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ON SUBGROUPS OF M24. I: STABILIZERS OF SUBSETS

BY

CHANG CHOI

Abstract. In this paper we study the orbits of the Mathieu group M24 on sets of

n points, 1 s= « £12. For «ä6, M2i is not transitive on these sets, so we may classify

the sets into types corresponding to the orbits of M24 and then show how to construct

a set of each type from smaller sets. We determine the stabilizer of a set of each type

and describe its representation on the 24 points. From the conclusions, the class of

subgroups which are maximal among the intransitives of M24 can be read off. This

work forms the first part of a study which yields, in particular, a complete list of the

primitive representations of M24.

In this paper we study the orbits of the Mathieu group M2i on sets of n points,

1 í£«á 12. We say that two sets are of the same type if they belong to the same

orbit. We then classify the sets of given size and show how to construct a set of

each type from smaller sets. We determine the stabilizer of a set of each type and

describe its representation on the 24 points.

This work forms the first part of a study which yields, in particular, a complete

list of the primitive representations of M2i. The complete list includes one more in

addition to those listed by J. A. Todd [8]. The two studies were done independently,

employing completely different methods.

From the conclusions of this paper, the classes of subgroups which are maximal

among the intransitive subgroups of M2i can be read off immediately (Theorem I).

This paper also yields the essential information for the study of transitive subgroups

of M24 to follow in a second paper, On subgroups of M2i. II, in which all the

maximal subgroups of M2i are completely enumerated.

1. Notation and preliminaries. Let Q be the 24 points of M2i. An unordered

set of n distinct points in Q. will be denoted by «, 1 ̂ «< 12. M2i induces a permuta-

tion group on these (2n4) unordered sets of n distinct points. If, in this representation

of M2i, two sets of« distinct points nx and n2 are of the same type (i.e., in the same

orbit), we write n^n^ Since M2i is not «*-transitive, if «^6, we know that for

«¡ï6 there will be more than one type of «'s. If there are j different types of sets of

n distinct points, they are denoted by n',n",...,n'. (7(n<) denotes the setwise

stabilizer of«' in M2i and Gln>¡ denotes the pointwise stabilizer of n' in M2i. We will

adopt one more notation, As(«¡). This denotes an orbit of length s of G(ni, on Q — «'.
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Except for the conventions introduced above, the notation and terminology

follow in general Wielandt [9], with occasional slight deviations which are self-

evident from the context.

An element which has a 1-cycles, ß 2-cycles, y 3-cycles,... in its cycle decomposi-

tion is denoted by la2"3>'- ■ -, while decomposition of a number is denoted, e.g., as

1^-2^-3y- • -, with a dot between numbers.

The complete lists of transitive permutation groups of degrees 1 through 12 are

available in papers by F. N. Cole and G. A. Miller, [2], [3], and [7] respectively.

Frequent use is made of these, and each reference to them is noted individually.

The list of conjugacy classes of elements of M2i is given for reference at the end

of this section. The twenty-six conjugacy classes are listed by Frobenius [4]. A

detailed derivation of the conjugacy classes of all the Mathieu groups is available

in the author's thesis [1, p. 14, et seq.].

The character table of M2l is used and is available in the paper by Frobenius [4].

A detailed derivation and description of all the characters of all the Mathieu groups

is also available in the author's thesis [1, p. 76, et seq.].

The following is a list of theorems and lemmas quoted often throughout.

Lemma 1.1 (Jordan, 1871) [9, p. 34]. IfG is primitive on Q and G'[A] is primitive

on D—A = T, and, in addition, 1 < |r|=m<n=|Q|, then G is (n — m+l)-fold

primitive.

Lemma 1.2 (Witt, 1937) [10, p. 259]. Let G be k-fold transitive on Q., and let

rçQ, Ir| = k. Let the subgroup Uí¡G[r] be conjugate in G[n to every group V which

lies in Gin and which is conjugate to U in G. Then NG(U) is k-fold transitive on the set

of points left fixed by U.

Lemma 1.3 (M. Hall) [5, p. 80]. The only nontrivialquadruply transitive groups

on less than 35 points are Mlu M12, M23 and M2i.

Lemma 1.4 (D. Livingstone, A. D. Wagner) [6, p. 394]. Let G be a per-

mutation group on O, and let A and T form a partition o/Q: Au T = 0, An T — 0,

and let the number of points in A be n. Then the permutation group derived from G

by its action on the unordered sets of n points is permutation isomorphic to the restric-

tion to G of the permutation representation of Sn on the cosets o/(Sn)(n). Sa is the

symmetric group on O.

Lemma 1.5.  We have

for 1 ̂  n r£ 5, one type, n,

for n — 6, 1, two types, n and n",

for n = 8, 9, 10, 11, three types, n, n" and n",

for n=\2,five types, n, n", n", nlv, and ri*.

Proof. By Lemma 1.4, ((l(S„xs24_„))S24)^24 is the permutation character of the

representation of M2i on the (2n4) unordered sets of n distinct points. Thus to find
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the number of orbits of M2i in this representation, we must find the multiplicity of

the principal character of M2i in the above character.

Denote ( 1 (Sn x S24 _ n))s2i by ftn) and a class of elements of ty pe 1 a2"3y • ■ • in S24 by p.

Then ftp is given by

#° = I-
t\ 0! A

where the summation runs through the solutions of the following equations:

*: n = otj-r- 2ß1 + 3y1 +■■■,       24-n = a2 + 2ß2 + 3y2+■ ■-,

**: a = ai + a2,       ß = ßi+ß2,       y = Yi+y».

Now ftp is computed only for those p which are in M2i, and the inner product

(ftn\ 1m24) gives the assertion.

Table of Conjugacy Classes of M2

Element in

Cycle Type

124

2818

3616

5414

442214

7313+

7313_

824 2 12

62322212
,12,2

1553 1 +

15 5 3 1_

1472L

No. Elements

in a Class

1
•5-11-23

•7-11-23

-32•7•11•23

•33-5-7-11-23

•32-5-ll-23

•32-5-ll-23
•33-5-7-11-23

•32-5-7-ll-23

210-33-5-7-23

210.32.7.11.23

210-32-7-ll-23

29-33 • 5 -11 - 23

32

27

2B

23

29
2fl

26

27

Element in

Cycle Type

14 7 2 1_

23 1 +

23 1_

122

6*

46

38

212

10222

21 3 +

213.

4424

12 64 2

No. Elements

in a Class

29-33-5-ll-23

210-33-5-7-ll

2l0-33-5-7-ll

28-32-5-7-ll-23

27-32-5-7-ll-23

25 - 32■5 - 7 -11 - 23

27 ■ 3 - 5 • 11 - 23

2-32-7-ll-23

28-33-7-11-23

210-32-5-ll-23

210.32.5.11.23

23-32-5-7-ll-23

28 - 32■5 - 7■ 11 • 23

± denotes that the classes are inverse to one another. \M2 = 210-33-5-7-ll-23.

2. G(n), \^n^5. Ga) = M23 has order 27-32-5-7-11 -23 and is obviously a

maximal subgroup of M2i. Since M2i is 5-fold transitive on D, for 2 ana 5, we

have one type of «. Gin) is NM2i(M2i_n) where M24_n=M24[nJ, so by Lemmas 1.2

and 1.3, we have |G(n)| = |S'n|-|AÍ24_„|, 2¿«á5. Thus \Gi2)\ = \S2\ ■ \M22\

= 28-32-5-7-ll, |G(3)| = |5,3|-|M21|=27-33-5-7, |G(4)| = |S4| -|M20| =29-32-5 and

|G(5)| = \SS\ ■ |M19| = 27-32-5. Obviously G(n) is (5-n)-fold transitive on Q — n,

1^«^4.

Next we will see that Gm and G(3) are maximal subgroups of M2i.

Proposition 2.1. G(2) is a maximal subgroup of M'2i.
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Proof. Let L be a possible overgroup of G(2) in M2i. Then L is transitive on D.

Consider La]. Then £tl]>G[2] or L[U = GW. If Z-[ij>Gt2], then L is 2-transitive.

Since G[2] is 3-transitive on 22 points, L is 5-transitive on O. By Lemma 1.3,

L=M2i. If L[i] = G[2], then |L| = 23-3-|M22| and [M2i:L] = 23. No nonlinear

character of M2i has degree less than 23. Therefore there cannot be a subgroup of

index 23 in M2i.

Proposition 2.2. G(3) is a maximal subgroup of M2i.

Proof. Let L be a possible overgroup of G(3) in M2i. Then L is transitive on Q.

G[3] has orbits 1, 1, 1, 21. Let A be the orbit of length 21. G[3] is primitive on A,

and 24<2- |A|, so L is primitive on O by a lemma [9, p. 16]. By Lemma 1.1, L is

24—21 + l=4-transitive. By Lemma 1.3, L=M2i.

For G[5], we have the following for future use. The subgroup of M2i which leaves

5 points unchanged, M19, has order 24-3, and is intransitive on the remaining 19

points. By a definition of M2i [10, pp. 260-261], this M19 is a subgroup of PSL3 (4)

leaving 2 points unchanged. Thus M19 and syl2 (M19) can be represented as

A"1    •

x     A

IL y i

and   <

1    •

x   1

ID- 1

respectively, with A, x, y e GF [22]. Apparently syl2 (M19) is normal in M19 and is

elementary abelian of type (2, 2, 2, 2). It is regular on 16 points and fixes the re-

maining 3 points. Also, we note that M19 has two orbits of lengths 16 and 3. Let

?t16 denote syl2 (M19) and § denote AV24(2i16).

We have the following characterization of © and syl2 (M24).

Proposition 2.3. § is AB on the 8 points left fixed by 9I16 and is the holomorph of

9t16 on the 16 remaining points. Let 8' denote the 8 points left fixed by 2(16, then

G(8) = §. Also, syl2 (M24) = syl2 (GL5 (2)).

Proof. 9l16 satisfies the conditions of Lemma 1.2, so § is 5-fold on the 8 points

left fixed by 2i16. Therefore § is SB or A8 by Lemma 1.3. Thus, §/2l16s^e-

Now § is represented faithfully on the remaining 16 points, thus § is contained

in the affine group Ai(F2), but |©| =24- \AB\ = 210-32-5-7, so & = Ai(F2). Thus we

have Ai(F2)/<ñ16?GLi(2)?AB and syl2 (M24) = syl2 (GL5 (2)). Since 9t16 < M19,

G(8-)c£>and G(8) = £.

For G(4) and G(5), we have the following for future use.

Proposition 2.4. G(4) is an imprimitive group on the remaining 20 points with

systems of imprimitivity of length 4.

Proof. Let x be one of the 21 points in the 2-dimensional projective geometry

of PSL3 (22). Then G[4] = (PSL3 (22))w. Let T, u x, i'=l,..., 5, be the 4+1 = 5

lines through x of the geometry, then G[4] is an imprimitive group with systems of
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imprimitivity, r¡, i=\,..., 5. We claim these systems are unique for G[4]: Let y

be one of 20 points of G[4] and B be a block containing j?. Since (G[4])[y] = M19 has

2 orbits, A3 and A16 of lengths 3 and 16 respectively, B=y u A3. Therefore any

block must have length 4. Let Bu ..., B5 be conjugates of B1 = B. Then B¡ n r¡

must be a block unless the intersection is null, so fi, = r¡ or B¿ n rt = 0. Therefore,

in a suitable ordering, Vi = Bi for i— 1, 2, 3, 4, 5. Now, if g e G{4), then Tf is a block

of ^_1G[4]^ = G[4]. So by the uniqueness of the blocks of Gl4], rf=ry, i,j=\, 2,...,

5. Thus, G(4) is an imprimitive group with systems of imprimitivity of length 4 on

the 20 points.

Proposition 2.5. G(5) has two orbits A3(5) and A16(5) of lengths 3 and 16.

Furthermore, G(5)CG(8.) and G(5) is S3 on A3(5).

Proof. We have seen that G[5] has two orbits of lengths 3 and 16. These two orbits

are G(5)-orbits as well. Call them A3(5) and A16(5), respectively. Since 5 u A3(5)

= 8-, G(5)cG(8., and Gi5^ = S3.

3. G(n-) and G(n■■,, « = 6 and 7. An appendix is placed at the end of this paper.

In discussions of the constructions of n1 from (« — 1)', the figures in the appendix

will be of great assistance.

Now in Figure 1 in the appendix, the three sets of six points, 5 u X, X e A3(5),

are all the same type, and the sixteen sets of six points, 5u Y, Ye A16(5), are all

the same type. By Lemma 1.5, {5ul}?s{5u Y). Call 5 u X 6 and 5 u Y 6".

Then, we have

Proposition 3.1. G[6J = syl2 (M19) and G[6•] = syl3 (M19). G(6)/G[6]^S6 and

G(6.,/G[6.,s56. |G(6,|=24-|56| «m/|G(6.,|=3-|S6|.

Proof. |G[5uX]| = |G16]|=24and |G[5uy]| = |G[6-]| =3. Thus, G(6] = syl2 (M19) and

GW-] = syl3(M19). Next, let \Gm\=gi, and |G(6-)|=^2. Then |M24| -(l/^i + \/g2)

= (264). Now let |G(6,/G[6,|=Ul, |G(6-->/<V]|=«2- Then 48-(6!/16Ml + 6!/3w2)=19.

Now, 3(6!/^)+16(6!/t/2)=19 and M{a6!, i'=l,2. So ^ = 6! and w2 = 6!. Thus

G(6-)/G[6] s Se   and    G(6-)/G[e-] S »S'e-

Next, we consider the action of G(6-> on the remaining 18 points of O and find

Proposition 3.2. G(6-, has 2 orbits A2(6') a«J A16(6') = A16(5), and Gi6)<=G(ay

Proof. G[6 j fixes A3(5) — X pointwise and is regular on A16(5). G(5) is S^ on Aa(5).

So G(6) has an orbit of length 2, A2(6') = A3(5) - X, and A16(6') = A16(5). Clearly

"(6')<-"(8-)-

Next we consider the action of G(6-) on Q-6". G[6-] = syl3 (M19). Let t3= 1 and

<T> = syl3 (A/19). Then r has cycle type 1636 and 6" is the six points left fixed by t.

We find the following

Proposition 3.3. G(6-.) is Se on the six 3-cycles of t and thus transitive on Q. — 6".
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Proof. Obviously ^((t^cG^..,, but by Lemma 1.2, AV24(syl3 (G[5])) is S6

on the 6", so G(6•■) = AV24(syl3 (GI5])). Thus, it can be represented as a subgroup of

5e on the six 3-cycles. If the kernel K of this representation is greater than

syl3 (G[51), AT/syl3 (G[5]) is normal in Se and |A^| =23-33-5. This is impossible because

elements of order 5 cannot fix all the six 3-cycles setwise. So K=sy\3 (G[5]) and

G(6-) is Se on these six 3-cycles of syl3 (G[5]).

The following further characterization of G(6 } is necessary for the future dis-

cussion of the maximality of G{6-y

Proposition 3.4. Let the representation ofGi6~, on the six 3-cycles ofr be denoted

by Se. Then G(6-)6 = S6 and S6 are in permutation isomorphism.

Proof. As has been seen, every 5 determines a unique A3(5) and A16(5). If

Ye A16(5) then 5 u Fis a 6".

Now 5 u A3(5) is the set of points left fixed by a syl2 (M19), of which the normal-

izer in M2i is the group §. In particular § is faithfully represented on A16(5) as

the holomorph of the elementary abelian group syl2 (M19). The subgroup K of ©

fixing the point Fis thus faithfully represented as the transitive group GL4 (2)^^48

on the remaining 15 points. A homomorphic image of K acts nontrivially on

5 u A3(5). By the simplicity of AB, this image is precisely AB on the 8 points.

Consider now the subgroup L of K which stabilizes 5. L^ S5, whence L is the

subgroup of G(6 ) fixing Y. L normalizes r and the corresponding group L on the

six 3-cycles is isomorphic to S5, since elements of order 5 cannot be in the kernel.

L fixes A3(5), the correspondence S6 <-»• 56 of G(6-, associates permutation isomor-

phic ,S5's, and the theorem follows.

We refer to Figure 2 in the appendix during the discussion of 7. Construct two

7's by 6' u a1 and 6' u Y. Then G[6ljai] is the elementary abelian group of order 24

and G[0oy] = syl2(Ai19)n sy\3 (M19) = E. Therefore {6' u ax}^{6' u Y}. Call

{6- u otj 7" and {6' u Y} 7". The study of G[7J and G(7) leads to

Proposition 3.5. G(7)/G[7] = A1 and G(7)cH. And G(7) = Se fixing Y and G(7 •>

c=G(6). Also, 7" = 6" u z, ze A18(6").

Proof. G<T)<&ia.j and Qla¿<G(7.,. So G(7) = i)[a2] and Gay/GlT: = A7 on T.

Then |G(7-)| =6!. Now (Gl6})m is in GlT) and has order 6!, so G(7 •) = (G(6))m, and

G(7-)c:Gl(6).

We have 7" = 6' u Y, Ye A16(6') = A16(5). But 6 = 5 u X, Xe A3(5). Therefore

7"=5u A'u Fand 7" = 6" u X. Therefore 7" =>6" and 7" = 6" u Z, Z e A18(6").

Since G(7") fixes a point from A16(6'), 7" contains one 6' and six 6"'s, and T contains

only 6''s.

Next we will consider the actions of GiT) and G(7 , on the remaining 17 points

and find

Proposition 3.6. (A) G(7, has two orbits of lengths 1 and 16, and à^T) = A2(6')

— cej and A16(7") = A16(6') on the remaining 17 points.
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(B) Gçr■) has two orbits of lengths 2 and 15, and A2(7") = A2(6') and A16(7")

= A16(6-)-7.

Proof. (A) is obvious since GlT} has orbits of lengths 1 and 16.

(B) We have seen G(T) is (G(6-))m. Since (G(6 ,)m is S6 on the six points, there are

elements in (G(6))m, a, ß and y, such that

a = 5 1 1 53 l2

ß = 3 l3       1       35 l2

y = 61 1       6 32 2 1 2

on6- Y      A16(6")-y        A2(6")

The elements assert (B).

4. G(8), G(8-) and G(8 •}.   We have

Proposition 4.1.

8" = 7'u«2, a2e A^T).

8" = 7" u X, Xe A16(7"); 8" = 7" u8,Se A2(7").

8- = 7"uZ,ZeA15(7").

G(8-) is the holomorph of the 9t16, as described in §2.

G(8") w A7 fixing X, GlB ¡ = E and |G(8->| = |^47|.

G(8 •••) to //¡e imprimitive group of degree 8 of order 384 vv/7/i systems of imprimitivity

of length 2, the kernel of imprimitivity C2xC2xC2x. C2, and the image of the

imprimitivity, S4. G[8-•J = £'.

Proof. The assertion for 8' and G(8) is now trivial.

Let 8 = 7" u X, XeA16(T). Then Gm = E, so 8#8'. Call this 8 an 8". By Lemma

1.5, there is one more type of 8. The 8'" must come from 7". Therefore either

7" u S = 8'" with 8 e A2(7") or 7" u Z = 8'" with Z e A15(7"). In any case G[8-,

= E.

Now,

(*) 8!/|G(8,| + 8!/|G(8..,| = 121.

Since G[8 ^Gjs-^ii, the above equation shows the sum of the indices of the two

groups in S8 is 121.

(G(7))[X, has order 7!/2 and is contained in G(8■•>. Therefore \A7\ divides |G(8-)|,

so that the index of G(8-) in S8 is 2°, 21, 22, 23 or 24. Since 24 + 3-5-7= 121 and

2° + 23-3-5= 121, G(8") can only have index either 2° or 24 in 58. If it has index 2°

then G(8-) = S8, then (G(8--))[x] must be 57 on 7" which is impossible because G(7.,

= /i7. Therefore G(8-) must be An on 8" fixing X, and (G(7))m = G(8--,.

By(*), [Se : G(8...,] = 105and |G<r.,|-2T-3.

Now take 7" u Z, ZeA15(7"). Since G(T) = Se and (G(7-))cz]cG(7..uZ), 24-3

divides |G(7 uZ)|. Therefore {7"uZ}9i8", and {7"uZ}si8'". Since (G(8))[z,

= (G(7-))[Z] and |G(8-)|=27-3, G(8-) is transitive on 8'". The transitive group of

degree 8, order 384, is not a primitive group. There is only one imprimitive group
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of degree 8, order 384. It has four blocks of length 2. The kernel of imprimitivity

of the group is C2xC2xC2x C2 and the image is 5'4.

Now consider 7" u 8, S e A2(7"). Since G(8, is transitive on 8', {7" u 8} #8'.

Since |(G(7-))W]|==23-32-5 and 5 does not divide |G(8 ■)|,{7*' u S}# 8'", so {7" u 8}

xS". The above can also be seen in the following way. 8" = 7' u X, Xe A16(7")

= A16(6'). But 7'= 6' Uce1; «j e A2(6'). So 8" = 6' u ai u X=l" u ax. Since

«! e A2(6') = A2(7"), 8" = 7" u 8, 8 e A2(7").

Proposition 4.2. G(B-, has two orbits A^S") = Ai(7") and A15(8") on the remaining

16points. And G(8-)CG(7).

Proof. By Proposition 4.1, G(8-) = (G(7))[X], so G(8-)CG(7) and Aj(7') remains as

an orbit of G(8■■■„ i.e. A1(7') = A1(8").

Since G(7 ) is An on 7*, there is an element of order 7, a, in G(8■■, such that

« = (.)(«2)W(.)(.)(.)

r
and also an element of order 5, ß, in G(8-) such that

|8 = (•)(•)(.)(«*)(*)(.X.X.)•
7'

Therefore G(8--, has an orbit of length 15, A15(8").

As for the action of G(8 ••■) on D — 8", we have

Proposition 4.3. G(8-) naj rwo or¿?/7í of lengths 8 anuí 8. One of them is an 8'" and

the other is an 8'. We will denote them by A8-(8"") and A8(8'") to distinguish them.

Also, Gia-yCiGm.

Proof. We have seen that G(8•>, the holomorph of 9t16, can be represented as a

group of matrices of the form [■? f] where A e GL4 (2) and a e Vi(F2). Identify

Í2 — 8' with the vectors [?], »e F4(F2). Then the action of © = G(8-, on D—8' is

matrix multiplication.

Let T be a set of vectors of the form

~xy~

x

y

Z

. i

and A be a set of vectors of the form

~xy+l~

x

y

z

1
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Then |T| = |A| = 8 and Q-8' = T u A.

Let K be the subgroup of © consisting of all

"1 (a + e)c+fa (b + e)d+fb 0 ef

0            a b 0 e

0           c d 0 f

g           h k I I

ß           0 0 0 1

where t?  S] e GLa (2). Then \K\ =26- |GL2 (2)| = 384= |G(8...,|.

It is easy to verify that T is invariant under K and that K is faithful on T. Since

G(8) induces A8 on 8' and G(8-) induces A7 on 8", and 384 does not divide \AB\ or

\A7\, T must be an 8'", and K=GW) is transitive on T. Similarly A is an 8"' and

K=GiA).

Finally let L be the subgroup of K consisting of the matrices

0

0

1

k

0

Then L is elementary abelian of order 8 and its involutions are of type 1824 on

&■ — 8", and so of type 24 on 8'. Hence Lis regular on 8'. Thus the orbits of K=G(8 ■•>

are T, A and the original 8'.

5. G(9), G(9■■) and G(9---)' We have

Proposition 5.1. (A) 9" = 8' u a, <*e A16(8').

(B) G(9) = (G(8))[a, is A8 on 8' and S^ on a.

(C) Also, 9' = 8" u a2, a2 e A1(8"), and 9' contains one 8' and eight S"'s.

(D)9" = 8"u^,í3eA15(8").

(E) G(9-) = (G(8-))[Xii]X C2, where x is the point of 8" left fixed by G(8-), has two

orbits of lengths 1 and 2 on 9" and |G(9-)|=23-3-7-2 = 336.

(F) A15(7")=A15(8").

(G)9"" = 8"'u8, 8eA8.(8-").

(H) 9" = 8 " u y, y e A8-(8""), and 9" contains two 8'"'s and seven S''s.

(I)   G(9- •■) is transitive on 9'" and has order 32-24-3 = 432, and G(9-, is the holo-

morph of an elementary abelian group of order 32.

Proof. Let

(A) 9'= 8' u a, ae A16(8'). (G(8))[a, = ^8, so Gi9) is not transitive on 9", other-

wise, |G(9-)| = 32-|^8|=32-26-32-5-7. Therefore,

(B) G(9-) = (G(8-))ta].

Since G(8-, is 3-transitive on A16(8*), G(9) is 2-transitive on A15(9') = A16(8')-a.
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Now 9=8'u a, oceA16(8"). But 8' = 7'u«2, a2 e A1(T) = Aj(8"), a e A16(7').

Therefore 9'= 7' u a u a2 = 8" u a2. Therefore

(C) 9- = 8"u«a,aa6A1(8").

If we take out a which is the point left fixed by G(9) from 9' we obtain an 8'.

If we take out a point ^a from 9" we obtain an 8". Therefore, 9' contains one 8'

and eight 8"'s.

Next, let 9 = 8-0,8, j3eA15(8"). (G(8.,)W] = (G(9))W] and |(G(8.,)W]| = \A7\/15

= 23-3-7. If G(9) is transitive on 9, |G(9)| =32-23-3-7= 1512. By Cole [2, p. 258],

a transitive group of order 1512, degree 9, is unique and contains an element of

order 9. M2i does not contain such an element, so G(9) is intransitive. Now,

(G<8->)w] = (G<8 Or*,« where x is the point left fixed by G{8..>. (G{B-,)lxJ]^G(9) and,

since 7 divides |(G(8"))[J(>i]|, (G(B-,)lx,ßi has three orbits T, {x}, and {/?}. Since 9t16

fixes all the 8 points of 8' = 7'u«2, where a2 = A1(7') and is regular on the

remaining 16 points, there is an element g such that g fixes 8' pointwise and inter-

changes x and ß. Therefore g e G(9). Thus G(9) must have two orbits T and {x, ß}.

Therefore 9 #9'. Call this 9 a 9". Now we have

(D) 9" = 8"uj8, /3eA15(8") and G«r)7'=((V>)t*.fl and G(9.,(*,5) = C2. There-

fore

(E) G(9-) = (G(8"))[;Ci/î) x C2 and has order 2 • 23 • 3 • 7 = 336.

Now we show that A15(8") = A15(7"). A2(7")= A2(6') by Proposition 3.6(B) and

Ai(7') = {A2(6") minus a point} by Proposition 3.6(A), so A1(7') = {A2(7") minus a

point}, but A!(8")= Aj(7-) by Proposition 4.2, so A1(8") = {A2(7") minus a point}.

Let A2(7") = {f, T]}, and let 8" = 7" u £ then by the above {i?} = A1(8"). Therefore

we have

(F) A15(7")=A15(8").

Now 9"=8"uJ8, /SeA15(8"). But 8"=7"u«v Kl e A2(7"). Therefore 9"

= 7"Uj8uai, J8eA15(7") by the above. So 9"=8'"u«„ ai e A8.(8'") or

«i 6 A8.(8-).

Next, let another 9 = 8'" u 8, 8 e A8(8'"). G(8-) has two orbits A8..(8'") and

A8(8'") and there is an element a in GC8- •> such that

a = 8       8       (8)(.)(....)(..).

8¿     8ß 8

Therefore (G^-,)^ is transitive on 8¿\Therefore this 9#9", and

(G) 9"'=8'"uS, 8 e A8.(8'") and

(H)9" = 8-uy,y6A8...(8-).

Now if we take a point f from the orbit of length 2 of G(9■•„ we get 8" and

f e A15(8") and if we take away a point 17 from the orbit of length 7 of G<9■•, we get

8"' and t? g A8...(8"').

Now we have 9!/|G(9-)| =840 and |(G<8»))t«]|=24-3. If G(9-) is intransitive, then

(G(8...))[(i] = G(9...) and |G(8...,| =24-3. Then 9!/|G(9..,| =23-33-5-7 = 7560>840.

Therefore
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(I) G(9-) is transitive on 9"" and has order 32-24-3 = 432, so is the holomorph of

9l32, an elementary abelian group of order 32, since there is only one transitive

group of degree 9 with this order.

The fact that Gi91 is 2-transitive on A15(9') is already mentioned. For the actions

of Go-) on the remaining 15 points, we have

Proposition 5.2. G(9.-> has two orbits of lengths 1 and 14, A1(9") and A14(9").

Proof. Go-, is a direct product of (G(8-,)u>a] on 7' and C2 on {x, ß} where

9"=8"'U)S, ß e A15(8"). (G(8-,\x¡B-¡ has order 168. The group of degree 7 and

order 168 is unique, by Miller [7, p. 395], and has, in particular, an element of type

7. Then G(9-, has an element of type 7121. Action of this element on Q-9" is 1441.

Since 15 does not divide |GC9.)|, G(9 ■•) has two orbits of lengths 1 and 14.

Proposition 5.3. (A)  G(9-> has two orbits, A3(9-") and A12(9'") of lengths 3

and 12.

(B) G(9-)A3(9'")^S4/K, V is a Klein group.

Proof. (A) G(9 ■ ) is represented as

a    ß

a, ß, y, 8,x,ye GF [3] and i"   ^1 e GL2 (3),

1

and is doubly transitive. The conjugacy of GlB-, is determined as follows.

On 9"

l9

1323

1332

18

18

142

126

124

36

Class

Length

1

36

24

54

54

54

72

9

72

On Q-9"'

,16

1525

1334

1248

1248

132242

12326

1724

122236

Points

Fixed on 15

15

180

72

54

54

162

72

63

144

In addition to the above, there are two classes of elements of type 33 of class

lengths 8 and 48 respectively. These elements can each act either as 1633 or 35 on 15.

If the elements in the class of length 8 act as 1633 on 15 then 48 points are fixed,

and if they act as 35, then no point is fixed. Again, if the elements in the class of

length 48 act as 1633, then 288 points are fixed, and if they act as 35, then no point

is fixed.

Thus the minimum possible number of points in Q — 9'" left fixed is 816 and the
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maximum possible number of points in O — 9" left fixed is 1152. Therefore,

G(9-) has 2 orbits and 2-432 = 864 points must be left fixed. And 8 elements of

type 33 must act as 1633 fixing 864-816 = 48 points and 48 elements of type 33

must act as 35 fixing no points.

The existence of cycle type 1248 on 15 points shows orbits are either of lengths 9,

6 or 12, 3. We will show that 9, 6 is impossible.

Suppose G(9-) has two orbits A9 and A6 of lengths 9, 6 respectively. Since G(9)

and G(9.) are intransitive, A9 is a 9"'. If A6 is a 6', |syl3 (G(9 •■■))As| = 33, but |syl3 (5"6)|

= 32, so A6 is a 6". Therefore we have A9 = 9'" and A6 = 6". The intransitive group

of order 432, degree 18 on 9" u 9" must be constructed by an automorphism of

G(9-). We have seen there is only one class of length 9 of elements of order 2 of

type 124. Therefore, under any automorphism elements of type 124 must be com-

bined with elements of type 124 to produce elements of 124 +124 + 16. The elements

of type l6 must be on 6", which is impossible. Therefore G(9--, has two orbits of

lengths 12, 3 on the remaining 15 points.

(B) First we note G(9-•■) is 53 on A3(9'"). This is seen by the existence of the

following types of elements:

9'"        A12(9'")       A3(9'")

18 84 12

33 34 3

Next denote by Tthe subgroup of the translations in G(9-y

T={

1

1

1

Now we consider the representation of G¿—> on A3(9'"). Let Kbe the kernel of the

representation. Obviously TnK^E. Now T n K <\ G(9-) and since G(9-) is

primitive, Tn Kis transitive on 9'" and 32 divides \Tn K\. Thus T<=-K. Therefore

we have the representation of G(9--JT (^GL2 (3)) on A3(9'"). Since Z(GL2 (3))

maps to Z(S3) = E, we have the representation of GL2 (3)/Z(GL2 (3))=54 on

A3(9'"). Now Si has unique normal subgroup of order 4, V, the Klein group, and

SJV^S3. Therefore Gi9-^i9"^SJV.

6. G(10), G(10->, and G(10--,.   First we have

Proposition 6.1. Lei 10' = 9'Ue, e e A15(9'). Then G(10) = G13iixC2 where

G1344 is the holomorph of an elementary abelian group of order 23 and has order 1344,

and G(10) is transitive on the remaining 14 points.

Proof. Recall G(9) is A8 on 8', and S± on ce. Let 10'=9' u e. Then

(Gno-ùui = (CW»i   and    l(G(B->)te]| = 26-3-7 = 1344.
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Denote this group by G1344. Since |syl2 (G1344)| = |syl2 {A8)\ and G1344 contains an

element of order 7, G1344 is transitive on 8'. If G(10-) is transitive on 10', |G(10)|

= 27-3-5-7, so that 7 divides |Gao)| and G(10) must be primitive. But (G(10))[£,

= (G(9))[£, = (G<9))[a,ej, so Gao) cannot be primitive. Therefore G(1(n must be in-

transitive on 10', with suborbits 8', {a}, {e}. Now we recall, 9l2« has an element

which is identity on 8' and (ae) on {a, e}. So

Gu0-, = G1344 x C2 and |G(10-,| = 2-1344.

G1344 is of order 1344 and degree 8, and so is the holomorph of an elementary

abelian group of order 23. G1344 has an element of order 7, type 71, therefore

G(10) contains an element of type 71 2, and action of this element on the remaining

14 points is uniquely determined as 71 2 14. Therefore, Ga01 is transitive on the

remaining 14 points.

As for 10" and G(10->, we have

Proposition 6.2. 10" = 9'"U/x, /LteA3(9'") and Gll0-, is 3-transitive and is

PrL2(32) of order 1440.

Proof. Consider 10 = 9'" u p., peA3(9'"). (G(10))[u] = (G(9...))[j¡] and |(G(10))[H]|

= 24-32= 144. We show that (G(9-))U]=(G(10,)U] is 2-transitive on 9'".

The character table of the holomorph of the elementary abelian group of order

32, Go •> shows clearly there is only one subgroup of G(9-, of index 3, order 144.

Call this subgroup of G(9 -} as G144. The compound character of G144 in G(9-) is

easily computed and from it the following conjugacy of G144 is obtained. There

are 12 elements of type 1322, 36 elements of type 18, 54 elements of type 142,

9 elements of type 124, 8 elements of type 33, 24 elements of type 36 and lastly

1 element of type l9.

The existence of elements of type 18 and 33 assures that the group G144 is doubly

transitive.

Now we show that G(10) is transitive on 10, thus 3-transitive on 10. Recall

9 " = 8" u 8, S e A8.(8'"). G(8 ...} has an element a of type

8   (w)(x)(yz)(....)   8

8" 8' 8"

9'" can be regarded as 8'" u w, and A3(9'") = {x, y, z}. Thus 10 can be regarded

as 8'" u w u x. Now |syl2 (G(8- •)8)| =26, so syl2 (G(8-)8) = syl2 (AB). Therefore,

there exists an element ß in G(8-„ which interchanges w and x. Thus ß e G(10) and

G(10) is transitive on 10.

Since |(G(10))[H,| = 144, |Gao)| = 1440. Since 5 does not divide |G(10)|, 10"#10.

Let 10 = 10".

The 3-transitive group of order 1440, degree 10 is unique and is PrL2 (32).

Proposition 6.3. (A) 10'"=9" u p, pe A12(9'") and Guo ■•■) has order 144 and

is intransitive on 10'" with 2 orbits A6 and A4 of lengths 6 and 4. Gao-fe is an im-

primitive group of order 36, and G(10 ■■■** = St.
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(B) G(io-) has two orbits on the remaining 14 points, A2(10'") and A12(10'") of

lengths 2 and 12.

Proof. (A) First we know that |G(10 ■)| = 144.

Now construct a set of 10 points by 10 = 9'" u p, p e A12(9'"). We determine

(G(9- >)[(,]• G(9- , has been seen to be GA2 (3) of order 3-24-32. Let T denote the

translations of GA2 (3). Now, if t^E and t e T, then t fixes, by Proposition 5.3,

A3(9'") pointwise, and fixes no point of 9'". Therefore, every element of T must fix

exactly 3 points of A12(9'"). We may assume at least one element of T fixes

p e A12(9'"), but T does not fix p since any subgroup of order 32 of M2i cannot

fix 4 points. Therefore, |(G(9■■■))lp} r\T\=3. We may also assume (G(9-))[(,) contains

1 1

Then we see (G(9

represented as

1

,)[„) is in the normalizer of <ot>. Now the normalizer can be

a   b

■    c

1_

It has order 12-9=108. Since |(G(9-))[oJ n T\=3, we have

(G<9-))[/>] — s

1

of order 12 3 = 36.

Denote (GiQ-)\p] by G36. The computation shows G3e is intransitive on 9" with

two systems of intransitivity A6 and A3 of lengths 6 and 3. The transitive constituent

of G36 on A6 is faithful and G36S3 is S3. The G36Ae is an imprimitive group with 2

blocks 5j and B2 of lengths 3, 3. The kernel is even part of SBl x SB2 and the image

is C2. Consequently, there is a normal subgroup of order 6; denote it by G6 in G36

such that

G36*°/GB ïS3s G36ä3

and the above isomorphism describes the intransitive group, (G(9 ■))[i)] on 9'".

Recall that we started with a set of 10 points 10 = 9'" u p, p e A12(9'"). Now we

construct G(10). KGdoO^I = 36, therefore |G(10)| = 36-/ where /is the length of the

orbit of G(io) which contains p. Consider

36-/ = |G(10)| = 2688,

= |G(10)| = 1440,

= |G(10)| = 144.
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36 does not divide 2688. 36-40= 1440 but cannot have /=40. Therefore we have

1 = 4   and   10 = 9'" Up = 10'",       p e A12(9'").

Since (G(9-))[0] has orbits A6, A3 and p, Gao•■•> has two orbits of lengths 6 and 4.

Call them A6 and A4, respectively. Then A6 = A6 and A3Up = A4. Apparently

Gao-)Ai = Si, and G(10-)A6 = (G(10-))[p]S6 = G36. Therefore, G(10 •••) can be described

by the following isomorphism of quotient groups of transitive constituents

G36/G6 s S3 s SJV,

where V is the Klein group.

(B) The existence of elements of type 6 4 12 2 and the fact that 14 does not

divide 144 shows that G(10- -, has two orbits A12(10'") and A2(10").

Now we will discuss the action of Gao-) on Q —10".

Proposition 6.4. G(10-, has 2 orbits of lengths 2 and 12 on the remaining 14

points, A2(10") and A12(10"). G(10-)Al2<10 ' is an imprimitive group with image C2.

Proof. We have seen that G(10-, with order 1440 and 3-transitive on 10" is

PrL2 (32) = Aut (Se). The compound character corresponding to PrL2 (32) in

S10, if computed and split into irreducible characters of 510, is found to have the

following decomposition (using Littlewood notation).

l<PrL2(3VSio = [10] + [64] + [622] + [522l] + [422]

+ [331 ] + [423] 4-[4313]-f-[25] + [4214]

and from the above characters the number of elements of each cycle type in

PrL2 (32) is computed as follows:

type: l10    1423    128    1242    1224    133    136     10

number: 1      30     180    270     45     80    240    144

type: 82    25   422     52

number:        180   36    90     144

Now for the elements of each type, the actions on the remaining 14 points are

uniquely determined, and it is seen that PrL2 (32) fixes 2880=1440-2 points on

the remaining 14 points, so G(10- > has 2 orbits on the 14 points. Therefore, G(10■■>

has either two orbits of lengths 10, 4 or two of lengths 12, 2.

Now suppose G(10 •) has two orbits of lengths 10 and 4. Denote them by A10 and

A4, respectively.

Since 5 does not divide either |Ga0)| or |G(10 ->|, A10 must be a 10". We note in

PrL2 (32) that all elements of order 3 and 6 have cycle types 331 and 631 respectively.

Therefore

10    A10   A4

331    331    l4    and

631    631    22    so 3 does not divide |G(10-)A4|.
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We further note that an element of order 8 must act as a cycle of length 4 on A4

as seen by

10    A10    A4

812    82     4

Furthermore, |G(10-)A4|^8. For if this is not true then (G(10-))[a4j has order 22-32-5

= 180 and, since G(10 ••> is primitive and (Gao-))[A4] is a normal subgroup of G(10-),

(Ga0))[A4] must be transitive on 10", but there is no transitive group of degree 10

and order 180. Therefore, |G(10-)Ai| =4 and G(10-)A4^C4. Hence (Gao->)ll!L¿^A6

and PrL2(32)/^6sC4. It is known, however, that Guo -) = PrL2 (32) = Aut (A6)

contains 3 distinct primitive groups of order 720, degree 10, say PGL2 (32),

PrL2+ (32), and PrL¿" (32), and one primitive group of order 360, A6, and one of

PrLf (32) is S6. Therefore, PrL2 (32)/Ae^ K4. This is a contradiction. Therefore

G(10-) must have two orbits of lengths 12 and 2. Denote them by A12(10") and

A2(10").

For future reference, we look into the representation of Gu0 ■) = PrL2 (32) on

A12(10").

All the primitive groups of degree 12 are known by Miller [7, p. 20] and it is

seen that PTL2 (32) is represented as an imprimitive group of degree 12 on A12(10")

with two blocks of lengths 6, 6, denoted by B1 and B2. The kernel of imprimitivity

is obtained by connecting two 56's on B¡, /= 1, 2, by the outer automorphism of Se.

We add the following geometry of 10's.

Proposition 6.5. (A) 10' is also obtainable by 9" u $, $ e A1(9"), and 10'

contains two 9's and eight 9 "'s.

(B) 10'" is also obtainable by 9" u rj, r¡ e A14(9"), and 10'" contains four 9 "'s

and six 9"'í.

Proof. (A) 10'=9' \J e,ee A15(9'),but9' = 8" u a2, «2 e A^i"), and e e A15(8").

Therefore, 10' = 8" u s u c¡2 = 9" u a2, and 10=>9". Now consider G(9--u?),

fe Aj(9"). Its order is 24-3-7. Since 7 does not divide |G(10-)| and Gaon is transitive,

we have 10'= 9" u f, f e A^"), and, by construction, 10' minus e is a 9', and the

assertion follows.

(B) 10"'=9'"Up, peA12(9'"). But 9"'=8"'u8, 8 e A8.(8'"). So 10"' = 8'"

u 8 u p.

Now 8 e A8(8'") and we have seen that A3(9'") is in A8(8'") in the proof of

Proposition 6.2. Therefore p could be taken as in A8..(8'"). Then 8'" u p = 9" and

we have 10"' = 9"u8. Therefore 10"':=9" and 10"' = 9"Ut?, ,eA14(9"). By

construction, 10'" minus the point p from A12(9'") is 9'" and p is in the orbit of

length 4, so there are four 9'"'s and six 9"'s.

7. G(11), G(U-) and Gar■•,.    We first study 11' and Gai) and obtain

Proposition 7.1. (A) Let 11=10" u t, re A2(10"), then Gar) = M11.

(B) G(u-) has two orbits of lengths 12, 1, denoted by A12(ll') and A^l V) respec-
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lively. Furthermore, A12(ll') = A12(10") = A12(9'"). A1(ll') = A2(10")-t = A3(9"")

-{¡h r).

Proof. (A) Let 11' = 10" u t, t e A2(10"). Recall G(10 -, of order 1440 is PrL2 (32).

(G(10-))lt] has order 720 and is one of the three normal, primitive subgroups of

PrL2 (32). Two of these primitive groups of degree 10 are triply transitive and one

is doubly transitive. Therefore, (G(10-))M is at least doubly transitive.

By Proposition 5.3(B), G(8-, acts as S3 on A3(9'"), so there is an element, a, in

Go•■•) such that

ffA3(9--, = (j[iT)(>;))   where a^ç-) = {/X; t>j,}.

Therefore, G(ir) is 3-transitive on H' = 10"Ut=9"U/hUt. Now |(Gai))[t]|

= 720, so

|Gai)| = 720 x 11 = 7920   and   G(11) = Mn.

(B) Now we will consider the action of M11 = G(11) on the remaining 13 points.

By Proposition 6.4, G(10-■> is represented on A12(10") as an imprimitive group with

its kernel of imprimitivity constructed by two SgS on two blocks connected by the

outer automorphism of Se. Also, in the proof of Proposition 6.4, actions of the

elements of G(10••> on Q —10" is completely determined as far as the cycle types on

Q —10" of the elements are concerned.

Now, we note PrL2 (32) has the following elements:

10"   A12(10")   A2(10")

82 84 l2

52 5212 J2

Therefore (Gao-))[t, = (Gai ))w is still transitive on A12(10"), so (Gav-,)M must be

represented on A12(10") as an imprimitive group with its kernel of imprimitivity

constructed by two A6's on the two blocks connected by the outer automorphism

of A6. Anyway, (G(11 ,)„, has two orbits of lengths 1 and 12. Therefore, since

13f|G(11)|, G(ir, must have two orbits of lengths 1 and 12. Call them Ax(l 1") and

A12(H'), respectively.

NowwehaveA12(ll') = A12(10")and A1(11,) = A2(10")-t, where ll' = 10"ur,

t6A2(10").

Next we claim A12(10") = A12(9") and A2(10") = A3(9'")-jU, where 9'" uJa = 10".

(Gao •))[«] = (G(9-,)[U, has order 144 and its conjugacy is given in the proof of

Proposition 6.2, and is called G144. The action of G144 on the remaining 14 points

is uniquely determined. It is seen that (G(9-,)[((] fixes 288 points out of the 14 points,

so (Go-••))[„] has two orbits on the 14 points. Therefore (Go-)),,,, has two orbits

A3(9'")-f/. and A12(9'"). Since G(10 ••> has two orbits of lengths 2, 12, and (G(9 -^

cG(io-„ A2(10") = A3(9"')-Mand A12(10") = A12(9'").

Since G(11) = Af11 has an orbit of length 12, A12(ll'), Mn is seen represented

transitively on 12 points. This is the representation of A/u on the cosets of PSL2 (11)



18 CHANG CHOI [May

in M11. {[MX1 : PSL2 (11)]= 12.) Then, since the representation is faithful,

A/n11 = MnAi2(11}. Now we note, in M1U we have elements of type 821 and 4213.

Action of these elements on the remaining 13 points can be uniquely determined

as follows :

11      A12(1T)    Aa(ll')

821 84 1

4213      4222 1

Therefore the isomorphism connecting two constituents Muu and M11ûi2<11') must

be an outer automorphism of M12 such that 821 <-> 84 and 4213 <-> 4222.

The existence of such an outer automorphism is noted in Theorem 9 in E. Witt's

paper [10, p. 262].

Now we proceed to construct the second set of 11 points and obtain

Proposition 7.2. (A) 11" = 10" u v, v e A12(10"). G(11 -, is S5 on the 10 cosets of

subgroup S2xS3, thus has order 120. This group will be denoted by S5\s¡¡xsafrom

here on. Gar) is intransitive on 11" having two orbits 10" and{v}.

(B) G(n ••) has 3 orbits on Q —11" of lengths 2, 5, 6, denoted as A2(ll"), A5(ll")

and A6(ll") respectively, and A2(10") = A2(ll").

Proof. (A) Construct an 11 by 10" u «, -eA12(10"). Then |(G(i0«Owl = 120.

Call this group of order 120, G120. First we will show G120 is transitive on 10".

Let a be an element of order 3 in G120. Since a must fix v and two more points in

A2(10") and a can fix only 6 points out of 24 points, a10 is of type 331. Let ß be an

element of order 5. ß can fix only 4 points out of 24 points, so ß10 is of type 52. a

and ß assure the transitivity of G120 over 10".

Next we will see G120 is primitive on 10". Suppose G120 is imprimitive with 2

blocks of length 5. Then the kernel of imprimitivity has order 22 • 3 • 5 = 60. Then the

kernel must contain an element of order 3 of type a above, which is impossible.

Suppose G120 is imprimitive with 5 blocks of length 2, denoted by A„ /'= 1, 2, 3,

4, 5. Then an element of order 3 cannot be in the kernel of imprimitivity, so ele-

ments of order 3 must act as (A¡)(Ay)(AfcA, Am) fixing 4 points, but this is impossible

since any element of order 3 in G120 must fix 3 points outside 10" and can fix only

6 points out of the total 24 points.

Since a primitive group of degree 10, order 120 is known to be isomorphic to S5,

G120 must be the representation of S5 on the cosets of S3 x S2 of order 12, so G120

2 £&!*»*• Next consider G(11). (Gai))[v]=(G(10-))tv] and we have seen (G(11))[v] is

transitive of order 120 on 11 -v. If G(11) is transitive, then |Gul)| = 120x 11 = 1320.

But there is no group of degree 11, order 1320 (Cole, [2, p. 49]), so G(11) = (G(11))[v]

= (G(10"))[Vj. Since transitive extension is impossible, 11#11'. Call 11 = 10" u v,

ve A12(10"), an 11".

(B) Next we will consider action of G(11 ••> on the remaining 13 points. We have

seen Gai»)=*S6|S3XSa, i.e. the representation of S5 on the 10 cosets of S3xS2 of
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order 12. A computation shows G(ir) contains an element of type 631. Therefore

on the rest, it must act as

10"    W    A12(10")-^    A2(10")

631     1 632 2

Therefore G(11 ■■> must retain A2(10") as an orbit of length 2.

Now 5 divides 120, and an element of order 5 has only one way of action as

follows :

10"   M   A12(10")-v   A2(10")

52      1 521 l2

Since 11 does not divide 120, G120 must have two orbits of lengths 5 and 6 on

Ai2(10") — v. Thus G(11 ) has 3 orbits on the remaining 13 points, of lengths 6, 5 and

2. Call them A6(ll"), A5(ll") and A2(ll").

Next we turn to the construction of the third type of set of 11 points, 11'" and

obtain

Proposition 7.3. (A) Gav-¡ has order 576, and is intransitive on 11'", having two

orbits Q3 and Q8 of lengths 3 and 8, respectively, and 11" = 10" u <p, <p e A2(10'"),

and also

(B) 11" = 10' u a, ce A14(10'), thus 11"' contains three 10''i and eight 10"'\s.

(C) G(ii- -, has two orbits Ax(l 1'") and A12(ll"') and A1(ll"')= A2(10"')-<p and

A12(11'") = A12(10"').

Proof. (A) The stabilizer of the third type of set of 11 points must have order

576.

Consider a set of 11 points, 11 = 10'" u <p, <p e A2(10'"). Since G(10■■■> has order

144, |(G(10-))u,]|=72. Call this group of order 72 as G72. Since (G(11))[w,

=(Ga0 -))m» |G(H)| =72-/, /is the length of the orbit to which <p belongs. Therefore

|G(11)| =72-/= 7920= |G(11,|,

= 120 = |G(ir.,|,

= 576 = |Gai-,|.

If |G(11)| = 7920, /= 110, which is impossible. |G(11)| = 120 is also impossible since

72J120. So |G(11)| = 576 and /=8, and 11 = {10'" u ^}«11*".

We shall determine the orbits of G(11 -, on 11"'. By Proposition 6.3, G(10-) has

two orbits A6 and A4 on 10'", and G(10-)A4 is S4. Therefore G72Ai is 54 or Aá and

G72 is still transitive on A4. The orbit of length 8, denoted by Q8, which G(11—■, is

supposed to have must contain this A4 along with <p. So Q8=>A4 u <p. We need 3

more points to complete Q8 of length 8. Now consider the action of G72 on A6 of

G(10...). By Proposition 6.3, Guo- ,Ae is an imprimitive group with 2 blocks Bu B2

of lengths 3, 3 and its kernel of primitivity consists of even permutations of

Sbj. x Sb2- Therefore G72Ae contains elements of type 32 on 5X u B2. Now G(11-,
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has an orbit of length 8, so G72A<s cannot be transitive on Bx u B2, so G72As must

have orbits B1 and B2 of lengths 3, 3. Therefore G(11-, must have two orbits of

lengths 8, 3; B¡ u A4 u <p, and Bj on IT", {i,j} = {\, 2}. Call them Q8 and Q3.

(B) Let us consider another set of 11 points 11 = 10' u a, o e A14(10'). Let two

orbits of length 8 and length 2 of Ga(n on 10' be A8 and A2. By Proposition 6.1,

G(10)Aasthe holomorph of 9Í23 of order 1344 and G(10)A2^C2 of order 2 and

G(io-) = G1344 x C2. Now (G(1 V)M = (G(10-))[<J] has order 26-3. Therefore 26-3 divides

|G(11)|. Since 26-3 does not divide either |G(11-,| or |G(ir)|, Gai)xGav-, and

11»11"". Now G(n- ■•) has two orbits of lengths 8 and 3 on 11'". Since |G( :26-3-3

the orbit of length 3 must contain the new point a. Thus 11'" contains three 10''s

and eight 10'"'s.

(C) We note G(10) = G1344 x C2 contains an element of type

A8    A2    A14(10')

42        J2 I22242

Then (Gai--,)OT contains an element of type

42 l2   on 10'.

Therefore Q8 of Gai—, coincides with A8 of G(10) and Q3 of G(11—, is {A2 of G(1(n}

u a.

Now by construction, A8 of G(10) is an 8', therefore G(11-) is in the holomorph of

9t24 which is 3-fold transitive on the 16 points, {A2 of G(1(r) u A14(10')}. Further-

more the holomorph £ has order 16-15-14-96, so £>(Q3] has order 96 and £>(£23)

has order 96x6 = 576. Therefore G(11 •) = $(n3). Now the subgroup of ÍQ fixing a

certain 3 points may be represented as follows :

n a e

ß t

y v
8 e

1

V    of order 96; a, ß, ...,öeGF[2].

The computation shows that the above subgroup fixes not only the 3 points but

also fixes one more point and is transitive on the remaining 12 points of Vé(F2).

Therefore £>(n3) = G(11..« has 2 orbits of lengths 1 and 12; call them A1(ll"") and

Ai2(H'") respectively.

Now for future reference we characterize A1(ll*"). In Figure 6, Appendix,

11'" = 10'" u cp, 99 e A2(10'"). We have just seen G(U») has two orbits Ax( 11"') and

A12(ll'").

G(io-) = G144 contains an element of type

32,4 12 34

10'"   A2(10"')   A12(10'")

Thus A1(ll"') = A2(10"')-<Pand A12(ll"') = A12(10'").
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To complete the scheme of 11, we add the following

Proposition 7.4. 11" can also be constructed by 10"' u i/i, i/i e A12(10'").

Proof. We have seen 11" = 10" U v, ve A12(10"). But 10" = 9 " u p, p e A3(9'").

Therefore 11" = 9'" u p, u v where ve A12(10") = A12(9'") by Proposition 7.1(B).

So   ll" = 10'"U/x  and  p,  cannot  be  in   A2(10'").   Therefore   11" = 10'" u </<,

<¿eA12(10"').

8. G(12), G(12-), G(i2-), Gdaiv, and G(12> By Lemma 1.5, there are 5 types of

sets of 12 distinct points. The construction of these sets will be discussed in two

propositions.

Proposition 8.1. (A) Let 12' = 11" u 9, 6e Ax(l 1"), then Gaa) is M12 on 12'.

(B) 12" = 11" u m-, it e Aj(l 1"*). G(12-) is transitive on 12" and has order 28-33

= 6912.

(C) 12"' = ll"uÄ: = ll'u/, A:eA2(ll") and reAia(ll'). G(12-, is PSL2(11)

on 11' and Sx on i, or G(12 ■) = (G(11))[i].

Proof. (A) Let 12' = ll'u0, öeA^ll'). Then since by Proposition 7.1,

A1(ll') = A2(10")-T=A3(9"')-{/x, t}, 12' = 9'"u A3(9'"). Now by Proposition

5.3(B), G(9■•■, is S3 on A3(9'"), therefore G(12) is transitive on 12' and (G(i2))[9,

= <J(ir) = M11. Therefore Ga21 is 5-fold on 12' and is M12. And |G(12-)| = | A/n| ■ 12

= 26-33-5-ll.

(B) Consider a 12=11'" u tt, ttg A^ll'"). In G(12), since 12 = 10'" u A2(10'"),

the orbit containing -n has at least length 9. If the orbit containing -n has indeed

length 9, then |G(12)| = |G(11 .,|-32 = 28-32-32 = 26-34. This is impossible since

|syl3 (M24)| =33. Therefore G(12) must be transitive on 12 and |G(12)| =26-32-22-3

= 28-33, and 12*12'. Call this 12 a 12".

(C) Let 12=11" v k,k eA2(l\") = A2(\0"). Then 12 = 10" u v u Ä:, v e A12(10")

= A12(11') and this decomposition gives 12 = 11' u v.

Since G(12) and G(12.) are transitive, 12*12' and 12*12". Call 12 a 12'". Then

12"' = 11" u k = W u i, ke A2(ll"), ie A12(ll"). Now, we find Ga2-y We know

G(11) = M11 is represented on A12(ll') as a transitive group of degree 12. This

representation is M^pg,^^^ and is triply transitive on the A12(ll'). Therefore

(Garúa, ie Ai2(l 1 '), is PSL2 (11) of order 660. PSL2 (11) on 11' is doubly transitive

as PSL2 (11)US. Since G(12-> is intransitive, G(12•••> is PSL2 (11) (in Su) on 11' and

fixes i.

Now we have two more distinct sets of 12 distinct points to be built. The addi-

tional points for these two new sets 12lv and 12v must come from A5(ll"), A6(ll")

and A12(ll'"). The construction for these new sets follows:

Proposition 8.2. (A) 12iv = ll'" u w, we A12(ll'"), also.

(B) 12iv = ll"uA, AeA5(ll").

(C) 12v = ll"U/x, p,eA6(ll").

(D) G(12", is transitive on 12v.

(E) G(12v) has order 240 and is an imprimitive group with six blocks of length 2.
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The kernel has order 2 and its image is S5 (S5 in S6).

(F) GdjjiV) has order 192 and is intransitive on 12iv with two orbits of lengths 8 and

4.

Proof. Before proceeding we note two results.

(a) We have

iM^I/lGoa^l + lM^I/lGaav,] = 2295216.

Next we need

(b) A2(lO'")nA2(ll") = 0.

Suppose A2(10'") n A2(ll") a <p. Look at the diagram.

-1

A12(lÖ)

ii

Then by Proposition 7.4 we have 11" = 10"' u ¡/>, */r e A12(10'"). By assumption

9>eA2(H"), so 11" u 93 = 12'". On the other hand, 10'" u <p u 95 = 11"' u <f>,

tfi e A12(ll'"). Thus 12'" contains not only 11' and 11" by Proposition 8.1 but also

contains 11'". This is impossible because, as an intransitive group with two orbits,

12'" can contain at most two ll's.

Now in the above diagram let 12=11'" uf fe A12(ll'") since A1(ll"')={/}.

But 11'" = 10" u 93, 9>eA2(10'"), so 12 = 10'" u <p u </>. But 10'" u i/- = ll", so

12 = 11" u 93. By (b) above, 93 <£ A2(ll"), so <p e A5(ll") or 99 e A6(ll"). Therefore

12 contains 11" and 11'". Obviously 12#12', 12" or 12'". Call this 12 a 12iv.

Therefore,

(A) 12lv = ll'" Uo), cue A12(ll'"), and also 12iv=ll" u 9, 9>eA5(ll") or

93 e A6(ll"), and G(12i») is intransitive on 12iv.

We will decide where 93 belongs. Look at Figure 7. If 93=^, i.e., 93 e A6(ll"), then

11"' u cu = ll" u p.. In G(12"), the stabilizer of co has order 48 = 576/12. (G(1 !»))&,]

has order 20 and contains an element of type

11"  M

521     1

Furthermore, 5 does not divide the order of stabilizer of to, so |Ga2i»)| ̂ 5-48 = 240.

Then the orbit containing p. must have length at least 12, which is impossible.

Therefore 93 = A, i.e.

(B) 12iv = ll"u A, AeA5(ll").

The last type of set of 12 points is seen then

(C) 12T=ll"U/*,i*6A^ll").
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Next we will show

(D) G(12V) is transitive on 12v.

First we investigate (G(12v))[(1] and show that (Ga2V))ta]=(Glll-))[ul is transitive on

\2v-{v,p) where v is the point left fixed by G(11 •■> and 12v = ll" u p.. We have

seen in Proposition 7.2(A) that G(11-, of order 120 is S5|S2XS3 and transitive on 10"

and fixes v, where 11" = 10" u v, ve A12(10"). First we determine cycle types of

elements of S^ls^sa- The generators of S5|S2Xs3 are known [3, p. 44] as follows:

S5\s2*s3 = <(abc)(def)(ghi), (ad)(bf)(ce)(gh), (iafbd)(jehgc), (ad)(be)(cf)}.

Since 5,5|s2XS3^.S'5, GU1-, has two classes of elements of order 2, and by the above

generators it is easy to see that they have types 1224 and 1423. GHr) has one class of

elements of order 5 and they have type 52. Now, (ad)(be)(cf)(g)(h)(i)(j)

(iafbd)(jehgc) = (ai)(bhgc)(dfje). Therefore G(11 ■■)^55 has one class of elements of

order 4 and of type 242. Now (G^v,)^ has order 20 in G(11 ••,. Therefore, (G(12v,)tH] is

isomorphic to a subgroup of index 6 in S5. Let us call this subgroup of index 6 in

S5 a G20. Since 3 does not divide |G20|, the compound character corresponding to

G20 is uniquely determined as follows:

(logo)S»= ■Ai + '/'s2-

Indeed there are two irreducible characters of degree 5, yV = [32] and </r52 = [227]

but i/rBi = [32] would bring in elements of order 6 in G20, which is impossible. From

this compound character, we can find the number of elements in each class of G20

(£(Garj)te]). They have 1 element of l10, 10 elements of 242, 4 elements of 52 and

5 elements of type either 1224 or 1423. Now element l10 fixes 10 points, elements of

type 242 fix no point, elements of type 52 fix no point. Therefore elements of type

1224 are in (G(ir))[K] and fix 10 more points. Therefore (G(ir))[tf] is transitive on

10" and fixes v and p..

Therefore, the orbit of Ga2"} which contains the new point p., call it /„, has length

either |/„] =2 or 11 or 12. If \lu\ =2, then |G(12v,|=40 and [Af24:Ga2v,] = 12241152

>2295216, which is impossible by (a). If |/B| = 11, then |Ga2»)|=220. In this case

17 must divide |G(12lv)|, which is impossible. Therefore, 141 = 12 and G(12») is

transitive on 12v, and \Ga2^\ =20-12 = 240.

Now we show

(E) G(12V) is an imprimitive group with kernel of order 2, image 55 (55 in Se).

All the primitive groups of degree 12 are known and none of them has order

240, so Ga2V) is an imprimitive group of degree 12. There are two imprimitive

groups of degree 12, order 240 [7, p. 118]. Let us call the first of them G240I.

G240i is described as an imprimitive group with kernel system 55|S5, image C2, and

G24011 is described as an imprimitive group with kernel of order 2, image S5, and

furthermore, G240" cannot be represented as an imprimitive group with two blocks

of lengths 6,6. By (D), we have seen (G(12V))lu: is transitive on 10" and fixes v and p..

Consider a subgroup of G2i0i which fixes a point. Then the subgroup must be in

the kernel and cannot have an orbit of length 10. Therefore G(12») is G240".
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(F) |G(i2lT)| = 192, by (a), and /* (the orbit of Ga2lv) which contains A) must have

length 8 and la has length 4. Thus 12iv contains eight ll"'s and four ll'"'s.

As for the action of G(12i, on (12')°, the complement of 12' in Q, we have

Proposition 8.3. (A) 12':s(12')c and

\°)    "(121)      ~*-'(12')

Proof. Since no nonidentity element can fix 9 points, |G(12<)| = |G((12')c)|. Further-

more, no two orders of Ga2>-, are equal, therefore, 12's: (12)°, and G(ia')u<ÄG(12<)<12f)°.

It is interesting to note that, for 12', we have M1212"äM12(12')C, These two M12's

are seen to be connected by the outer automorphism of M12 such that

12'      (12')c

42l4<->4222

8212<->84

and the effect of this outer automorphism on Afn is observed in Proposition

7.1(B). For 12'", (12"')c = 0u{A12(ll')-/}.G(12-)cisPSL2(ll)on{A12(ll')-/}and

fixes 6.

Further, we note that since 12'x(12')c and Ga2<)12'~G(12<)<12',c, there exists an ele-

ment p in M2i such that (12')p = (12')c. Thus we have an imprimitive group with

kernel G<ia«)1*,|G(i2')<ls')0 and C2 as its ¡mage except for 12'" and 12lv. These

imprimitive groups are ArM24(G(12<)), /= 1, 2, 5, and will be studied in the following

paper, On subgroups of M2i. II.

9. The maximal subgroups among the intransitives of M24. Any intransitive

subgroup of M2i is clearly contained in a G(n<> we have studied. Any maximal sub-

group among the intransitives is to be found among the 26 G(Jli)'s and, if not con-

tained in a transitive subgroup of M2i, is a maximal intransitive subgroup of M24.

We will now show that there are nine such maximals among the intransitives,

four of which will be shown, in Part II, to remain as maximal intransitive subgroups

of M2i.

We have the following inclusion relations.

Proposition 9.1. (a) G(e-, contains: G(5), Gi8-h G(9), G<i2lT» Gi6) which contains

G(7-), G(7-) which contains GÍB-¡, and Ga0) which contains G(9-).

(b) G(12-) contains: G(9-•■>, G(10-) which contains G(11 ■•>, and Gav) which contains

G(12--).

(c) G(12-) contains: G(10 ■■■■> and Gar--,.

Proof, (a) G(5), G(8 •-), G(9 ■> and Ga2^ are contained in GC8, by Propositions 2.5,

4.3, 5.1, and 8.2, respectively. By Proposition 3.2, GC6-} is in G(8) and contains

Gl7") by 3.5. By 3.5, GlT) is in G(in and contains G(e-} by 4.2. By 6.1, G(10) is in GlB)

and contains Gl9-, by 6.5.

(b) By 5.3, G(9■-, has A12(9"'), which is equal to A12(ll') by 7.1 ; by construction
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of 12', G(12-pG(9 ••). By 6.4, G(10-) has A12(10") which is equal to A12(ll')by 7.1;

by 8.1, again, G(12.pG(10■•>; by 7.2, G(10")=>Gar> By 7.1, Gtt2.pGan and G(lr)

:£>Gaa..,by8.1.
(c) By 6.3, G(10-•) has A12(10'") which is equal to A12(ll'") by 7.3; by 8.1,

G(12..pG(10-). By 8.1, Gua-pGm-).

Thus 17 out of 26 G^'/s are contained in some G(n<,. The remaining nine G(n»)'s

will be shown in the following to be the maximal subgroups among the intransitives

of M24.

Theorem I. Let G be an intransitive subgroup of M2i, then G is contained in one

of the following nine maximal subgroups among the intransitives of M2i: G(1), G(2),

"<3)> G(4), G(g--), G(8-), G(12-), G(12--) and Ga2"y

Proof. By Proposition 9.1, the maximals among the intransitives are to be

found among the nine remaining G(ni,'s, namely, G(1), G(2), G(3), G(4), G^-,, G(8),

G(i2), G(12-) and Ga2"y G(1), G(2) and G(3) are intransitive maximal subgroups by

Propositions 2.0, 2.1, and 2.2, respectively. The rest is proved by simple comparison

of orders. Thus we have, by Propositions 2.0, 3.1, 2.3, 8.1 and 8.2, |G(4)| = 29-32-5,

|G(6-)|=24-33-5, |G(8.)|=210-32-5-7, |G(ia.,| =26-33-5-ll, |G(12.,| = 28-33 and

|Ga2»)| =24-3-5, respectively. G(8), G(12), and GaT) are seen to be maximals

among the intransitives by simple comparison of orders among them.

G(4) can be in G(8-, by comparison of the orders, but G(4) has an orbit of length

20 by Proposition 2.4, therefore G(4) is a maximal among the intransitives.

G(g-) can be in G(12->. But Gi6-, has an orbit of length 18 by Proposition 3.3, and

G(6-) is a maximal among the intransitives.

G(12V) cannot be contained in G(4) or G(6 , or G(8). 12v#12', soGa^ÇGa^and

G(12») is also a maximal among the intransitives.

Appendix.

A is (6)
Figure 2
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Figure 7
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