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AND PARABOLIC BOUNDARY VALUES
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Abstract. This work develops the notion of a kernel function for the heat

equation in certain regions of n +1 -dimensional Euclidean space and applies that

notion to the study of the boundary behavior of nonnegative temperatures. The

regions in question are bounded between spacelike hyperplanes and satisfy a para-

bolic Lipschitz condition at points on the lateral boundary.

Kernel functions (normalized, nonnegative temperatures which vanish on the

parabolic boundary except at a single point) are shown to exist uniquely. A representa-

tion theorem for nonnegative temperatures is obtained and used to establish the

existence of finite parabolic limits at the boundary (except for a set of heat-related

measure zero).

0. Introduction. The notion of a kernel function has been developed in the

case of the Laplace operator by Hunt and Wheeden [4], who prove existence and

uniqueness for such functions in Lipschitz domains of «-dimensional Euclidean

space Rn and use these functions to study the nontangential boundary behavior

of harmonic functions which have a one-sided bound in the domain. In [7] we

reported analogous results for the heat equation in certain regions of the plane.

These results had been obtained in [6]. There, difficulties in the application of the

techniques of [4] to the heat equation were overcome and some simplification of

those techniques was achieved, notably in the proof of uniqueness of kernel

functions. However, technical problems prevented treatment of the heat equation

in more than one space dimension. The present work extends those results to the

case of several space variables.

In §1 existence and uniqueness of kernel functions is established and a repre-

sentation theorem is obtained for temperatures with a one-sided bound in a

region satisfying a certain mixed-Lipschitz condition (conditions LI and L2 below).

The main result of §2 is the existence almost everywhere (with respect to caloric

measure) on the parabolic boundary of finite parabolic limits for temperatures

with a one-sided bound in the region. This generalizes the work of Jones and Tu

[5] and Hattemer [2], who considered regions less general than those dealt with

here.
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1. Kernel functions and a representation theorem. We denote by (x, t) a point

in Än + 1, where x=(x1; x2,..., xn) = (x', xn) are the space variables and t the time

variable. For a domain D in Rn + 1, we let 8PD be the parabolic boundary of D;

i.e. dpD is the set of points on the boundary of D which can be connected to some

interior point of D by a closed curve having strictly increasing ¿-coordinate. D is a

regular domain for the Dirichlet problem for the heat equation if that problem is

solvable in the Weiner-Perron sense for any (Borel) integrable boundary values.

For regular domains we have the following:

Definition. If (x, t)-e D and Z^dD is a Borel measurable set, the caloric

measure at (x, t) ofZ, denoted afg-fí(Z), is the value at (x, t) of the unique solution

of the Dirichlet problem for the heat equation in D with boundary data given by

the characteristic function of Z. (When there is no possibility of confusion, we shall

suppress the subscript D, writing w(xM(Z).)

Throughout our discussion (X, T) will denote a fixed point in D. If t ^

inf {s : 3y with (y, s) eZ}, we must have co(x-n(Z) = 0 by the maximum principle.

Furthermore, if (x, t)e D can be joined to (X, T) by a closed curve in D with

strictly increasing /-coordinate, then Harnack's inequality and Besicovitch's

general theory of differentiation [1] imply that the Radon-Nikodym derivative,

8oj(xM/Boj(X't\ which exists in ¿'(ci/*-"), is given a.e. (a>(X,r)) by

.     w(Xit)(An)
limit    ~/y~t\7 \—\'

A„-(y,S)   <"<X,r)(An)

where An is any sequence of closed sets in 8PD which contain (y, s) and satisfy

infn (a}(X-T)(An)/œ(X-T\Bn)) > 0, where Bn is the intersection of dpD with the smallest

sphere centered at (y, s) and containing AB.

We will be concerned with the following concept of a kernel function :

Definition. If (Y, S)e 8PD with S<T, si function K(x, t) defined in D is a

kernel function at (Y, S)for the heat equation in D with respect to (X, T) if

(i) K(x,t)^f) for (x,t)eD,

(ii) K(x, t) satisfies the heat equation, AK=Kt, in D,

(iii) limit(;c>i)_(!/,s);iXtt)eD K(x, t) = 0 for (y, s) e dpD-{(Y, S)},

(iv) K(X, T) = 1 (normalization condition).

(If S^T, we shall take the kernel function at (Y, S) with respect to (X, T) to be

identically zero.)

Suppose that D is a regular domain for the heat equation, and let DT

= Dn {(x, t) : t^ T}. It is clear that if S< Tand a function K(x, t) satisfies (i)-(iv)

in DT, then K(x, t) can be extended to a kernel function in D by solving a Dirichlet

problem in D — Ds+S. Conversely, if K(x, t) is a kernel function at (Y, S) in D,

then its restriction to DT is a kernel function at ( Y, S) in DT.

To obtain existence and uniqueness of kernel functions at a point (Y, S) e dpD,

we require additional restrictions on dpD in a neighborhood of ( Y, S). We allow

two conditions :
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Condition LI. dpD is given locally at (T, S) by t = S.

Condition L2. 8pD is given locally at ( Y, S) by a function satisfying a mixed-

Lipschitz condition with exponent 1 in the space variables and •£■ in the time

variable.

Specifically, for condition L2 to hold, there is a sphere 0 with center ( Y, S),

local space coordinates x, and a function f(x', t) defined in @'={(x', t) : 3xn

with (x', xn, t) e 0} satisfying

\f(x',t)-f(x'0,t0)\ S C(|x'-*0| + |í-í0r'2)

for (x', t) and (x'0, t0) in 0', such that

& ndpDn {(x, t) : t > S} = 6 n {(x, t) : xn = f(x', t)} n {t > S},

On Dn {(x, t) : t > S} = On {(x, t) : xn > f(x', t)} n{t > S}.

Thus, L2 describes the "side" points of dpD. Similarly, condition LI describes the

"bottom" points of dpD. In the case of a "bottom corner" point (Y, S), condition

L2 applies. In fact, by extending the domain, we may assume that dpD is given by

the mixed-Lipschitz function f(x', t) in a complete neighborhood of (Y, S). We

also note that any point ( Y, S) e dpD satisfying either condition LI or L2 is a

regular boundary point for the heat equation by a theorem of Petrovski [8].

The proofs of existence and uniqueness of kernel functions at points satisfying

either condition are similar. We shall concentrate on points satisfying condition

L2, pointing out any essential changes which would be required in the proofs for

points satisfying LI.

We begin by establishing the following notation: if (Y, S) is a point satisfying

condition L2 with a mixed-Lipschitz constant C, we fix a constant d<2C and define,

for sufficiently small r,

Y((Y, S), r) = Dn {(x, t) : \x'- Y'\ < r, \t-S\ < r2, \xn- Yn\ < rd},

with A((T, S), r) = 8D n {(x, t) : \x'- Y'\ < r, \t-S\ < r2}, and A((Y, S), r)

= (Y', Yn + rd, S+(l +p.)r2), where p is small and depends only on D. (p, is chosen

so that A(( Y, S), r)e D for small r.) In the case of a point satisfying condition LI,

we have

T((F, S), r) = Dn {(x, t) : \x- Y\ < r, \t-S\ < r2},

with A((T, S), r) = BD n {(x, t) : \x- Y\ <r} and A((Y, S),r) = (Y, S+(l+p.)r2).

Lemma 1.1. Suppose that D is a regular domain for the heat equation which

satisfies condition L2 at (Y, S) e dpD. If ye(f), 1), then there is a constant C,

depending only on y and the mixed-Lipschitz constant, such that oy{xM(A(( Y, S), r))

^ C for (x, t) e T(( T, S), yr) as long as r is sufficiently small.

Proof. LetG = G((y, S), r)={(x, t) : \t-S\ <r2, \x'- Y'\<r, \xn- Yn\ <r¿}and

h(x, /) = "#•"({(*> 0 : I*'- Y'\<r, \t-S\ <r2, xn= Yn-rd}). For small r, G n D
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= XY((Y, S), r). By the maximum principle in that set, «/¿-»(Aft Y, S), r))^h(x, t)

for (x, t) e W(( Y, S), r). Since T(( Y, S), yr)^ G(( Y, S), yr) and

C =        inf       h(x, t) > 0,
(x,f)eG«Y,S-j.yr)

we have

«4*'()(A(( Y, S), r)) ä C> 0   for (x, t) e T(( Y, S), yr).       Q.E.D.

Lemma 1.2. Suppose that D is a regular domain for the heat equation which

satisfies condition L2 at (Y, S)e 8PD. Then there is a constant C> 0, depending only

on the mixed-Lipschitz constant, such that, for r' e (0, r), we have

(*) a/*.'>(A(( Y, S), r')) S Car*«™-«(A(( Y, S), r'))

for (x, t) e £»-Y((T, S), r) if r is sufficiently small.

Proof. (For convenience, let A = A((Y, S), r) and A'= A((Y, S), r').) Since

co(*'°(A') = 0 for (x, t) e 8PD—A, it suffices, by the maximum principle, to prove

(*) for (x,t)eDn 8W((Y, S), r).

We define sets Yk=Y((Y, S), 2*"V), with Ak = A((Y, S), 2*-V) and Ak

=A((Y, S), 2fc-V) for k=l,2,...,L, where 2L-V<3r/4<2V. By Harnack's

inequality there is a positive constant C1( independent of k, such that

(a) aA(A') g doA+itA')   for k « 1,2,..., L.

The main part of the proof will be a demonstration of statements

Sk:       «<*•»( A*) è CaA(A')   for(jc,f)eD-'Ffc

for &= 1, 2,..., L— 1. Once this has been done, the conclusion of the lemma will

follow from statement SL_! and Harnack's inequality.

If Bx = (Y', Yn + rd, S), Lemma 1.1 (with y = \ and the parameter 2d in place of

d) establishes the existence of a positive constant C2 such that a>Bi(A') ̂  C2 if r

is sufficiently small. There is another constant C2'>0 such that wAi(A') ä C2cuBi(A'),

and, setting C2 = C2-Cá', ojai(A')^C2. It follows that co(*-»(A')^ 1 ̂ (l/C2)a/i(A')

for (x, /) e D and, in particular, for (x, t) e D—Tj. This establishes statement Sx.

Next, for each point (y, s) in the ring (8pY2n 8PD) — A2, we construct an

auxiliary function as follows : let

D(y> s) = {(x, t) : xn- Yn > d0r' or \t-S\ > r'2 or \x'- Y'\ > r'}

n{(x,t):xn-yn> -M(\t-s\il2 + \x'-y'\)},

where d0 sind M are positive constants to be chosen in due course. Let DN(y, s)

= D(y, s) n {(x, t) : \x— Y\ <N, \t—S\ <N}, and take hN(x, t) to be the caloric

measure in DN(y, s) of that part of 8„DN(y, s) lying on the boundary of the

removed rectangle, {(x, t) : xn- Yn^d0r', \t-S\^r'2, |x'-y'|^r'}. By the

maximum principle, hN increases in D(y, s) as A7 increases. Since hN ̂  1 for each N,
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there exists a temperature in D(y, s), h(x, t) = l\mitN^œ hN(x, t). Because the hN's

are uniformly bounded and vanish on a common boundary neighborhood of (y, s),

a regular point, we have limit(JC>()_^iS);(A,()eD(ï,S) h(x, t) = 0. We claim that, for each

(y, s) e (8PY2 n 8PD)-A2, the rate at which the corresponding h(x, t) tends to

zero at (y, s) is the same. To see this, construct

D(y,s)={(x,t) : xn-yn > -M(\t-s\ll2 + \x'-y'\),

\x'-y'\ < r', \t—s\ < r'2},

and let g(x, t) be the caloric measure in D(y, s) of that part of the boundary of

D(y, s) not on the parabolic surface. Clearly, D(y, s)<^D(y, s) and, by the maxi-

mum principle in D(y, s), h(x, t)^g(x, t). Since the regions D(y, s) are identical,

except for a translation, we have the desired uniform estimate on the functions

h(x, t). Accordingly, choose a positive number S such thath(x, t)^l/C, whenever

(x,t)eD(y,s) with \(x, t)-(y, s)\<8. Define the set ß2={(x, t) : (x, t) e 8Y2

-8D and dist ((x, t), (dW2 n 8PD)- A2) < 8}, where dist (P,S) is the distance

from the point P to the set S. Let a2 = 8x¥2-ß2. By Harnack's inequality, there is a

constant C3 > 0 such that

(b) w<*'*>(A') < C3«/<A')   for (x, t) e <x2.

If C4 = max(C3, 1/C2), we have already seen that ü>(*''>(A') ^ C4«A(A') for (x, t)

e D — Tj. Furthermore, we now see that eu(JC,t)(A') -¿ C4£o^(A') for (x, t)ea2, by

(b). Therefore, to prove <«/*•»(A') ^ C4«/<A') in all of £>-T2, it suffices, by the

maximum principle, to prove this estimate for (x, t)eß2. Provided that the con-

stants Af and d0 have been chosen sufficiently large that x¥1 is contained in the

complement of D,(y, s) and the parabolic cone in the complement of D(y, s) lies

in the complement of D, which is made possible by the Lipschitz nature of 8PD,

we may proceed. Since cu(x>i)(A') g C4a/i(A') for (x, t)e Dn 8D,(y, s), the

maximum principle in D n D,(y,s) implies that <u(Jt,t)(A') ^ C4a/i(A')h,(x, t) in

that set. Recalling (a) and our previous estimate on h(x, t) for (x, t) e ß2, we have

£u(j:-t)(A')^C4cU^(A') for (x,t)eß2 and, therefore, in D-W2, establishing state-

ment S2. Continuing inductively, the statements S3, S4,..., SL are established, each

with the same constant C=C4. Q.E.D.

The next lemma is of fundamental importance.

Lemma 1.3. Suppose that DT is a regular domain for the heat equation which

satisfies condition L2 at ( Y, S) e 8PDT. Then there is a positive constant C, depending

only on the mixed-Lipschitz constant, such that for each neighborhood Nof(Y, S)

in T((T, S), r/4)for which DT-N is regular and points of N also satisfy condition

L2 with the same mixed-Lipschitz constant as 8PDT at ( Y, S), if u(x, t) is a non-

negative temperature in DT — N which is continuous in the closure of that set and

vanishes on 8PDT — N, then

u(x, t) Ú Cu(A((Y, S), r)Wx-»(A((Y, S), r))

for(x, t) e Dt-Y^Y, S), (l+p.)ll2r/4)if ris sufficiently small, depending on (Y, S).
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Proof. Fix A g (0,1) and let A' = A(( Y, S), r') for (Y, S) e A((Y, S), r) and

r'<Ar. By Lemma 1.2, if r is small,

W<*.»(A') ̂  CwA*(A')   for (x, t) e ¿>-T(( F, S), Xr)

where AA = (Y', Yn + rd, S+A2r2(l + /*)). In particular,

»<*-»(A') è Coj\(A')   for (x, t) e D-Y((Y, S), (1+A)r).

If A is small, 5+A2r2(l+/i)^5'+r2 + A2r2(l+/x) < S+(l+ti./2)r2, and Harnack's

inequality applies to show that

aA(A') Ú CoA(A'),   where A = A((Y, S), r).

If we also require that X<(l+p.)112— 1, we have

a»<*'»(A') ̂  Ca/(A')   for (x, t) e D-W^Y, S), (1 +n)ll2r).

Next, let (x, t) e Z)r-Y((F, 5), (1 + p.)ll2r). By Besicovitch's results on the differ-

entiation of measures [1],

<fa>«-° ,y çx        ,.   -t    ^-ft(A')

dioiX.T, I'. ^ A,^FUS)) 0)«'T)(A')

for a.e. (yx-T))(F, S) e A((y, 5), r). Therefore,

(dW**/dÜtx-nXF,S) ̂  C(d<oÁld<oiX'T>)(Y, S)

for a.e. (o.<x-r,)( F, 5) e A(( F, 5), r), where Cis independent of ( F, 5) 6 A(( Y, S), r).

If u(x, t) is a nonnegative temperature in DT, continuous in DT, and vanishing

on 8PDT- A((Y, S), r), we have

u(x, t) = f u(Y, S) &!<*•'>(F, 5).
¿A«y ,S),r)

Since dwíx-l)=(dwix-l>/dwa-v) d^x-T\ it follows that

u(x, t) S CwL4)   for (Je, f) £ £>r-Y(( Y, S), (1 +/¿)1,2r).

Applying this argument to the function u(x, t) given in the hypotheses and the

region DT — N, with r replaced by r/4, and making use of Lemma 1.1 and Harnack's

inequality, we obtain

u(x, t) è Cu(A((Y, S), r))œ^(A((Y, S), r))

for (x, t) e DT-Y((Y, S), (1 +p.)ll2r/4).       Q.E.D.

We will most often use the following form of Lemma 1.3:

Lemma 1.4. Suppose that D is a regular domain for the heat equation which

satisfies condition L2 at (Y, S)e 8PDT. Then there is a positive constant C, depending

only on D and the mixed-Lipschitz constant at (Y, S), such that, if u(x, t) is a non-

negative temperature in D which vanishes on 8pD — A((Y,S),rß)for sufficiently

small r, we then have u(x, t)^Cu(A((Y, S), r))u>(x-n(A((Y, S), r)) for (x, t)

eD-Y((Y,S),(l+p.)ll2r/4).



1972] TEMPERATURES IN SEVERAL VARIABLES 249

Proof. Let r0 satisfy the requirements of Lemma 1.3. For r<r0, let A be a

neighborhood of ( Y, S) in T(( Y, S), r/4) such that A(( Y, S), rß)c8N n 8D and

8P(DT — N) satisfies condition L2 with a mixed-Lipschitz constant at points of N

which is no bigger than the mixed-Lipschitz constant for D at ( Y, S). Application

of Lemma 1.3 and the maximum principle yield the desired result.   Q.E.D.

We can now prove the existence of kernel functions for a domain D if each point

( Y, S) e 8PD satisfies condition LI or conditon L2. Let (X, T) he the normalization

point for the kernel functions with T>S and consider a sequence of positive

numbers rn which decrease to zero. Let An=A((F, 5*), rn) and set

vn(x, t) = w<*'»(Att)/c«'r>(An).

Each vn is a nonnegative temperature in D and vn(y, s) = 0 for (y, s) e 8PD-An.

If r is small enough for Lemma 1.4 to hold, there is a number n0 such that vn

satisfies the hypotheses of that lemma for n>n0. Therefore, if A = A((Y, S), r)

and A = A((T, S), r), we have

(*)        vn(x, t) ^ Cvn(A)co^(A)   for (x, t) e D-Y((Y, S), (1 +p)1'2r/A).

By Harnack's inequality, vn(A)^Cvn(X, T) = C. Furthermore, since oj(x4)(A)^ 1,

we have vn(x, t)^C for (x, t) e D-Y0, where ^ = ^((7, S), (1 +p,)ll2r/4). The

Ascoli theorem assures the existence of a subsequence of the functions vn which

converge uniformly on compact subsets of D. By Harnack's convergence theorem,

the limit function K(x, t) must be a temperature in D. Clearly, K(x, t)^0 and

K(X, T) = \. Finally, to see that K(x, t) vanishes on 8PD-{(Y, S)}, we need only

let n tend to infinity in (*). Since r may be chosen arbitrarily small, it follows that

K(x, t) is a kernel function for the heat equation in D at (Y, S) e 8PD.

At this point we remark that Lemmas 1.1 through 1.4 can be similarly proven for

points (Y, S) e 8PD which satisfy condition LI. The specific changes required are

that

D(y, s) = {(x, t) : \x- Y\ > r' or t > d0r'112}

n{(x, t) : t > -M\x-y\2}

in Lemma 1.2 and that A = (Y, S + X2r2(l + p.)) in Lemma 1.3.

Our next goal is to establish the uniqueness of kernel functions. Before proceeding

with the actual proof, however, we will be able to simplify the form of the domain

with which we must deal. Again, we consider kernel functions at a point ( Y, S) e

8PD with respect to a fixed point (X, T)e D with T> S. Generally, D is a regular

domain for the Dirichlet problem for the heat equation which satisfies condition

LI or condition L2 at ( Y, S).

Lemma 1.5. Suppose that D*<^D are both domains which are regular for the

heat equation with (Y, S) e 8PD* n 8PD and N a neighborhood of(Y, S) such that

N n 8PD*=N n 8PD. If there is at most one kernel function in D* at (Y, S) with

respect to (X*, T*) e D* with T* > S, then there is at most one kernel function in D

at ( Y, S) with respect to (X, T)eD with T> S.
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Proof. Suppose that u and v are both kernel functions at ( Y, S) in D. Define Pu

to be the solution of the Dirichlet problem for the heat equation in D* with

boundary values

Pu(y, s) = u(y, s)   for (y, s) e 8PD* n D,

= 0 for (y, s) e 8PD* n 8PD.

By the maximum principle, Pu^u in D*, so that u—Pu is a nonnegative tempera-

ture in D* with zero boundary values on 8PD*—{(Y,S)}. Consequently, the

normalized function (u(x,t)-Pu(x,t))/(u(X*,T*)-Pu(X*,T*)) is a kernel

function in D* at ( Y, S) with respect to (X*, T*). By the same reasoning, the

analogous function with u replaced everywhere by v is also a kernel function in D*

Sit ( Y, S) with respect to (X*, T*). Since the uniqueness of kernel functions in D*

is assumed, we must have

u(x, t)-Pu(x, t) = C(v(x, t)-Pv(x, t))   in D*,

where C=(u(X*,T*)-Pu(X*,T*))/(v(X*,T*)-Pv(X*,T*)). It follows that

u — Cv=Pu — CPv=P(u — Cv) in D*, where P(u — Cv) is defined in the obvious

manner, vanishing on dpD* n 8PD. Because it is also true that u — Cv vanishes on

8PD — 8PD*, the maximum principle implies that u-Cv=0 in D. Evaluation at

(X, T) then reveals that C= 1.   Q.E.D.

This result enables us to reduce the question of uniqueness for kernel functions

at ( Y, S) in D, Sl regular domain for the heat equation which satisfies condition LI

or condition L2 at ( Y, S), to a question of uniqueness for kernel functions at ( Y, S)

in the domain D*=XY((Y, S), r), with arbitrarily small positive r. In this case,

8„D* — 8PD has a simplified form; in particular, one "end" of D* lies in the

hyperplane xn= Yn + rd. We shall next show that D* satisfies an additional con-

dition.

Definition. A bounded region DT in Rn+1 is parabolically starlike at (X, T) if,

for each (y, s) e 8PDT, there exists a finite parabolic ray with vertex (y, s) and end-

point (X, T) which is contained in DT. (We allow the degenerate case in which the

parabolic ray becomes a vertical line segment.)

We also require the notion of a parabolic cone.

Definition. T is a parabolic cone with vertex (y, s) if one of the following holds

for some triple of positive constants, C, C, and C", and for some choice of local

space coordinates :

T = {(x,t) : C > xn-yn > C'\x'-y'\ + C"\t-s\112}

or

T = {(x, t): C > t-s > C'\x-y\2}.

It is clear that, for each point (y, s) e 8PDT satisfying condition LI or condition

L2, there exists a parabolic cone Y with vertex (y, s) which lies in DT. Furthermore,
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if (T, »S^is such a point, the intersection of Y((Y, S), r) with the union of parabolic

cones with vertices in A((Y, S), r) is a parabolically starlike region. As we have

seen, it suffices to prove the uniqueness of kernel functions at ( Y, S) in such a

region.

Lemma 1.6. Suppose that conditon L2 is satisfied at (Y, S)e 8PD and that

Y = X¥((Y, S), r0) is parabolically starlike at (X, T). Then there is a positive constant

C such that, ifu(x, t) is any kernel function at ( Y, S) in T with respect to (X, T), we

have

u(x, t) ä CK(x, t)   for (x,t)e Y,

where K(x, t) is the kernel function at (Y, S) in T with respect to (X, T) given by

limitn_ » cu<JC'!)(An)/<u(X'r)(An), with w denoting caloric measure in T and An

= A((Y,S),\/ri).

Proof. Since the result is trivially true for t<S, we will assume that 5=0, so

that ( Y, S) is a point on the "bottom edge" of D. For convenience, we will also

assume that Y=0, and, by a suitable choice of space coordinates, that the para-

bolic arc from (0, 0) to (X, T) is defined by xn = yt112, with x' = 0, for some positive

constant y.

For r e (0, r0), define ß=ß(r) = 1 -(3(1 + p))my-ll2r, and set ur(x, t) = u(Qr(x, t))

= u(ßx', ßxn + (l -ß) + Br112, ß2t+y(l -ß)2), with B to be chosen. Note that ur is a

temperature in Q^(D). Next, define *¥'=Y n {(x, t) : (x', xn + (l -ß) + Br112, t)

e Y}. For small r, we claim that QrÇY^^Y, which is evident away from (Y, S).

Thus, it suffices to show that QjCY")c{(x, t) : xn>f(x', t)}, where f(x', t) is the

mixed-Lipschitz function defining the boundary of D near ( Y, S). Specifically, we

are requiring that

ßf(y', s) + (l -ß) + Br1'2 > f(ßy', ß2s + y(l -ß)2)

for (y1, s) near (0, 0). It is already known that there is a positive constant C such

that

A?, s)-fW, ßzs+yd -ß)2) =? - C((\ -5)1/1 +((1 -ß2)s+y(l +ß)2)112).

Consequently, it is enough to show that

(ß-l)f(y',s) + (l-ß) + Br1i2-C((l~ß)\y'\+((l-ß2)s + y(l-ß)2)1'2) > 0.

For small r, if we make use of the definition of ß,

C((l-ß)\y'\ + (a-ß2)s + (l-ß)2y)112) i Cjr™

and

(\-ß)f(y',s) g (3(\+p)/y)ll2rll2-C(T+L),

where C is here the mixed-Lipschitz constant at ( Y, S) and L is the (space) diam-

eter of T. Thus, if B is chosen sufficiently large, we do have QrQY^^Y, and it
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follows that u, is a temperature in V. Furthermore, ur is continuous in the closure

of Tr, so that

uT(x, t) = I       ur(y, s) dw\x-»(y, s)   for (x, t) e Yr,
JSpV'

where tur denotes caloric measure in Yr. It follows that

ur(x, t) è   inf  wr(j>, s) • <4*'"(Ar)   for (x,/)e Yr,

where Ar=A((Y,S),r).

For (j, 5) e A„ Qr(y, s) has /-coordinate

ß2s + y(l~ß)2 ^ -ß2r2 + 3(l+p)r2 ^ (2 + 3p)r2.

Recalling that the point Ar = A((Y, S),r) has /-coordinate (l+p.)r2, we see that

Harnack's inequality will imply inf<v-s)eAr ur(y, s) ^ Cu(AT), with a constant C

independent of r, provided only that Qr(y, s) is bounded away from 3Y in the

space variables by a fixed multiple of r for points (y, s) e Ar. Since Qr(y, s)

= Qr(y',f(y', s), s) = (ßy', ßf(y', s) + (l -ß) + Bri'2, ß2s + y(l -ß)2), this require-

ment is satisfied by our choice of B above. We then have

(*) ut(x, t) ^ Cu(AMx'n(Ar)   for (x, t) e *Yr.

By Lemma 1.4, there is a constant C0 > 0 such that

1 = u(X, T) S CoKÍAV^fA),

co denoting caloric measure in T. Thus,

ur(x, t) > C,a£t-t>(Ar)/a>«-r>(Ar)   for (x, t) e Y.

We allow r to range through the sequence l/n, « = 1,2,.... According to the

maximum principle,

a)^*>(An) = «/«-»(A,)-      sup      o<«-">(A„)   for (x, 0 611*,
te.u)egT»n>f

where the "«" notation refers in each case to r=l/n. Combining this with our

estimate for ur above, we have

KBOc)i) = Ca,<*-»(An)/co«-r>(AB)-      sup      ^••"(An)/cU«-r>(A„)
(3,u)e9'i"'nT

for (x, t) e yYn. As n tends to infinity, T" tends to W and un tends to u. Thus, to

conclude that u ̂  CK in Y, we need only show that

SUp        œ<*-"XAn)/œ<x-TXAn)

tends to zero as n tends to infinity. This follows from Lemma 1.4 and another

application of Harnack's inequality.   Q.E.D.
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Theorem 1.7. Suppose that D is a regular domain for the heat equation which

satisfies condition L2 at ( Y, S) e 8PD. If(X, T)e D with T> S, then there is a unique

kernel function at (Y, S) in D with respect to (X, T).

Proof. We have previously established the existence of a kernel function at

(Y, S) in D with respect to (X, T) in the form of a limit of normalized caloric

measures. We will continue to denote this kernel function by K(x, t). Our present

task is then reduced to a proof of the uniqueness of K(x, t). According to Lemma

1.5, we may assume that D is a set of the form Y((Y, S), r). Then, by Lemma 1.6,

if u(x, t) is any kernel function at ( Y, S) in D with respect to (X, T), then u(x, t)

ä CK(x, t) for (x, t) e D, where C is a constant independent of u(x, t).

Let

C0 = sup {C : u(x, t) ^ CK(x, t) for (x, t) e D,

for every kernel function u(x, t) at ( Y, S) in D with respect to (X, T)}.

Clearly, u^C0K for every kernel function u at ( Y, S) in D with respect to (X, T).

Furthermore, C0¿ 1. If C0= 1, the strong maximum principle implies that u = K

Assuming C0< 1, u0 = (u-C0K)/(l — C0) is another kernel function at (Y, S) in D

with respect to (X, T), in which case uQ â C0K in D. This leads to a new inequality

for u, u ä (2C0 — Cl)K in D. However, 2C0 — C2 > C0, contradicting our assumption

that C0 is the maximal constant satisfying u^CKin D for every kernel function u

at ( Y, S) in D with respect to (X, T).   Q.E.D.

Remark 1.8. We have given proofs of the existence and uniqueness of kernel

functions at a point ( Y, S) of the parabolic boundary of D only in the case that

condition L2 is satisfied at (Y, S). For points satisfying condition LI ("bottom"

points of D), existence of a kernel function is established in corresponding manner.

In this case, the uniqueness of the kernel function follows from the uniqueness of

the kernel function at the center base point of a cylinder, which can be verified

along lines similar to those of Lemma 1.6. Assuming that the point in question is

(0, 0), and that u(x, t) is an arbitrary kernel function at that point, the approxima-

ting functions are defined to be

u,(x, t) = u(ßx, ß2t + (\ -ß)2),   with ß = 1 -(3(1 +íu))ll2r.

Only the details of the proof differ from the previous one.

Remark 1.9. As an easy consequence of Theorem 1.7, we see that the kernel

function at a point (Y, S)e 8PD with respect to (X, T) is equal to the Radon-

Nikodym derivative, da)lx-t)/dœ'-x-T), evaluated at ( Y, S). Furthermore, if we now

emphasize the dependence of the kernel function on the point ( Y, S) by denoting

the kernel function at ( Y, S) in D with respect to (X, T) by K(x, t, Y, S), it is easily

seen that this dependence is continuous for ( Y, S) on the parabolic boundary.

With the notion of kernel functions well established, we can now prove an im-

portant representation theorem for nonnegative temperatures.
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Theorem 1.10. Suppose that D is a domain which satisfies condition LI or con-

dition L2 at each point of 8PD. If u(x, t) is a nonnegative temperature in DT = D

n {(x, t) : t<T}, then there is a unique Borel measure v on 8PDT such that

u(x, t) = K(x, 1, y, s) dv(y, s),
JdpDT

where K(x, t, y, s) is the kernel function at (y, s) in D with respect to a fixed point

(X, T) e D.

Proof. For any relatively closed subset B of DT, define, for (x, t) e DT, R%(x, t)

= inf{r>(x, /) : v is a nonnegative supercaloric function in DT with v^u on B}.

(A supercaloric function is a super-solution of the heat equation.) For (x, t) e B,

Ru(x, t) = u(x, t), and, for (x, t) e DT — B, R%(x, t) is equal to the Wiener solution

of the Dirichlet problem for the heat equation with boundary values u on 8B O DT

and zero on the closure of 8PDT — B.

Next, for (x, t) e DT and F a closed subset of 8PDT, define

p<*.»(F) = inf {R^nD(x, t) : U is an open subset ofÄ" + 1,Fc [/}.

For any sequence of open sets U, which decrease to F, we have

v^\F) = limit RV<nD(x, /).
Í-* 00

By Harnack's monotone convergence theorem, vlx,t}(F) is a nonnegative tempera-

ture in DT.

For fixed (x, /) e DT, v(xM(F) is a nonnegative, monotone, subadditive function

on the closed subsets of 8PDT which is additive on disjoint closed sets. Moreover,

i><xM(F) is regular:

p<*.%F) = inf {vix-\G) : G is a closed subset of 8PDT, F <= G0}.

(Here, G° denotes the interior of G.) A standard result implies that v(x,n can be

extended to a regular Borel measure v(x-l)(-) on 8PDT.

By Harnack's inequality, v<x¡t) is absolutely continuous with respect to v{X-T) if

(x, /) e DT. Taking Ar = A((y, s), r) for (y, s) e 8PDT, it follows from Lemma 1.4

and the uniqueness of kernel functions that

K(x, t, y, s) = limit ,<*•»(Ar)/V*'r>(Ar) = |JJ (y, s).

We then have

u(x, t) = Sx'n(8pDT) = |        d^-'Xy, s) = |        K(x, t, y, s) du<x-T\y, s).

To prove uniqueness for the representing measure, let -ij be another regular

Borel measure on 8PDT such that

u(x, t) = K(x, t, y, s) d-q(y, s).
JdPDT
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For a closed subset F of 8PDT, choose a sequence of open sets Gk<^Rn + 1 such that

F=f] Gk and i/x>T)(/;') = limits OT R^nD(X, T). Let wk denote the caloric measure

in D-Gk and let Hk = 8p(DT-Gk). For (x, t) e DT-Gk,

R^D(x, t) = f       u(y, s) dm<$<\y, s)

= |        ( f       K(y, s, z, u) dv(z, u)\ doj^Xy, s)
J Dr\Hk\J dpDT I

= |       (I K(y, s, z, u) doj^Xy, s)\ dv(z, u).
JdpDT \JDr\Hk I

For (z, u) e F, K(y, s, z, u) is a temperature (v, s) in DT — Gk which is continuous

in the closure of that set. For such (z, u),

\        K(y, s, z, u) dwf-'Ky, s) = K(x, t, z, u).
JDriHic

For (z, u) e 8PDT — F,

limit j        K(y, s, z, u) dajkxM(y, s) = 0.
k-.no JDnHk

By the maximum principle,

K(y, s, z, u) d<o(kxM(y, s) ^ K(x, t, z, u)   for (x, t) e DT-Gk
JDr\Hk

and for each value of k. Lebesgue's theorem then implies that

v(x,d(f) _ ]imit gfyrsD^ j-) = I   KtXf T> Z) M) drjrz> M) = vrFy
ÍC-.00 JF

Since both of the measures are regular, uniqueness is established.    Q.E.D.

2. Existence of parabolic limits at the boundary. In this section we will make

use of Theorem 1.10 in proving the existence of parabolic limits almost everywhere

(oj(X-T)) on 8PDT for nonnegative temperatures in DT.

Definition. A function u(x, t) defined in DT has parabolic limit L at a point

(y, s) e 8PDT if, for each parabolic cone Fc D with vertex (y, s) which opens away

from 8D and satisfies V n 8pDT = {(y, s)}, we have lim\t(xt)^(ys).ix0eV u(x, t)=L.

(For (y, s) e 8PDT satisfying condition L2, V opens away from 8D if

Vcz{(x,t):xn>yn}.)

We begin with several lemmas concerning the uniform behavior of kernel

functions. We continue to assume condition LI or condition L2 on 8PD.

Lemma 2.1. Let (Y,S)e 8VD with A = A(( Y, S), r). Then, for sufficiently small r,

sup     K(x, t, y, s) ->■ 0   as (x, t)^(Y, S) in D.
(!/.s)e8pD-A
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Proof. (For condition L2 holding at ( Y, S).)

Since K(x, t, y, s)=0 for s^ T, we need only consider points (y, s) in 8PDT—A.

For a large positive number M, let S={(x,/) : xn>-M(|/|1,2+|x'|), |x| < 1,

|/|<1}, and let A(x, /) denote the caloric measure in S of that part of 8PY. satisfying

|x| = 1 or |/| = 1. Shrink S parabolically by the map (x, /) -> (rx/2, r2t/4) and trans-

late this region in such a way that the origin is moved to the point (Y, S) sind the

orientation coincides with the local coordinates at ( Y, S). If M is large, the cone

{(x,/) : xn> — M(|/|1,2+|x'|)}, after the shrinking and translation, lies in the

complement of D.

Forje (S, T),K(x, t,y, s)=0 in a neighborhood of(F, S), so we need only prove

the lemma for (y, í) 6 U, where U<^8PDT — A is bounded away from {(x, /) : t = T).

By Lemma 1.4, if ( Y0, S0) e U sind A0 = A(( Y0, S0), r0), with r0 < r/4, we have

«<*-'>(A0) ̂  Ca/«yo.V.'>(A0)   for (x, /) e D- Y(( Y0, S0), (1 + /x)1,2r/4).

Furthermore, a careful examination of the proof of Lemma 1.4 reveals that the

constant may be chosen to hold for all ( Y0, S0) e U. Applying Harnack's inequality,

W<*.«>(A0) ¿ C^X-T\A0)   for (x, /) eD-T((Y0, S0), (1 +p.)ll2r/4),

with C now depending on r as well as on D sind U. If Sr denotes the transformed

region 2, then D n Sr<=Z3-T((F0, S0), (1 +p.)ll2r/4). By the maximum principle

in D n Sr,

cü(*-°(A0) ̂  Coj<x-n(A0)hr(x, t)   for (x, /) e D n S,,

where Ar is the caloric measure in Sr corresponding to A in S. Since Ar(x, /) tends to

zero as (x, /) tends to (Y, S), we see that

^•»(AoV^-^Ao) -> 0   as (x, t)^(Y, S),

independent of (F0, SQ) in U and r0<r/4. It follows that

sup AYx, /, >>, s) -> 0   as (x, /) -^ ( F, S).       Q.E.D.
(!/.s)eC7

In the several lemmas that follow, attention will be restricted to domains DT

which satisfy an additional condition:

(Z) There is a hyperplane H={(x, t) : <x, a} = 9} such that 8PDT intersects H

in a simply connected set B, which is open in H, with supCj;>()eB / = T and

infu,f)6BÍ = 0.

In particular, (Z) is satisfied by domains T(( F, S), r) with an appropriate

choice of local coordinates. In connection with condition (Z), we shall also assume

that 0=0 and DT<^{(x, t) : <x, a><0}. (Here, a is an n-vector and <• , •> denotes

the inner product in Rn.)

Lemma 2.2. Let DT satisfy (Z) and let U<= 8PDT be bounded away from the set B.

Then

sup K(x, t,y,s)->0   as e -> 0.
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Proof. Let DSo = DT n {(x, t) : <[x,a}<—e0}, where 0<£0<inf(!/iS)e[7 — <[y, a>.

By Lemma 2.1 and Harnack's inequality,

sup       K(z, u,y,s)ú CK(X, T+ e0, y, s)   for (y,s)e U.
(z,u)6DTngpD£0

Since K(X, T+e0, y, s) depends continuously on (y, s) in 8PDT, there is a positive

constant Af such that sup(J/>s)et7 K(X, T+eQ, y, s)^M. Therefore,

sup K(z, u, y, s) á CAÍ.
(v,s)et7;(z,u)e£>orn8pDeo

Since K(z, u, y, s) -> 0 as (z, u) -> 8PDT— U for (y, s) e U, the maximum principle

implies that

K(z, u,y,s) á Af (z, a)   for (z, u)eDT- DSo,

where Af(z, w) is the unique bounded temperature in DT — D£o with boundary values

equal to CAf for (z, u)e DT n 8pDeo and equal to zero for (z, u) e 8PDT n 8pDSq.

Clearly,

sup     Af(z, u) -+ 0   as e -> 0.   Q.E.D.
(2.U)EDr-D,

Lemma 2.3. Again let DT satisfy (Z). Let U0 e 8PDT be bounded away from the

set B and let DTr = DT n {(x, t) : (x, a}< —r}. Then there is a positive constant

Csuch that, if r is sufficiently small, a¿rx-rT)(U)^CwiX-T)(U) for each measurable set

IIe1 U0, where the caloric measures are taken in DTr and D, respectively.

Proof. For sufficiently small r, (X, T) e DT¡„ and we have

œ^(U)= f   Wr(y,s)dw<x-T\y,s),
Ju

where Wr(y,s) = l-¡DTr¡SpDrrK(z,u,y,s)dojff\z,u), K denoting the kernel

functions in D. To complete the proof, we will show that Wr(y, s) ä C> 0 for small

r and for (y,s)eU0. Clearly, Wr(y,s)^l-sup(e¡l¡)eDTnSpDTr,{y^eUoK(z,u,y,s).

By Lemma 2.2, there is a constant r0>0 such that

sup K(z, u, y, s) ¿ \   for r < r0.       Q.E.D.
{e,u)=DTngpDTy, (¡/,s)e U0

Lemma 2.4. Suppose that DT is a set of the form ^((Fo, S0), r0), where condition

L2 is satisfied at ( Y0, S0)for some larger domain. Then there is a positive constant C

such that, if(Y, S) e A((Y0, S0), r0/2) and r is sufficiently small, we have

K(A, y, s) Í C/o/x-r>(A(( Y, S), r))   for (y, s) e A(( Y, S), r),

where A = A((Y,S),r).

Proof. From equation (*) in the proof of Lemma 1.6,

Kr(x, t, y, s) ^ CK(A, y, sWx-%A((Y, S), r))
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for (x, /) e Dr and (y, s) e A((F0, S0), r0/2), where the "r" notation corresponds

to that lemma. However, each set Dr (Lemma 1.6) is equal to a set Dr,r- (Lemma

2.3) and r, r' tend to zero together. Applying Lemma 2.3 with (x, t) = (X, T), we

have

K(A, y, s) Ú CKr(X, T, y, sWx-T\A(( Y, S), r))

for r<rx and (y, s) e A((F0, S0), r0/2), where rx<r0/2. Repeating an argument in

the proof of Lemma 2.2, there is a constant M >0 such that

sup Kr(X, T, y, s) á M.   Q.E.D.
(y,8)eA«Yo.So),!-o/2)

Again, a similar result can be proven when condition LI is satisfied at a point

( Y, 0) e 8PD. In this case one considers Kr(x, t, y, s) = K(x, t + (2+p.)r2, y, s). By

the maximum principle and Harnack's inequality,

Kr(X, T, y, s) â CK(A, y, s)^x-T\A(( Y, 0), r))   for small r.

We can now prove the final essential lemma.

Lemma 2.5. Again suppose that DT is a set of the form ^((Yo, S0), r0), where

condition L2 is satisfied at ( Y0, S0) for some larger domain. Let V be a parabolic

cone in DT with vertex ( Y, S) e A(( Y0, S0), r0), with V opening away from 8D. Let

(x, t) e V satisfy xn — Yn = rd, where d is the fixed parameter in the definition of

Y((F, S), r), and let A¡ = A((Y, S), Vr), with R0 = A0 and R,= A¡- A¡_x, j=l, 2,

.... For sufficiently small r, we then have

sup  K(x, /, y, s) Ú CC,/««-^ A,),      j = 1, 2.N,
(y,s)eRj

where N is the smallest integer such that 2Nr > r0. The positive constant C depends

only on DT and V and the positive constants C, satisfy 2f=0 C^C' = C'(DT).

Proof. Let Aj = A((Y, S), 2'r). By Harnack's inequality, if u is any nonnegative

temperature in DT, u(x, t) S Cu(A0), with the constant depending only on DT and

V. In particular,

K(x, i, y, s) ^ CK(A0, y, s)   for (y, s) e 8PDT.

By Lemma 2.4,

sup  K(A,,y,s)^ C/o/^A,),
(y,s)e&j

with C independent of j. Moreover, for j= 1, 2, 3, 4, say, Harnack's inequality

establishes the existence of constants Cj = C¡(DT) such that K(A0,y,s)

ú CjK(A¡, y, s). Therefore,

sup  K(A0, y, s) í CCMX-T)(^i)   for; = 1,2, 3,4.
(y.s)eRi
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Now, let (y„ s}) e R¡ for7>4 and suppose Ac A'¡ = A((y¡, s,), r,), where r1 = 2'~ir.

Let A'j = A((y¡, s¡), r,). By Lemma 1.4,

K(x, t, y„ Sf) ^ CK(A'¡, y» Sj)   for (x, t) e DT-Y„

where Wj = Y((yJ, Sj), (1 + p.)1'2rj/4). Since

(21 + 1r)2(l+p)-((2irf-T-(2i-ir)2(l+p)) > r\221 + 2-22i + 1) = 22i + 1r2,

Harnack's inequality can be applied to show K(A'j,y¡,sj)^CK(Aj+1,yj,sj).

For (x,t)e D — Yf, combining this with Lemma 2.4, we have

K(x,Uyj>Sj) Ú CK(Ani,yhs}) ^ C/^x-T\Ai+1) ï C/^X-T\A,).

Next, let

2 = {(x, t) : \x-Y\ < 1, \t-S\ < 1}

n{(x, t) : xn- Yn > -B(\t-S\™+\x'- Y'\)},

where B is chosen so that {(x, t) : xn - Yn ̂  - B(\ t - S \ll2 +1x' - Y' |)} is contained

in the complement of DT. Let 2; be the region formed by parabolically shrinking

2 by the factor 2' " 3r and let hf denote the caloric measure in S; of that part of

8PY>¡ which does not lie on the cone. The maximum principle in DT n S3, which is

contained in DT—Ty, implies that

K(x, t, y¡, s,) ^ Ch,(x, 0/ü><x>r)(A;)   for (x, t)eDTn Sy.

Setting (x, t) = A0, K(A0,y„ s,) g CA^o)/"»'*-"^), and it follows that

sup  K(x, t, y, s) < Ch^A^/oi^XA,).
(.y,s)eRj

To complete the proof we must show that 2f=s hj(Aa) <oo. If h denotes the caloric

measure in 2 corresponding to h¡ in Sy, we have

h}(A0) = h^Y', Yn + rd,S+(l+p.)r2)

= h(Y', Yn + 23-'d,S+2e-2i(l+p,)).

If m0 = max{/z(x, t) : (x, t)ezZ, \x- Y\¿$, \t-S\^i}, it is clear that 0<w0<l.

By the maximum principle,

h(Y+(x- Y)/2, S + (t-S)/4) ^ m0h(x, t)   for (x, t)elZ.

Taking (x, t) = (Y', Yn + 23-'d, S+26-2'(l +/x)), we have hj+1(A0)^m0hj(A0).

Thus, by the ratio test, 2"= s h¡(A0) < oo.    Q.E.D.

As usual, the proof for a point ( Y, S) at which condition Ll is satisfied is similar.

We omit the details. Using Lemma 2.5, we can now prove the almost everywhere

existence of parabolic limits.

Theorem 2.6. Let u(x, t) be a nonnegative temperature in DT, which is assumed

to satisfy condition Ll or condition L2 at each point on its parabolic boundary

8PDT. Then u(x, t) has finite parabolic limits at each point (y, s) e 8PDT, except for

a set of zero caloric measure.
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Proof. We shall first prove the theorem in certain simple situations (Cases la

and lb, below), then combine these for the general result (Case 2, below).

Case la. Here DT is assumed to be a set of the form Y(( Y0, S0), r0). By Theorem

1.10, there is a unique regular Borel measure v on SpDr such that

u(x, t) = K(x, t, y, s) dv(y, s).
JdpD-i

Furthermore,   we   have   dv(y, s)=f(y, s) da>(X,T)(y, s) + da(y, s),   where f(y, s)

e L1(ojiX,T)) and a is singular with respect to oj{X-T). In particular, f(y, s) <oo for

(y, s) e 8PDT except on a set of zero (co'x-T)) measure. We will show that u(x, t) has

parabolic limits equal to f(y, s) almost everywhere (a>(X,ÎT) on A((F0, S0), r0).

Let ( Y, S) e A(( Y0, S0), r0) with /( F, S) < co. Then,

u(x, t)-/( F, 5) = I        K(x, t, y, s)(f(y, s) d^x-T\y, s) + da(y, s)) -/( F, S)
JdpDT

-I
dpDT

K(x, /, y, s)((f(y, s)-f(Y, S)) d«>™(y, s) + do(y, s)).
' dpDT

Let F be a parabolic cone in DT with vertex ( F, S) which opens away from 8D,

and let (x, /) 6 V. Define A¡, R¡, and A¡ as in Lemma 2.5 for j=0, l,2,...,N,

where AN_x<^A = A((Y, S), rjc AN for some small positive rx. Then,

\u(x,t)-f(Y,S)\

(*) Í K(x, t, y, s)((f(y, s) -f( Y, S)) dw«-T\y, s) + da(y, s))
igpDr-A

+ I f   K(x, t, y, s)(\f(y, s)-f(Y, S)\ d^x-T\y, s) + da(y, s)).
i = oJriJR,

The second term on the right is dominated by

|   sup  K(x,t,y,s)(\    \f(y,s)-f(Y,S)\d^x-T\y,s) + <j(A,)\
j = 0(y,s)eRj \J A, /

From Besicovitch's general theory of differentiation of measures,

Í   \f(y, s) -f( F, 5)| <&>«•"(>>, s) = o(^x-«(Ay))
.»A,

and

„(A,) = o(a><x^(A,))   as A, -> {(Y, S)}   for a.e (o>™)( Y, S) e A(( F0, S0), r0).

Since supiytS)eBjK(x,t,y,s)SCCj/ojiX-T)(Ai) with 2í°=oCy<co  by  the previous

lemma, the final term in (*) can be made small uniformly for (x, t)e V if A (sind,

hence, Af,j=0, 1, 2,..., N) is sufficiently small.

Since the first term on the right of (*) can be dominated by

sup     K(x,t,y,s)(\\4+f(Y,S)),
(y,s)eepDT-A

sin application of Lemma 2.1 completes the proof in this case.
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Case lb. Here DT={(x, t) : \x\ < 1, 0</< 1}, and u(x, t) is shown to have

finite parabolic limits almost everywhere (o>(X-T)) on that part of 8PDT where t = 0.

The proof of Case la can be repeated in this situation, taking into account the

remarks made previously concerning boundary points at which condition Ll is

satisfied.

Case 2. In this case we consider general domains DT which satisfy condition

Ll or condition L2 at each point of 8PDT. Let (yx, s¡), /= 1, 2,..., be a countable

dense subset of 8PDT. For each i there is a neighborhood Nt of (yu sx) in 8PDT which

satisfies one of the following conditions:

(I) If (yx, sx) is a point of 8PDT at which condition Ll is satisfied, then Nx is the

base of a cylinder Rx which is contained in DT and has axis in the r-direction.

(II) If (jj, sx) is a point of 8PDT at which condition L2 is satisfied, then there is a

positive number rx such that Nx = A((yx, sx), rx). In this case we take Rx = ^(y^ sx), rx).

For each i, NX<=8PRX, and we can choose another neighborhood N¡ of (yx, sx) in

8PDT with N'xcNx. Conditions (I) and (II) guarantee that u(x, t) has finite parabolic

limits on N'x, except possibly for a set of zero caloric measure in Rt, according to

the results of Cases la and lb. To complete the proof, it suffices to show that if

ZjCA/j is the set of zero caloric measure in Rx where u(x, t) fails to have finite

parabolic limits, then Zx must also be a set of zero caloric measure in DT. With

this aim, let (x, t) e Rx with w'ixM(Zi)=0, where mx denotes caloric measure in Rx.

If «j denotes caloric measure in DT, then a)(xM(Zi)=Pi(x, t), where Px is the solution

of the Dirichlet problem for the heat equation in Rx with boundary values equal

to oju,u)(Zi) for (z, u) e 8PRX — 8PDT and equal to zero for (z, u) e 8pRt n 8PDT.

Since NX<=8PRX n 8PDT, we have

limit a><*-»(Z,) = 0   for (y, s) e Nx.

It follows that limitUií)^(!/_s);(x-()6Dl, cuu,í)(Z¡)=0. Since we also have

limit        co(xM(Zx) = 0   for (y,s)e8pDT-Nt,
(X,t)-(y,s);(X,tleDT

the maximum principle implies that a)<xM(Zx) = 0 for (x, t) e DT.   Q.E.D.

The following result is a simple corollary of the proof.

Corollary 2.7. (I) If f(y, s) e L1(8PDT) with respect to caloric measure and

f(y, j)ïïO, then the nonnegative temperature

u(x, t) = Í      f(y, s) dœ<x-»(y, s)
JêpDT

has parabolic limits equal to f(y, s)for almost every (aj(X,T))(y, s) in 8PDT.

(II) oj(x,t)(E) has parabolic limit equal to 1 almost everywhere (tu(X'T)) on E, where

E is a measurable subset of 8PDT.

Remarks. Following the arguments of Hunt and Wheeden [4] in the case of

harmonic functions, these results can be extended. Specifically, we need only
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require that the temperature u(x, t) have a one-sided bound in some parabolic

cone at each point of the parabolic boundary in order that the parabolic limits of

u(x, t) exist almost everywhere (cu(X,r)) on the parabolic boundary.
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