4 so as to deduce the original zigzag theorems of Isbell
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[5] and Howie and Isbell [4] for semigroups. Finally, in §5 we consider an additive

functor U between small categories, and we derive a necessary and sufficient con-

dition that the induced functor siu on functor categories be faithful (respectively,

full) for all additive categories si. Actually this last can be done (as can a large part

of the rest of the paper) in the more general setting of closed categories, and unpub-

lished details have been written down by R. Paré. However the relative under-

standability of the Ab case seems to justify its special treatment. This treatment

can be imitated to give the nonabelian (Ens) case as well, and also the case of

^-categories (associative A"-aIgebras in the one object case) where £ is a fixed

commutative ring. We do not know if the principal Theorem 3.2 is a theorem about

closed categories. Certainly the proof given here depends on additivity.

1. Preliminaries. Composition/^ of morphisms means first/and then g, but

we shall not worry too much about where we place arguments of functions. If C

is a category then \C\ is its class of objects, and if p, q e \C\, then C(p, q) is the set

of morphisms from p to q.

By an additive category we understand a category c€ equipped with abelian group

structures for the sets ^(p, q) such that composition is bilinear. If <€ has just one

object, then it is just a ring with identity. If si and ^ are additive categories with

^ small, then sf* denotes the category of additive functors from <€ to si, where

si^(F, G) is the abelian group of natural transformations from £ to G. When <£

is a ring, Ab*" is the category of right <r?-moduIes and Ab^"" is the category of left

^"-modules.

If ^ and (€' are additive categories, we let ^ eg cé¡' denote the additive category

whose class of objects is \c€\ x |<P'|, where the abelian group of morphisms from

(p, p') to (q, q') is <6(p, q) eg ^'(p', q'). Here and elsewhere, unadorned tensor

means tensor product over the integers. Composition is defined by

(s Cg) s')(t ® /') = st®s't'.

Then an additive functor from <& eg c€' to si is what is usually called an additive

bifunctor ^ x c€' -> si, and if ^ and (é' are small, then we have isomorphisms of

categories

(.si^y = jafi?®«" = (si^y.

Let ^ be a small additive category, and let M e Ab^, A e ^(p, q), x e (p)M. Then

in keeping with module notation, we write x\ in place of (x)(X)M. Likewise if

N e Ab^op, A e cé(p, q), y e N(q), then we write Xy in place of N(X)(y). Thus xX is

an element of (q)M, and Xy is an element of N(p). We define

M <g^ N = [ ©  (p)M <g N(p)l IK
Lpeltfl II

where K is the subgroup of the numerator generated by elements of the form

xX eg y—x eg Xy. Then eg«- is an additive bifunctor to abelian groups. When # is

a ring, eg^ is the usual tensor product of right ^-modules with left ^-modules.
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If M and N are bifunctors, then so is M ®<g N. For example, if M e AM0"®*1

and N e M£0P®S, then M <g>v N is the bifunctor «f°p ® 3> -> Ab whose value at

(e\ J) is A/(e, ) ®* A( , i/). This is, of course, a special case of a general principle

whereby the values of functors pick up arguments when arguments are added to

the domains.

Proposition 1.1. If F eAb^®«", GeAb*'"'®9, and He Ab*0*®9, then there is

an isomorphism

Abi,p»s (F®v G, H) x AM0"®* (F, Ab® (G, H))

which is natural in F, G, and H.

This is the obvious generalization of Proposition 2.2, p. 165 of Cartan and

Eilenberg, and we shall (as did they) leave the proof to the reader. It can be estab-

lished directly by writing down arrows in both directions and showing that both

compositions are identities.

Another natural isomorphism which we shall need is

(1) F®v<Z(,q)~F(q)

for FeAb^. It can either be established directly, or it can be deduced from

Proposition 1.1 using the Yoneda lemma. Note that in the ring case, this is just

the natural isomorphism

(2) M®RRx M

relative to a right .R-module M. The fact that (1) is natural in q as well as F cor-

responds to the fact that (2) is an isomorphism of .R-modules, not just of abelian

groups.

Now let U: ft —> 3> be an additive functor between small additive categories,

and take G to be ¿&(U( ),   ) in Proposition 1.1. By the Yoneda lemma, we have

Ab® (3(U( ), ), H)x H(, U( )).

Thus by Proposition 1.1 we see that

<g)<? 3>(U( ),  ) : Ab-*0"®«' -» Ab^op®®

is a left adjoint for the functor which composes with U. If Fe Ab<f0P®if, then

F®<g S¿(U( ), ) is called the additive Kan extension of F along U. The adjunction

morphism

i¡F'.F^F®vmU{ ),U())

is giving by identifying F with F®% r€ via the isomorphism (1), and then using

the natural transformation of 2 variable functors
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induced by U. Thus when U is full and faithful, r¡F is an isomorphism. In other

words, the diagram

U

>@(U(), )

AM"

commutes up to natural isomorphism, and so in this case the Kan extension is

indeed an extension, up to natural isomorphism. If U is the inclusion of a full

subcategory, then by changing some of the values of £®^ S¡(U( ), ), if necessary,

we see that £ has an extension to 2> in the strict sense. This remark will be used in

the following section.

The other adjunction

eH:H( , £/())®¥0(l/(),  )^H

is given by eH(x eg s) = xs. In particular, when S—3> sind H=S¿, this is the morphism

m:3{ ,U( ))®*0(E/( ),  )-+3>

defined by composition of morphisms in 3>. The morphism m will play a funda-

mental role in the sequel.

Everything said above can be repeated in the nonadditive situation. In this case

Ens replaces Ab, cartesian products replace tensor products over the integers, and

disjoint unions replace direct sums. For example, if C is a small (nonadditive)

category, then relative to M e Ensc and N e Ensc°p we define

MxrN = U  (p)MxN(p)
pelCI

where the union is disjoint, and where ~ is the equivalence relation generated by

(xA, y)~(x, Xy), X e C(p, q), x e (p)M, y e N(q).

If Y is a set, then ZX denotes the free abelian group on X. We can regard

Z: Ens -> Ab as a functor in the obvious way, called the "addification" functor.

Likewise, if C is a nonadditive category, then we can form its addification ZC.

The objects are those of C, and ZC(p, q) is the free abelian group on C(p, q).

Composition is defined in the unique way so as to be bilinear and so as to make

the inclusion of C in ZC a functor. When C is a monoid, ZC is the usual monoid

ring with integer coefficients. Relative to an additive category sé we have an iso-

morphism of categories sic = sizc where the left side is all functors from C to si,

whereas the right side is all additive functors from ZC to si. This shows in par-

ticular that Z: Cat ->■ Addcat is a left adjoint for the functor which forgets addi-

tivity. If M e Ensc, we define

ZM e Abc = Abzc
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to be the image of M under the induced functor Ensc -^- Abc. If Af e Ensc and

N e Ensc°p, then we have an isomorphism of abelian groups

(3) Z(M xc N) ä ZM ®zc ZN

as is seen by defining morphisms in both directions and showing that both com-

positions are identities. The image of the basis element (x, y) on the left is the

element x ® y on the right.

2. Two lemmas on adjoints. Recall that a natural transformation of horn

functors ¿¿(A, )-^s/(A„ ) is a monomorphism if and only if the morphism

A,-> A inducing it is an epimorphism (by definition of epimorphism) and is an

epimorphism if and only if A, -> A is a split monomorphism (evaluate at Ai). From

this we obtain the following well-known lemma.

Lemma 2.1. Let S:ÚS-*JÍ be a left adjoint for T:s4 ->SS. Then T is faithful

(respectively, full) if and only if the adjunction morphism eA: S(T(A)) -> A is an

epimorphism (resp., split monomorphism) for all A.

Dually, S is faithful (full) if and only if the adjunction t¡¡¡ : B -> T(S(B)) is a

monomorphism (split epimorphism) for all B.

Proof. Consider the composition of natural transformations

s/(A, A') -> SS(T(A), T(A')) % sá(S(T(A)\ A')

of set valued functors of A'. This is a monomorphism for all A if and only if T

is faithful, and is an epimorphism for all A if and only if T is full. But the morphism

S(T(A)) -> A inducing it is eA. Therefore the lemma follows from the remarks

preceding it.

Lemma 2.2. Let S: SS -> sé be a faithful left adjoint for T: sé -> SS. Let B' ^ B

be any morphism in Sä, and let D -> S(B) be the dominion ofS(B') -> S(B). Then the

dominion of B' ' —>■ B is given by the morphism P —> B in the pullback diagram

P-> B

IB

T(D) T(S(B))

Proof. Since /)-> S(B) is a monomorphism, so is T(D)-> T(S(B)), hence so is

P-+B. Let B' ->B equalize Bz$ Y. Then S(B')->S(B) equalizes S(B)z$S(Y),

hence so does D -> S(B). Therefore, from the diagram

^B

T(D)- + T(S(B))_

Vy

zns(Y))
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we see that £-> B equalizes £lj Y-^T(S(Y)). But 77y is a monomorphism by

Lemma 2.1. Hence £ -> £ equalizes £ ij F.

It remains to be shown that if Q -» £ equalizes any pair £ Z^ y which is equal-

ized by B' -> £, then ß -> £ factors through P-> B. Let S(£') -> 5(£) equalize

S(£) ij X. Then from the diagram

£'->£

+ +
T(S(B'))-> £(5(£)) ^ £(Y)

we see that £' -> £ equalizes £ -> T(S(B)) Z^ £(Y). Therefore by assumption so

does Q->B, and so by adjointness it follows that S(Q) -^ S(B) equalizes

S(B) Z^ X. Therefore 5(g) -> 5(£) factors through D -+ S(B), and so by adjoint-

ness again we obtain a commutative diagram

Q->B

Vb

£(£))-5- T(S(B))

Hence by the pullback property of £, we see that Q-> B factors through £ -> £, as

required.

We remark that the pullback diagram of Lemma 2.2 is actually an intersection

diagram since r¡B, as well as T(D) -> T(S(B)), is a monomorphism. The lemma

frequently reduces the problem of finding dominions in one category to finding

dominions in another. For example, let Si be the category of rings not necessarily

with identity, and let Si1 be the category of rings with identity. Then the forgetful

functor Si^^-Si has the faithful "adjoin an identity" functor as a left adjoint.

Thus the dominion of a morphism £ -> S in St can be obtained by taking the

dominion of R1 -> S1 in Si1 and intersecting with S.

3. Dominions in Addcat. The following lemma reduces the problem of finding

the dominion of a morphism U: & -*- 3 in Addcat to the case where U is a sur-

jection on objects. I am indebted to Isbell for the proof.

Lemma 3.1. Let <€'-» 3 be a morphism in Addcat and let 3 be a full additive
A A

subcategory of an additive category St. Then the dominions of ' #'^-3 and <€ -> 3

are the same.

A

Proof. If s e 3, then two functors out of 3 which distinguish s will also dis-

tinguish s when composed with 3 -> 3. Hence if s is in the dominion of <€ -> 3,
A

then it is also in the dominion of # -> 3.

Now suppose that s is in the dominion of W -^3. Since the value of a functor

can always be changed at an object by substituting an isomorphic value without
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altering the other values, we see that the domain and codomain of s must be in the

image of if, and so s must be in 3> since 3> is a full subcategory of ä>. Suppose that

(€ -> Q equalizes F, G: 3> -*■ S, but F(s)^G(s). We can compose Fand G with the

Yoneda imbedding 6'—> Ab"*0", and then, as observed in §1, we can extend to

F, G : 2 -* Ab£OV. Cutting down to a small subcategory of Ab'5"" containing the

images of F and G, we contradict the fact that s is in the dominion of Í? —> Si.

Any additive functor U: <€ -> 3> can be factored as # -»■ 'ë7' -> ^ where ^" is

the additive subcategory generated by the set theoretic image of U (sums of com-

positions of morphisms in the image of U) and clearly % -> #" is an epimorphism

in Addcat. Hence, as in the nonadditive case, we may reduce to the case where U

is the inclusion of an additive subcategory in finding its dominion. Actually, for

the purpose of the following theorem, we need only assume that U is an injection

on objects.

Theorem 3.2. Let U: f€ ̂ -2> be a morphism of Addcat which is an injection on

objects. If se 2(p, q), then s is in the dominion of U if and only if p andq are in the

image of U and

s®l„=lP®se ®(p, U( )) ®v 2(U( ), q).

Proof. By Lemma 3.1 we may assume that U is bijective on objects. Suppose

that F,G:2 -*■€ equalize U. Then we can define

/: 3¡(p, U( )) ®v ®(U( ), q) -> S(F(p), G(q))

by the rule/(r(g> t) = F(r)G(t) where the right side is composition in ¿>. Then we

have

f(s®lq) = F(s),      f(lp®s) = G(s),

and so if s (g lq= lp (g) s, then F(s) = G(s). Consequently s is in the dominion of U.

For the converse, we construct a category S by taking as its objects those of 3>,

and defining

i(p, q) = 3{p, q) x {2(p, U( )) ®« S(U( ), q))

where the right side is the product of Abelian groups. Composition is defined,

using the bifunctor structure of the second term in the product, by (s, a)(/, ß)

= (st, sß + at). Then S is easily seen to be an additive category. We define F, G:

2->êby

F(s) = (s, 0),       G(s) = (s, s (8> lq- lP ® s).

Then Fand G are additive functors, and if s is in the image of U, then F(s) = G(s).

On the other hand, if s® l,^lp(8)s, then F(s)j^G(s). Hence s is not in the

dominion of U.

Corollary 3.3. Let U: *€ -> 2 be a morphism of Addcat, and suppose that U

is an injection on objects. Then U is an epimorphism in Addcat if and only if

m:2( ,U( ))®»0(£/( ),)-+&

is an isomorphism and U is bijective on objects.
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Proof. If U is an epimorphism, then its dominion is all of 3, and so by the

theorem U must be bijective on objects and s eg 1„= lp (g s for all se3. Define

nm: 3(p, q) -> 3(p, U( )) ®v 3(U( ), q)

by npq(s) = s eg 1„. Then mpq(npq(s)) = s and

npq(mpq(s eg /)) = st eg 1 = s(t eg 1) = s(l eg /) = s eg /.

Hence m is an isomorphism.

Conversely if U is bijective on objects and m is an isomorphism, then, since

m(s eg l) = m(l eg s) = s, we must have s eg 1 = 1 eg 5. Hence j is in the dominion

of U for all se 3, and so U is an epimorphism.

Remark 1. Since the functors £and G constructed in the theorem are identities

on objects, the theorem and corollary are valid relative to the category of small

additive categories with a fixed set of objects, where morphisms are additive

functors preserving objects. In particular, when there is just one object, the

corollary is just that of Silver [8] characterizing epimorphisms in the category of

rings with identity.

Remark 2. The category S constructed in the theorem is not that of the cokernel

pair of U, as is seen by taking U to be the identity on the ring of integers.

Remark 3. In §5 we shall see that the condition that U be an injection on objects

is necessary.

The nonadditive version of Theorem 2.2 cannot be obtained by simply imitating

the additive proof, since the definition of the category £" and the functors £ and G

require addition and subtraction of morphisms. To obtain the nonadditive theorem,

we consider the additivization functor Z: Cat -> Addcat which is a faithful left

adjoint for the forgetful functor. A morphism U: C-> D in Cat gives rise to the

morphism ZU: ZC -> ZD in Addcat, relative to which we have, as a special case

of the isomorphism (3) of §1,

Z[D(p, U( )) xcD(U( ),q)] X ZD(p, ZU( )) ®zc ZD(ZU( ),q).

It follows that (s, lq)~(lp, s) on the left side if and only if j® 1„ = 1p(8>î on the

right side. Now by Lemma 2.2, s is in the dominion of U if and only if it is in the

dominion of ZU. Consequently we obtain

Corollary 3.4. Let U:C->D be a morphism in Cat which is an injection on

objects. If s e D(p, q), then s is in the dominion of U if and only if p andq are in the

image of U, and (s, lq)~(lp, s) e D(p, U( ))xcD(U( ),q). Hence U is an epi-

morphism if and only if

m:D(,U())xcD(U(),  )->D

is an isomorphism and U is bijective on objects.

To see how this gives the zigzag theorem, we recall that (s, l,)~(lp, s) means

that there is a chain
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(s, 1,) =-(x¡a2i, yx) = (xi + 1a2i + 1, yx) ~ (xi + u a2i + 1y^

= (xi + ,, a2x + 2yi + 1)-= (lp, s)

with the o¡ 6 C. This is easily seen to imply the existence of a zigzag in D over C

with value s.

If U: R -> 5 is a homomorphism of commutative rings with identity, then

S ®B 5 in this case is a commutative ring, and is in fact the cokernel pair of U in

the category of commutative rings with identity. This makes Theorem 3.2 prac-

tically trivial in this case (as observed first, I believe, by H. H. Storrer), and the

nonadditive case of commutative monoids can be done independently in exactly

the same way. (In fact, what is involved here is undoubtedly a theorem on closed

categories.) Thus the zigzag theorem holds also for commutative monoids (Howie

and Isbell [4]).

4. Semicategories. The original zigzag theorems of Isbell [5] and Howie and

Isbell [4] were for semigroups. Now if one grants an interest in one object categories

without identities—i.e., semigroups—then one should grant an interest in several

object categories without identities. Thus at the risk of being censured by the

mathematical community, let us define a semicategory C to consist of a class of

objects \C\ together with a set C(p,q) for each p,qe\C\ and an associative

composition

C(p, q) x C(q, r) -+ C(p, r).

We observe that the sets C(p,p) may be empty. A semifunctor U: C-> D of semi-

categories assigns objects U(p) e \D\ to objects /> e |C| and morphisms U(s)

e D(U(p), U(q)) to morphisms s e C(p, q) and preserves composition. The class of

small semicategories and semifunctors forms a category Semicat, and we have a

forgetful functor Cat -> Semicat. A faithful left adjoint for this functor assigns to

a semicategory C the category C1 obtained by adjoining an identity morphism to

C(p,p) for each/? e \C\, whether or not it already had one. As usual, in studying

dominions in Semicat, we may assume that the functor in question is the inclusion

of a subsemicategory.

Theorem 4.1. Let C be a subsemicategory of a small semicategory D. If

s e D — C, then s is in the dominion ofC in D if and only if there is a zigzag in D over

C with value s.

Proof. By Lemma 2.2, s is in the dominion of C in D if and only if it is in the

dominion of C1 in D1. Hence by the zigzag theorem, it suffices to establish the

following lemma.

Lemma 4.2. Let C be a subcategory of a category D. If s$C, and if there is a

zigzag in D over C with value s, then there is one where (with reference to the diagram

(1) of the zigzag theorem) none of the x¡, j¡, ax are identities.

Proof. Let m be the minimum length of a zigzag in D over C with value s. If

m=l, then none of xu au yx is 1 since otherwise se C. Thus we may assume m> 1.
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In this case the lemma follows from the following more detailed lemma, most of

which was stated in Howie and Isbell [4, Lemma 1.2].

Lemma 4.3. Let C be a subsemicategory of a semicategory D, and suppose that

the diagram (1) of the zigzag theorem is a zigzag in D over C of smallest length with

value s. Then :

(i) The only compositions of an x with an a or an a with a y which make sense

relative to the diagram and which are in C are xxay and a2m-ijm (these two being

required by definition).

(ii) For no i, 2 ¿ i ̂  2m — 1, are there elements a', a" e D1 such that a'ata" e C and

a'tfj = fli+1,        . a'üi = a¡_x,        .   j,
i even; „ i odd.

a¡a  = a¡-x, a¡a  = ai + 1,

Proof, (i) If x¡£72¡ -1 e C for some í, 2^i^m then we find a zigzag of length

m — i+l. If x¡í72i 6 Cfor some /, l^i^m—l, then we find a zigzag of length m — i.

Dually for the compositions of a's with y's.

(ii) The negation of the assertion gives rise to a zigzag of length m — 1 where one

of the a's is a'ata".

Likewise we can form the category Addsemicat of small additive semicategories

and the forgetful functor from Addcat has as left adjoint the faithful functor which

assigns to # the additive category 'Í?1 where \<£1\ = \(ë\ and

^\p,q)=(€(p,q), p*q,
= %(p,p)®Z,       p=q.

By Lemma 2.2, the dominion of # -> 3 in Addsemicat is the intersection of 3

with the dominion of "t?1 -> 31 in Addcat. What is really involved here is, needless

to say, a construction in the theory of closed categories.

5. Fullness and faithfulness of sia.

Theorem 5.1. Let U: *€ '->3 be a morphism in Addcat. Then a necessary and

sufficient condition that the induced functor siu : si9 -> si'6 be faithful (resp., full)

for all additive categories si is that the morphism

m:3( , U( ))®«3(U( ),  )->2

be an epimorphism (resp., split monomorphism) in Ab®""®®.

Proof. For necessity, we take si to be Ab®°p. Then, as was pointed out in §1,

m is the front adjunction evaluated at 3 relative to the right adjoint siu. Therefore

if siu is faithful (full), then by Lemma 2.1, m is an epimorphism (split

monomorphism).

Now suppose that m is an epimorphism. This is clearly equivalent to the con-

dition that lpe3(p,p) be in the image of mpp, or in other words that we can

write

k

i p = 2 s¿>    J¡e ®(p> u(ri))'    *ie ®(u(ri)> p)
¡=i
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for all p e \3¡\. Then if si is any additive category and if a: F->- G is a morphism

in si3, we can write

k k

ap = ap 2 G(sx)G(t,) =   2 F(Si)amr0G(t¡).
1=1 i=i

Hence ap is determined once we know the values auw, r e\<€\, and it follows that

siu is faithful.

Finally, suppose that m is a split monomorphism, and let « be a retraction for

it. Let F, G e si3, and let ß: UF-> UG be a morphism in j/*. Then for p, q e \2\,

we have the diagram

mpq

@(p, U( )) ®v 2(U( ), q) ÏZ=± 2(p, q)
npq

JPQ

si(F(p), G(q))

where fpq(s ® t) = F(s)ßrG(t), s e £>(p, U(r)), t e @(U(r), q). Then/, n, and m are all

natural inp and q. Forpe |^|, define

av = /pp(«pp(lp))-

By naturality of n and / and the fact that a morphism s e 2>(p, q) can be written

as either lps or slQ, we see that a is a natural transformation from F to G. Further-

more, if re 1^ |, then

«wo =/(«(W))) =f(n(m(lUM® \vm))) =f(lum® lu(n) = ßr-

This shows that siu is full and completes the proof.

Combining the theorem with Corollary 3.3, we obtain:

Corollary 5.2. Let U: m —> S> be an epimorphism o/Addcat which is an injec-

tion (and hence a bijection) on objects. Then siu is full and faithful for all additive

categories si.

The corollary answers a question of Isbell [6], who showed that it was true in

the case of ring epimorphisms. To see that the condition that U be an injection on

objects is necessary, let 2 be the totally ordered set of two elements and let N be

the monoid of natural numbers, and take U: 2 -> A7 to be the functor which assigns

the generator of N to the nonidentity of 2. Then U is an epimorphism since the

subcategory of N generated by its image is all of N. However, if A is any nonzero

object of an additive category si, then the endomorphism

1

in si1 cannot come from anything in siN.
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