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TRANSVERSALS TO THE FLOW INDUCED BY A

DIFFERENTIAL EQUATION ON COMPACT

ORIENTABLE 2-DIMENSIONAL MANIFOLDS^)

BY

CARL S. HARTZMAN

Abstract. Every treatment of the theory of differential equations on a torus uses

the fact that given a differential equation on a torus of class C, there is a non-null-

homotopic closed Jordan curve F of class C" which is transverse to the trajectories of

the differential equation that pass through points of T. Such a curve necessarily

cannot separate the torus. Here, we prove that given a differential equation on an

n-fold torus Tn of class C, possessing only "simple" singularities of negative index

there is a non-null-homotopic closed Jordan curve T of class Ck which is a trans-

versal. The nonseparating property, however, does not follow immediately. For the

particular case T2, we prove the existence of such a transversal that does not

separate T2.

1. Introduction. We develop some machinery helpful in discussing differential

equations, also called vector fields, on compact orientable 2-dimensional manifolds.

In the usual treatment of differential equations on a 2-dimensional torus T, due

to A. Denjoy (see [1], [2] or [3]), the fact that there exists a non-null-homotopic

curve T, transverse to the flow induced by a differential equation of class Ck,

k^ 1, on T, having no stationary points, is of paramount importance. By non-null-

homotopic, we mean that F cannot be contracted to a point. The importance of the

existence of Y lies in the fact that T is a generator of the first homotopy group of T.

Once the existence of such a transversal is proven, the further assumption is made

that every trajectory of the differential equation intersects the transversal. In order

to make an assumption on any compact orientable 2-dimensional manifold

analagous to the last one above, we must prove that such a non-null-homotopic

transversal Y exists and, in addition, that it does not separate the manifold into

disjoint pieces.

Here, given a differential equation of class Ck, ¿^1, on a compact orientable

2-dimensional manifold of class C, l^k, containing only simple singularities of

negative index, we prove the existence of a non-null-homotopic transversal to the

flow induced by the differential equation. By a simple singularity, we mean a
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singularity with no elliptic or parabolic sectors (see [3] or [5]). In view of the end

results achieved by Denjoy on a torus, the restriction to simple singularities of

negative index is not so severe; this is the only case in which a trajectory of the

differential equation could be dense on the manifold. In the special case that the

manifold is of genus 2 and the differential equation is of class C2, we also prove that

some transversal F as above does not separate the manifold.

It is the hope of the author that the proof of the latter result can ultimately be

amended to provide a means of proof for any compact orientable 2-dimensional

manifold.

2. Preliminaries. We consider differential equations on compact orientable

manifolds of class Ck, k ^ 1 and genus n, n ä 2, denoted Tn. The Euler characteristic

of such a manifold is v = 2 — 2n. Concerning the stationary points of the vector

field on Tn, we have the following well-known theorem originally due to Poincaré

and Hopf (see [4] for a discussion in the case of C°° manifolds).

Theorem 2.1. The sum 2 ' of the indices at the zeros ofa Ck vector field, k^l,

with isolated zeros on a manifold M of class C, l^k, is equal to the Euler character-

istic of the manifold.

In view of this theorem and the fact that we are dealing with isolated simple

singularities of negative index, we see that we can have only a finite number of

singular points in our vector field on F„, the sum of whose indices is 2 — 2«. Given

any combination of singular points on Tn, the sum of whose indices is 2 — 2n, the

fact that a Ck vector field on F„ exists having only these points as singular points

can easily be established by use of partitions of unity.

Throughout the paper, F(p) will denote a vector field on Tn and /?'' = F(p) will be

the corresponding differential equation on Tn. The flow induced by a vector field

will be denoted by pt = rf>(t, /?).

It should be noted that the fact that Tn is of class Ck, k^l, implies that Tn is

Riemannian [7]. This fact will be assumed whenever needed. It is then clear what

we mean by a transversal to the flow and by FAp), the vector field of the system of

trajectories orthogonal to the trajectories of p' = F(p).

3. Existence of a non-null-homotopic transversal F. In this section, we prove the

following theorem.

Theorem 3.1. Let pt = <f>(t,p) be a Ck flow on Tn, k^l, having only simple singu-

larities of negative index. Then there exists a Jordan curve F of class Ck on Tn which

is transverse to the flow. Furthermore, F is non-null-homotopic.

We first state and prove a lemma and then proceed with the proof of Theorem

3.1.

Definition 3.1. Let p' = F(p) be a differential equation on Tn. Let p0 be an

isolated singular point of F(p). A solution p(t) of p' = F(p) is called a positive (or

negative) base solution at/?0, if /?(?) is a separatrix of the differential equation at
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p0 sindpo e Q.(p) (or p0 e A(p)), where Q(p) is the co-limit set and A(p) is the «-limit

set of the trajectory through p.

Lemma 3.1. Given a Ck vector field on Tn, ktl, which has only simple singular

points of negative index, there is a point q such that the solution of p' = F(p) through

q is not both a positive and negative base solution to the singular points.

Proof. About each critical point, consider a small Jordan curve, so small that

the neighborhood of the critical points determined by the curves are 2-cells such

that the only sectors inside the neighborhoods are hyperbolic. There are only a

finite number of arcs of trajectories that are base to each singular point. Suppose

every solution p=p(t) on Tn is positively base to a singular point and negatively

base to a singular point. The Jordan curve C may, in fact, be chosen so small that

once a base solution enters the neighborhood bounded by C, it stays in that

neighborhood and the neighborhoods are disjoint.

Consider a solution pi=Pi(t). pt(t) approaches a singular point both as /->oo

and /-> — co. Thus there exists a /¡+ such that if />/¡+, then p¡(t) belongs to a

neighborhood bounded by one of the C's and there exists a/¡" such that if t<t~ ,p¡(t)

belongs to a neighborhood bounded by one of the C's. Let 7\ = maxi/i+ and

T'2 = mini tf (under the assumptions, there are only a finite number of trajectories).

The only portions of a trajectory that can be outside the regions bounded by the

C's is p(t) for T2 útúTx- The measure of these portions of the trajectories is zero.

Hence, there is a point q through which the trajectories do not pass; a contradiction.

Q.E.D.
Proof of Theorem 3.1. Consider the differential equation for the orthogonal

trajectories

(3.1) p' = FJj>)

to the trajectories of

(3.2) p' = F(p).

We note that a simple singular point of negative index of F is also one of F±.

Let p0(t) be si solution of (3.1) through a point p0 such that p0(t)^constant and is

not positively base to a singular point (Lemma 3.1). lfp=p0(t) is a closed curve Y,

it will be clear by the end of the proof that Y is the transversal curve we want. If

P=Po(t) is not a closed curve, the semitrajectory p0(t), /^0, has at least one co-limit

point, say px. The point px is contained in an arbitrarily small curvilinear rectangle

R-.ABCD on Tn in which the arcs BC and AD are solution arcs of (3.1) and AB

and CD are solution arcs of (3.2). The point p0(t) is in R for some large time t = t0

sind leaves R sit some point qx on CD (or AB) at a first time Zx > /0. It then enters

R at some point q2 on AB (or CD) for some first time t2>tx- It is clear that if R

is small enough, there exists an arc qyq2 in R which together with the arc p0(t),

tx = tSt2, constitutes a transversal curve Y of class C.

We show that Y is non-null-homotopic. Suppose that Y is null-homotopic; then
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T has an image in the plane as a Jordan curve bounding an open set. Since T is a

transversal, F consists entirely of ingress or egress points of trajectories and the

index of F is +1 [5, p. 133]. But F has either no singularities or only singularities of

negative index in its interior. Hence, the index of F is 5j0; a contradiction.    Q.E.D.

4. There exists a F that does not separate T2 into disjoint parts. The following

theorem is proved.

Theorem 4.1. Letpt = </>(t,p) be a Ck flow on T2, k}¿2. Suppose thatpl has two

simple stationary points of index — 1 or one simple stationary point of index — 2.

Then there exists a transversal F to the flow that does not separate T2.

The property of "separating" in the above theorem will be illustrated in the

following sequence of diagrams which also show that Theorem 4.1 is the best

possible in the sense that, under the given hypothesis, there may also be transversals

T that do separate F2. In Diagram 4.1a, /? is a simple saddle point, y, and y2 are

trajectories which are both positively and negatively base to /?, F is the transversal

and arrows through F indicate the direction of flow across F. The diagram can

be completed by putting a symmetric picture, with arrows reversed, to the right of

Diagram 4.1b
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T. In this example, we see that T separates T2 into two tori with a 2-cell removed

from each.

To see how to fill in the rest of the vector field, we will take the part of T2 to

the left of T (the right side is similar) and cut first along yx giving Diagram 4.1b

and then along y2 giving Diagram 4.1c

Diagram 4.1c

The dotted line in Diagram 4.1c illustrates a transversal that does not separate T2.

Before proceeding with the proof of Theorem 4.1, it will be helpful to carefully

examine the consequences of the construction of the transversal T of Theorem 3.1

in the case that Y does separate T2.

Suppose that Y separates T2 into two disjoint parts, that Y is not the result of a

periodic solution of the perpendicular system (3.1) and that in the curvilinear

rectangle R of the proof of Theorem 3.1, trajectories leave R across CD and enter

R across AB. We had the fact that the solution p0(t) of equation (3.1) left R sit some

point qx on CD at time tr and entered R sit some point q2 on AB at time t2>tx-

p0(t) must then leave R again for some first time /3 > t2 at a point q3 on CD. Label

the parts that Y separates T2 into nx sind n2; for example see Diagram 4.2. If p is a

point of nu we see that

Diagram 4.2

p(t), the solution of (3.1) through/;, cannot cross into n2 for positive time, since by

uniqueness of trajectories, the only way it could do so would be across the line

segment q3qx on CD, si situation which cannot occur. Likewise, trajectories of
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(3.1) contained in tt2 cannot cross into ir1 for negative time. If F is the result of a

periodic solution of (3.1) it is clear that a trajectory cannot cross from tt, to 7r2 or

from 7T2 to 77i for positive or negative time.

The following lemma shows that the picture we have drawn in Diagram 4.2 is in

some sense general and hence we will always take 77! and 772 to be as pictured there;

i.e., 7Ti will be that part of T2 that trajectories of (3.1) cannot leave for positive

time and 772 will be the part of F2 that trajectories cannot leave for negative time.

This lemma is easily proven using the Euler characteristic of a manifold.

Lemma 4.1. If a non-null-homotopic Jordan curve C separates T2, then each part

of T2 is homeomorphic to a torus with a 2-cell removed.

We are now in a position to prove Theorem 4.1. This will be accomplished in

three steps.

Theorem 4.1a. Ifpt = <f>(t,p) is a Ck flow on T2, k^l, and/?' has one singularity

of index —2, then no transversal curve F separates T2.

Theorem 4.1b. Suppose that /?' = </>(/,/?) is a Ck flow on T2, k^2, that has two

simple stationary points of index - 1 each. Further suppose that there is a trajectory

y, of (3.1) (the orthogonal system) that is negatively base to a stationary point p of

(3.1) that does not have p in its wlimit set and also a trajectory y2 positively base top

that does not have p in its a-limit set. Then there is a non-null-homotopic transversal

F that does not separate T2.

Theorem 4.1c. Suppose that pt = <j>(t,p) is a Ck flow on T2, k^2, that has two

simple stationary points of index — 1 each. Further suppose that every non-null-

homotopic transversal separates T2. Then the hypotheses of Theorem 4.1b hold.

The application of Theorem 4.1b to Theorem 4.1c shows that not every non-

null-homotopic transversal can separate T2 in the case that we have two simple

stationary points of index- 1 each; i.e. some non-null-homotopic transversal must

not separate T2. This in conjunction with Theorem 4.1a completes the proof of

Theorem 4.1.

Proof of Theorem 4.1a. Suppose some transversal F separates T2. By the proof

of Theorem 3.1, we know that F is non-null-homotopic. Hence by Lemma 4.1,

each part that F2 is separated into has Euler characteristic -1. Theorem 2.1 (the

Poincaré-Hopf theorem) implies that each part of T2 must have stationary points

of the flow the sum of whose indices is — 1. Since we have only one singularity of

index —2, this is impossible.    Q.E.D.

The following lemma will be necessary for the proof of Theorem 4.1b.

Lemma 4.2. Let M be an orientable manifold of class C2, F' be a flow on M of

class C2 and m0 e M. Let il(m0) be the cu-limit set of the trajectory through m0.

Suppose that O-(m0) # M and that O(w0) is a nonempty compact set which contains

no stationary points. Then Q.(m0) is a Jordan curve and m0( + t) spirals towards O(w0).
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This lemma appears as a corollary of a theorem due to A. J. Schwartz [6].

Proof of Theorem 4.1b. Suppose that every transversal separates T2 ; we will

arrive at a contradiction. We construct a transversal Y as in the proof of Theorem

3.1 using a trajectory of (3.1) not base top. Maintaining the conventions established

in the discussion accompanying Diagram 4.2, we call the parts that T2 is divided

into, 7r! and 7r2. We also assume that/) 6 nx and that the other singular point is in 7r2.

The proof is analogous if this situation is reversed.

We know that the co-limit set Q(yx) must lie in nx. By Lemma 4.2, Q(yx) is a

periodic orbit and hence is also a closed transversal curve. As such, Q(yx) separates

T2 into two parts. Label these nx(yx) and n2(yx) such that nx(yx) is contained in nx.

Then/? is contained in irx(yi) and as above, A(y2) separates T2 into two parts nx(y2)

and n2(y2). 7T1(y2)S7r1(y1) and p e nx(y2).

There are two cases, either A(y2)^=Q(yx) or A(y2) = Q(yx) = L.

If A(y2)^D.(yx), 7r1(y2)c=7T1(y1)- Then A(y2)^nx(yx) and hence/» and Í2(yi) lie on

opposite sides of A(y2). But this implies that yr crosses A(y2) to reach its co-limit

set. This contradicts uniqueness of trajectories.

If A(y2) = D.(yx) = L, Lemma 4.2 implies that yx spirals towards L and y2 spirals

away from L with increasing time. By uniqueness of trajectories they both spiral

on the same side of L. However, this is impossible for if / is a small line segment

transverse to L, yx and y2 both cross / but in opposite directions, which violates

differentiability of our vector field.

These two contradictions complete the proof of Theorem 4.1b.    Q.E.D.

In order to proceed with the proof of Theorem 4.1c, it is helpful to have the

following lemma.

Lemma 4.3. Let M be a 2-manifoId of class Ck with a Ck flow pi = </>(t,p) on it,

k^l. Suppose the flow has a saddle point p and that a trajectory y not positively base

to p hasp in its a-limit set. Then at least one of the trajectories positively base top and

one of the trajectories negatively base to p belong to the at-limit set of y.

Proof. Let A' be a small closed 2-cell containing/? in its interior. The trajectories

base to p divide N into four quadrants. Let {p¡\ be si sequence of points in Q(y)

monotonically approaching p in the closure of one of the quadrants Q. A curve

segment Cj = {pij = </>(t,pj) n N} and the portion of 8N contained in quadrant Q

bounds a simply connected open set S,- sind {S^i satisfies 5¡c5¡ + 1czg for all i.

Hence S= \J S¡ as an open set has a connected boundary in Q. It is easy to verify

that dS^ O(y), peëS and that dS consists of a finite union of segments of trajec-

tories. Hence dS contains segments of trajectories negatively base and positively

base to p, thus so does O(y).    Q.E.D.

Proof of Theorem 4.1c. Under the hypothesis of the theorem every transversal

separates T2. We saw that this implies that there must be one stationary point of

the flow in each part. Following the conventions already established, we will do
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the proof for the part we called tt, and label the stationary point in this part p. The

proof proceeds in two parts

(i) not every trajectory of the orthogonal flow (3.1) negatively (positively) base

to p can be positively (negatively) base to /?.

We use this to prove,

(ii) not every trajectory of (3.1) negatively base to p can have p in its <u-limit

set and not every trajectory positively base to /? can have p in its a-limit set.

Part (ii) is the conclusion of Theorem 4.1c.

For part (i), suppose that every trajectory of (3.1) negatively base to /? is also

positively base to p. Let yx be a trajectory negatively and positively base to /?.

7i u p is a closed curve and must be non-null-homotopic. We claim that y, u p

cannot separate F2. Suppose y, u p does separate T2 into two disjoint parts TT,(y,)

and 772(yi) such that -n^y,)^™,. ped-n,(y^). Let y2 be a trajectory of (3.1) not

positively base to /? such that y2c=7r1(y1). Construct a transversal using y2 and call

it r2. T2 separates F2, by hypothesis into two disjoint parts TTX(y2) and 772(y2) such

that one part, say 77^2), is contained in ■n-x(yl). Hence p e Tr,(y2). But this is

impossible since p e d-rr^y,). Hence, y, u p cannot separate F2.

The problem thus reduces to the following problem on a torus with a 2-cell

removed. Can all the trajectories negatively base to p be positively base to p and

together with /? be non-null-homotopic curves such that none of the trajectories

together with p form a closed curve surrounding the removed 2-cell? In this

problem the boundary of the 2-cell is F. That none of the closed curves formed by

considering trajectories base to p together with /? can surround the removed 2-cell

corresponds to the fact that such a trajectory together with p cannot separate F2,

as proven in the above paragraph. A negative answer to this problem will complete

the proof of part (i).

Let y, be a trajectory positively and negatively base to /?. By assumption, yx u p

is a closed non-null-homotopic curve on the torus with the disc removed that does

not surround the disc. Hence, y,vj p can be taken as a generator of the first

homotopy group of the torus and as such can be taken as a pair of opposite

boundaries of the following familiar rectangular representation of the torus with a

disc removed (Diagram 4.3). Because of the configuration of a simple singularity of

vx        p            n
i-í-■-«-

I-<—-^~-—*-
n p N  y,

Diagram 4.3
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index - 1, all the remaining trajectories base to p will have to be base at the same

representation of p. Let y2 be negatively base to p, y2¥=yx- By assumption, y2 is

also positively base to p. y2 cannot intersect the boundaries of the rectangle that

yx lies on and hence, can only intersect the other boundaries. Since y2\Jp cannot

surround the disc by cutting and piecing operations, it is easily seen that yx u p

and y2 u p will have to bound a region homeomorphic to a disc. Hence, there will

have to be a singular point other than p inside the region; a contradiction of the

fact that/? is the only singular point inside nx. Thus, yx and y2 cannot both be posi-

tively and negatively base to p, completing the proof of the lemma.

To prove part (ii), suppose that both trajectories yx sind y2 of (3.1) that are

negatively base to p have p as an co-limit point and (by part (i)) that yx is not

positively base to p. Then, by Lemma 4.3 there is a point q on a trajectory a

positively base to p that is an co-limit point of yx. This implies that all of a is con-

tained in the co-limit set of y1# Let R be a small curvilinear rectangle about q one

pair of whose opposite sides are arcs of solutions of (3.1) and whose other pair of

opposite sides are arcs of solutions of (3.2). Since R is small, a crosses R entering

and leaving across the opposite boundaries that are arcs of solutions of (3.2) and

a divides R into two parts.

We can find an increasing sequence of times {/¡} such that yx leaves R for each

t¡ on the same side of a and enters on that side for some time t[ > /¡. By using this

sequence of times {/¡} and connecting yi(/|) to y(/¡) by a Ck curve for each i as in

Theorem 3.1, we construct a sequence of transversal curves {Yt} such that r¡ cuts

T2 into two disjoint parts 7ri and n\, where n\<=-nx.

Let t'l be the first time that yx leaves R after t[. yi(/") will be closer to a than

yx(tt), for otherwise, by uniqueness of trajectories and the fact that transversals

must separate T2, yx(t) cannot get close to a which is in its co-limit set. Hence, the

sequence of times {/¡} can be taken such that the distance between Y¡ and p

approaches 0 as /' approaches oo, n{+1^n\, for all i, sind rj + 1c7ri.
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Let Fj = 77Í u r¡. P¡ is closed, hence 77 = Hi Pt is closed, p e on. Since no trajec-

tories can leave -irí, for any i, for large time, the trajectories negatively base to p

are contained in 77 also. This is impossible; y, cannot be contained in 77 since, by

the previous construction, part of it forms the boundary r¡ of each 77^ and 7ri is

not in 77Ï for k>i; a contradiction.

We have shown that not every trajectory of (3.1) negatively base to p can have

p in its co-limit set. To show that not every trajectory positively base to p can have

p in its «-limit set, we can carry out the same construction of a sequence of trans-

versal curves using a decreasing sequence of times and a positively base trajectory.

Q.E.D.
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