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TWO THEOREMS IN THE COMMUTATOR CALCULUSH

BY

HERMANN V. WALDINGER

Abstract. Let F=(a, by. Let jF„ be the «th subgroup of the lower central series.

Let p be a prime. Let c3 < c4 < • • • < cz be the basic commutators of dimension > 1 but

<p + 2. Let Pi = («, b), Pm = (Pm-ub) for m>\. Then (a, b") = rif - 3 <í' modFp + 2.

It is shown in Theorem 1 that the exponents t¡¡ are divisible by p, except for the expo-

nent of Pv which = 1.

Let the group 'S be a free product of finitely many groups each of which is a direct

product of finitely many groups of order p, a prime. Let &' be its commutator sub-

group. It is proven in Theorem 2 that the "^-simple basic commutators" of dimension

> 1 defined below are free generators of 'S'.

I. Introduction. This paper is the result of research on the factor groups of the

lower central series of groups, ^, defined below before the statement of Theorem

2. It was shown in [8] that these factor groups have bases which are images of

special words in "fundamental commutators." The author has now succeeded

in showing that there are such bases which consist of images of specific powers of

"fundamental commutators." The present proof of this result is very complicated,

but it requires Theorems 1 and 2 below which are of interest in themselves.

In a classical paper [4], P. Hall first established the following identity (1.1): Let

F=F, be the free group with a, b as free generators. Let F„ be the «th subgroup of

the lower central series of F. Let/? be a prime. Let c, = b<c2 = a< ■ ■ ■ <cq be the

basic commutators of dimension up— 1. (For definitions of the basic commutators

see [3].) Then

(1.1) (abr = (Ucf<^Q
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where cx = E2= L the numbers e1( e2- ■ -eq sire integers and Q e Fp. In this paper we

shall give a proof of the related identity (1.2).

Theorem 1. Let cQ + x < cQ + 2 < ■ • • < cz be the basic commutators of dimensions

p andp+l. Let Px= (a, b) andPm = (Pm_ ls b)for w> 1, let c„ =FP. Then

(1.2) (a, V) = (f| c?)P

where all the exponents ij; occurring in (1.2) are divisible by p except for rjs, but tjs= 1

and P e Fp + 2.

Identity (1.2) was proven by Struik [7] using a modification of the proof of (1.1)

given in [4], We shall, however, prove it here by the methods of [6].

In [2], K. W. Gruenberg found a set of free generators for the commutator

subgroup, G', of the group, G, which is the free product of finitely many cyclic

groups of finite order. We shall prove here a related result on 'S', the commutator

subgroup of the group

(1.3) 9 = <S(l)*<S(2)*---*<S(s),

where each free factor S(i) is the direct product of (nt — «i-i) cyclic groups of order

p having generators cn,_1 + 1, c„._1+2,..., cnt. (Here O = n0<nx<n2< ■ ■ ■ <ns = r.)

The role of the "^-simple basic commutators" of dimension > 1 as generators of

'S' is discussed in [8]. We shall show here

Theorem 2. 'S' is freely generated by the "'S-simple basic commutators" of

dimension > 1. (These commutators are defined in the proof below.)

To obtain this theorem we shall first demonstrate that the images of our free

generators in the abelianized group 'S'/'S" are free generators. We shall do so by

adapting the methods employed by S. Bachmuth [1] in his study of the com-

mutator subgroup of a free metabelian group with finitely many free generators.

These methods are based on the faithful matrix representations given by W. Magnus

[5]. Finally by making use of standard theorems on abelian groups, free groups and

free products of groups, we shall show that our result for 'S'/'S" implies Theorem 2.

II. Proof of Theorem 1. Evidently (a, bp) e F2; hence (a, bp) can be written

uniquely in the form (1.2) by a well-known theorem of P. Hall ([3], [4], [6]). It

remains to determine the coefficients r¡t. We shall do so by making the standard

substitutions [6]

(2.1) a = l+x,       b = l+y,

where x and y are free generators of an associative algebra. We find then easily that

(2.2) (a,b") = [(a,b)b-']"b" = (1 -Z)"(l +y)* = l+pY+y" + (-Zy + 02v

where Y sind Os are formal infinite sums of terms in x and y, Os contains only

terms of degree at least s sind

(2.3) Z = y-y2+yx-xy + 03.
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To proceed we note that

(2.4) y+(-zy - z+V+(-myp+P(-y)p+1+op+2

where

(2.5) (-l)p + 12=  ^ ym(xy-yx)yp-1-m.
m = 0

To obtain our result from formulas (2.2)-(2.5) we must now recall two well-

known facts [6] :

(i) If the basic commutator c; has dimension d, then

(2.6) Ci= l+p(Cj) + Od + 1

where p(cj) is a homogeneous polynomial of degree d.

(ii) If cu, cu + 1,..., cv are the basic commutators of dimension d, then p(cu),

p(cu + 1),..., p(cv) are linearly independent.

From (i) and (ii) we easily find (iii) as a consequence:

(iii) If i is the smallest positive integer so that tj, is not divisible by p and c, has

dimension d, then the substitution (2.1) yields

(2.7) (a,b>) = l+pY+R+Od+1

where R^O and is a homogeneous polynomial of degree d so that at least one

among its coefficients is not divisible by p. We conclude then by (2.2), (2.4) and

(2.5) that d=p+ 1, also that to establish the truth of the theorem we only need to

show that p(Pp) — 2 is divisible by p. Now

(2.8)     p(pp)-i. = Pt{[(-iylp~l)+(-ir] [ñxy-yx)?-1-*]}

by a simple computation. Let I and J be integers. We note from the definition of

the binomial coefficients that

(-íy^T1)+(-i)p

= 0   for / = 0 and p > 2,

= 2   for j = 0 and p = 2,

(2.9) = ((p- l)(p-2)- ■ .(p-j)-j\)/j\ = pl/jl

for 0 <JS/j-l and j even,

(/>-l)(/?-2)-■•(;?-[;?-/-!]) + (/?-/-1)! pJ

(p-j-iy. (p-j-iy.

for 0 < j' ¡S p—l,j odd and p > 2,

= 0   for p = 2 and j — I.

It is evident from (2.9) that p(Pv)-zZ=Q mod p. Our theorem has been established.
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III. Proof of Theorem 2.   In this proof we shall require the two definitions

below which were first given in [8].

Definition 1. The commutator

(3.1) (...((ch,cj2),ch),...,ch)

is said to be an "J^-simple basic commutator" of dimension t> 1 if ch, cJ2,..., ch

are all elements of the set of generators {clt c2,..., cr} so that / >j2 f¡j3 á • • • ¡g/,.

Definition 2. The "J^-simple basic commutator" (3.1) is said to be a "9-

simple basic commutator" if it satisfies the following three conditions:

(i) (ch, c^lin^.

(ii) If Ci occurs a times in the set {ch, ch,.. ., ch}, then 1 ̂ a<p.

(iii) If (ch, cu) = 1 in 'S for 2 < A S r, then j\ £/V

Having given our definitions we are now ready to proceed with our proof.

Let us consider an arbitrary element w e9; evidently it can be written as

(3.2) W=chch---ch

where the subscripts/, j2,...,/ take the values 1, 2,..., r. For w^= 1, let <j(k, w)

be the number of times the subscript k (1 Skfir) occurs among jltja, ■ ■ •,/; for

w= 1 we take every a(k, w)=0. It is well known ([3], [6]) that a word, w^= 1, in the

free group on r generators clt c2,..., cr is in the commutator subgroup if and only

if every generator occurs in w with "exponentsum" 0. It is then evident that the

element (3.2) is in 9' if and only if all r "exponentsums" a(k, w) are divisible by p.

Applying the collection process ([3], [4]) to such a m- and making use of Definition

1, we conclude easily that w is a word in "J^-simple basic commutators" of

dimension > 1. But Lemmas 4.2 and 4.4 of [8] assert that every such "J^-simple

basic commutator" is a word in "^-simple basic commutators" of dimension > 1.

We have now shown

Lemma 1. The "'S-simple basic commutators" of dimension > 1 generate 'S''.

It remains to show that they do so freely. To arrive at this result we shall first

demonstrate that their images do so in the abelianized commutator subgroup. For

this purpose we shall make use of the matrix representation given by W. Magnus

[5].
In particular we shall find a representation of 9 = 9/9" where 9" = [9', 9'], the

second commutator subgroup of 9. In this connection we first note that 9 is a

homomorphic image of J^ according to the presentations of the form

(3.3) 3F = (ex, c2,..., cr>,        9 = <cl5 c2,...,cr; Sx, S2,..., $>.

Suppose ¿f is the normal closure in J5" of the subgroup generated by all commuta-

tors and all relators 51; S2,.. ., St. Let Jf' be the commutator subgroup of Jf;

it is obviously normal in ß: Let g0, g and g be the images in 9, ^/Ji?' and 9

respectively of the element geF under the respective homomorphisms & —>■ 9,

& -> J^pf and 3? ^9 ->9. Then &/&' has the faithful matrix representations

[5] given by the correspondence
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(3.4) *~*-CÎ)
such that

(i) the xx, tx are 2r commuting indeterminates,

(ii) xf =1 for /= 1, 2,..., r.

Furthermore, the correspondence

■-CÎ)
(3.5) c,*-»*

becomes a faithful matrix representation of & once we impose the additional t

conditions that

(3.6) Mi.)
for h=1,2,..., i. But the relators Su fall into two categories according to the

definition of the group S? given by (1.3):

(I) Su = cf for i=l,2,..., r.

(II) Su = (c),ct) for nk-,<cx<Cj-¿nk-¿r and k= 1, 2,..., s.

Now 5U has the image of the form

(3.7)
\LU    l)

by conditions (i) and (ii) above; thus we must take Lu = 0. By a simple computation

we find then that

(3.8) (iii) Lu = hÇfxn = 0

for every relator of category (I) and that

(3.9) (iv) Lu = ti(xi-l) + ti(\-x,) = 0

for every relator of category (II).

At this point we are ready to represent the elements of the subgroup (S'/(S"'^tS

by matrices (3.5). For this purpose we introduce the notation

a(2i=i«A) = rj(bc1ab,)«i
i = l

where a and the bx are group elements and the a¡ are integers. We also note the

following:

If C=(- ■ .(cfl, ch),..., c¡J is a "^-simple basic commutator" of dimension >2,

then C is a word in elements (c(l, cX2)p where F is either = 1 or a product chcJ2 ■ ■ ■ cjp

with/ ¿y2 ¿ • • • ̂ jp a subsequence of /3á h =î • • • á /A- As a consequence of Lemma

1 and of Definition 2 we obtain then
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Lemma 2. 9' is generated by all elements (ch, cÍ2)p so that

(a) (ch,ci2)^l in 9,

(b) P=l orP=chcJ2.--cu,

(c) ii > i2 g/i ú      újP,

(d) if i occurs a times among i„ i2,Ji,J2, ■ ■ •>/» then 1 ̂ a<p,

(e) // (ch, cu) =lforl<pSp, then ch ̂  cu.

Since (ci,, Ci2)p = (c¡1, cX2)((ch, cX2),P) we have at once the corollary:

Lemma 3. The abelian group 'S'¡'S" consists of the images of all elements

7(tl.i2)

h= u {fel5 ci2)°'i'2}    where Qhh=    £   (<WW>
ii>(2:(cii,Ci2)#l y-1

the aiii2J are integers and the PhX2J are elements P as described for (ch, c¡2) in Lemma 2.

To find the matrices in our representation of 'S'¡'S" corresponding to the

elements of Lemma 3, let us first compute the ones for the generators of Lemma 2.

We obtain easily

(3.10) (ch,ci2)p = ^   j)

where

(3.11)

L = [^K-lj + lJl-ï^A,

A = 1 for F = 1

= Y\xík     forP/1.

Now a generator (ctl, ci2)p of Lemma 2 evidently has the following two properties:

(A) If ¿V 1, then ng = i cÄ-I"B-i # so that 0ißh, ß^p-2.

(B) (c^c^+lin'S.

Thus L as given by (3.11) has the form

r

(3.12) L = 2 tiQlix1,xi,...,xt)

so that (a) the polynomial Q¡ = Qx(x,, x2,..., xr) does not contain a power of xt

higher than the (/?-2)nd, (b) if (c¡, c,)= 1 and Q¡^0 then \—xj does not divide Q¡.

Moreover conditions (A) and (B) imply that the class of polynomials (3.12) which

have properties (a) and (b) above and which can be obtained from L by the use of

the relations (3.8) and (3.9) consist of L only.

LetFil¡2/ be the polynomial given by (3.11) for (ch, ci2)p'i'2. Let « be as in Lemma

3. Then

(3.13) U
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so that Lh is the sum

'/<il,"2>

(3.14) Lh = 2 2 Ww
!l>Í2;(Ci1,C|2)ít 1     L j= 1

We are now ready to make use of results of Bachmuth [1], here stated as

Lemma 4. Let F' = [J5", 9\ &" = [&',3F']. If de &', let (d)? be its image in

& under the homomorphism &-*■&/&"=£. Then fF'/S'" is generated by the

images, (f)&, of all elements f=(cil, c¡2)p which constitute the set if. Here ix>i2

and P = ri/=o c/' where cQ= 1 and the y¡ are integers. For & we have a faithful

matrix representation

0.3(3.13') (d)r-

and in particular

(3.10') ((A.^yv-Q °)

50 //¡fl/

(3.11') L = [^(^-l)+i%0-J^] [fi *?]

w/tere x0 = 1. The only nontrivial relator s in J^'/J5"" are products of transforms of

Jacobi relators; i.e. they all are consequences of the relations

(3.15) ((ca, c0)-i + «Me» cy)-^°°)A(Cy, ca)-1 + <i), = 1

where ca, c0, cy are generators of &■ such that a>ß. (We note that a Jacobi relator is

a relator corresponding to the Jacobi identity in the associated Lie algebra.)

To apply Lemma 4 we now require more notation. Let 0 be the multiplicative

group of matrices which occur on the right-hand side of (3.13'). Let the homomor-

phic image Y be obtained from <J> by imposing the relations (3.8) and (3.9), finally let

Ü be the subgroup of *F which consists of the matrices on the right-hand side of

(3.13).

We note that the polynomial (3.14) is a sum of polynomials (3.12). This means

that the coefficient of /¡ (/= 1,2,..., r) in Lh does not contain any power of xt

higher than the (p — 2)nd. We conclude then that a relator of the form (3.8) cannot

be a product of elements (3.13) having Lh of the form (3.14). We have thus proven

that any nontrivial relator in the subgroup Ü. must be a consequence of imposing

the relations (3.9) together with the relations (3.15) of Lemma 4 on the group

generated by the elements of (P. Moreover it is evident from the manner in which

the relations (3.9) were obtained from the presentation of 9 that they are equivalent

to imposing the following relations on the group &:

(3.16) C/> = ((ch, ci2Y)r = 1
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if and only if (ctl, c¡2) = l in 9. But such elements (ch, c¡2)p are not among the

generators of 9' given in Lemma 2. Since our matrix representations are faithful

we then easily obtain

Lemma 5. Any nontrivial relator in 9'/9" can be found from some nontrivial rela-

tor R in ^r,/ßr" by imposing the relations (3.16), where R is a word in the gen-

erators (/> (fe if).

But the generators (ctl, ci¿)p of 9' given in Lemma 2 are evidently images, under

the homomorphism .ß' —s* 9, of the elements of a proper subset ¡F^Sf. To apply

Lemma 5 we must now observe the truth of

Lemma 6. Consider the Jacobi relator on the left-hand side o/(3.15). Then one of

the three conditions holds: (i) All three commutators (ca, cß), (ce, cy) and (cy, ca)

are = 1 in 9. (ii) Not more than one among the commutators (ca, ce), (cß, cy) and

(cy, ca)= 1 in 9, also ce^cy and ca^cy. Then there is at least one element (cu, cv)c*

among (ca, cB)°y and (cy, ca)co and(cß, cy)c« so that (cß, cv)^=l in 9, but (cu, cv)c* does

not occur in the subset 3T. (iii) (ca, cß) ̂  1 in 9 and either ce = cy or ca = cy.

Lemma 6 is easily verified by examining six cases under two sets of mutually

exclusive conditions: (A) ß<y or ß>y. (B) Either all of ca, cB, cy do not commute

with each other in 9, or only the two with the largest subscripts or finally only the

two with the smallest subscripts commute. (When the one with the largest subscript

commutes with the one with the smallest subscript, then all three commute in the

group 9 given by (1.3).)

We now note the following:

If cÁ = cy, then

((ca, c„), Ci) = (cÁ, c„)-1 + ca    mod &",       ((cu, cy), cA) = (cA, c«)1^    mod &".

We also recall the manner in which the generators (a, b)p of Lemma 2 were built

up from the "^-simple basic commutators" of dimension > 1. We then find easily

that Lemmas 4, 5 and 6 imply

Lemma 7. The images in 9 of the "9-simple basic commutators" of dimension

> 1 generate 9'¡9" freely.

To proceed from 9'¡9" to 9' we next prove

Lemma 8. 9' is a free group.

Proof. 9 is the free product of abelian groups 9(1), 9(2),..., 9(s). By the

"Kurosh subgroup theorem" ([3], [6])

(3.17) 9' = V*Yl*x-1Ujxj
j

where F is a free group and each x'^UjXj is the conjugate of a subgroup U¡ of one

of the free factors 9(i). But such a factor or any conjugate of it is abelian and

therefore intersects 9' in the identity only. Hence 9' = V.
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Thus 9' has the set s/ = {wx} of free generators. Let a be the cardinality of sé.

Let vlt v2,..., vN be the "^-simple basic commutator" of dimension > 1 in some

order. First suppose a<N. Then the images w±, w2,..., wa of the set sé in 9 are

free generators of the abelian group 9'¡9* in contradiction to Lemma 7 and the

well-known fact ([3], [6]) that any two bases of a finitely generated free abelian

group contain the same number of elements. Hence a^N. If a>N, consider the

set 0S consisting of i\, v2,. .., vN together with a — N words in the v¡. Then âS has

cardinality ce and is a set of generators of 9'; here a is finite by Lemma 1. But it is

well-known ([3], [6]) that if sé generates the group V freely and SS is a set of

generators of cardinality a, then 0S is also a set of free generators. Hence a = N and

the v,, v2,..., vN are free generators. Theorem 2 has been established.
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