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BOUNDED LINEAR OPERATORS ON BANACH

FUNCTION SPACES OF VECTOR-VALUED FUNCTIONS

BY

N. E. GRETSKY AND J. J. UHL, JR.P)

Abstract. Representations of bounded linear operators on Banach function spaces

of vector-valued functions to Banach spaces are given in terms of operator-valued

measures. Then spaces whose duals are Banach function spaces are characterized.

With this last information, reflexivity of this type of space is discussed. Finally, the

structure of compact operators on these spaces is studied, and an observation is made

on the approximation problem in this context.

1. Introduction and preliminaries. Over the past dozen years many vector

measure representations for linear operators on spaces of integrable functions have

appeared. Some have dealt with representations of linear operators on certain

spaces of real-valued functions and others have dealt with representations on

certain spaces of strongly measurable vector-valued functions. Often these repre-

sentations have not been exploited and have stood unused in the applications.

This paper has a twofold purpose. One is to unify the earlier work by obtaining a

vector measure representation for the general bounded linear operator on a wide

class of Banach function spaces whose members are strongly measurable functions

with values in a Banach space. The second purpose is to use this representation to

obtain concrete information about the function spaces involved. Specifically this

paper will be concerned with characterizing those spaces under consideration whose

dual is also a Banach function space of strongly measurable vector-valued functions.

This information will be put to quick use in characterizing reflexive Banach function

spaces of vector-valued functions. Finally, the structure of and properties of

compact operators on Banach function spaces of vector-valued functions will be

studied.

Throughout this paper (Í2, S, p.) is a fixed (totally) a-finite measure space. Af +

is the collection of all nonnegative real-valued measurable functions on Û identified

under the usual agreement that/=g if/(«j)=g(<*>) for /¿-almost all w e Q. A mapping

p on Af + to the extended real line is called a function norm if

(i) P(f)^0 and =0 if and only if/=0.

(ii) p(af) = ap(f) for a ̂  0.
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(iii) p(f+g)úP(f) + p(g).
(iv) f^g a.e. implies p(f)úp(g).

p is said to have the weak Fatou property iffn \f;fn,fe M + ; sind sup„ p(/n)<oo

imply p(f) <oo. Let p be a fixed function norm with the weak Fatou property. Iff

is a real-valued measurable function on Q, define p(f) by p(f) = p(\f\). Let L0 =

{f\f: O -» Ä,/measurable, />(/) < co}. Then £„ is a Banach space with norm p and

is called a Banach function space. All L" (1 ̂ /?^oo) spaces and Orlicz spaces are

Banach function spaces.

A set £<= D is called unfriendly [9] relative to p if for every measurable B<^E of

positive /¿-measure, p(xB) = °o- There is a set E0 eS which is maximal with respect

to the property of being unfriendly [9]. If this set is removed nothing is changed in

LP since feLp implies /yBo = 0 a.e. Therefore, it will be assumed that Z contains

no unfriendly sets.

The dual norm [10] p of a function norm p is defined by

P'(f) = snV{\¡fgdp\ :P(g)ú 1}-

The associate space L„- is defined by LD. = {f : f is measurable and p'(f) < oo}. Lp- is

a Banach function space and there are no unfriendly sets with respect to p [9]. The

usual Holder inequality holds for LP,LD., i.e. feLp, geLp. implies jn|./g| dp.

= p(f)p'(g) [10]. S0 is the 8-ring of sets £ in S such that both p(E) sind p(xE) are

finite. A sequence of sets A = {Qn, n = 1, 2,...} in S is called p-admissible if On e S0

and Q„ f Q.. The existence of such sequences is guaranteed since the measure space

is ff-finite and contains no unfriendly sets with respect to p. Define S00=S0 n S'0,

i.e. S00 is the S-ring of sets E in 2 such that p(E), p(xe)< and p'(xe) are finite. Absence

of unfriendly sets (relative to p and p) guarantees that Q can be written as a

countable union of sets from S00, i.e. that there are sequences which are both p-

and p'-admissible.

Definition 1.1. The space of functions of absolutely continuous norm, L", is the

subset of L0 consisting of all fe Lp such that p(fn) -*■ 0 for every sequence {/„} in

Lp such that |/| è/i ä/2 ^-► 0 holds pointwise a.e. on Q.

L% is a closed subspace of L0, but some caution is necessary since if L/0=LCC

and (O, H, p.) is nonatomic then L"={0}.

Definition 1.2. (i) Let A = {Qn, n = 1, 2,...} be a p-admissible sequence. Define

Li to be the subset of Lp consisting of the closure of the functions in LP which are

bounded and have support in some Q„ e A.

(ii) Define M0 to be the subset of Lp consisting of the closure of the functions

in Lp which are bounded and have support in E0.

For a more complete discussion of the properties of L", L% and M0, see Luxem-

burg [10], Luxemburg and Zaanen [9], and Gretsky [7]. What is needed for the

present is that

L% = H LAP   sind   MP^\J L%
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where the intersection and union are over the collection of all p-admissible

sequences, and equality holds in the second if (for example) either p.(Q) < oo or

p(Q.) = 00, p(xa) = °o, and p has property (J). (See Definition 1.3 below.) Note that

Mp is the closure of the /¿-simple functions, while (JA L„ is the closure of the

/¿-integrable /¿-simple functions.

Definition 1.3. A partition tt is a finite disjoint subset {En} of S00. If tt={E1í} is

a partition and feLp, En(f)=f„ is defined by

where xe„ ¡s the indicator of En and the convention 0/0 = 0 is employed. A function

norm /> has the property (I) if for each partition tt, p(f„) á p(f).

If p has (J), then so does p [7].

The following assumption will be in force without further mention throughout this

paper.

(A) p has (J).

This assumption is not severe. All L? spaces (1 á/>áoo) and Orlicz spaces satisfy

(A). For a discussion of properties of Banach function spaces see [19, Chapter 15].

Throughout this paper, A' is a Banach space with dual space X*. A function

/: O ->- X is called simple if it is of the form 2"= 1 xxxEi for xx e X, Ex eS ;/is strongly

measurable if it is the limit in /¿-measure of a sequence of simple functions. The

integral employed here will be the Bochner integral ([6, Chapter 3] and [8]).

Definition 1.4. L0(X) = {f: O -> X is strongly measurable and />(|/|)<°o}.

L"p(X) is the subset of LP(X) such that feLap(X) if ||/|| eLap. M0(X) and L%X) are

defined similarly.

Under the usual identification of functions which agree except on a /¿-null set,

LP(X) becomes a Banach space and L"0(X), LP(X), and MP(X) are closed subspaces

of LP(X). As in the scalar case, the /¿-simple functions are dense in M0(X), while

the /¿-integrable /¿-simple functions are dense in (JA LpX.

For a good exposition of the basic properties of LP(X), see Mills [12]. The

LP(X) spaces furnish important examples of Banach spaces which arise as com-

pletions of the tensor product of a Banach lattice and a Banach space under an

appropriate cross norm.

2. Representation theorems. This section is devoted to representation theorems

for members of B(\J& Làp(X), Y) and B(Lap(X), Y). The main result represents the

former space as a space of B(X, y)-valued set functions ; specialization yields the

latter space as a space of measures. Related work from a different point of view

has been considered by Rao [14].

Now, let t e 5(IJA L$(X), Y). For E e 20, define G(E) by

G(E)[x] = t(xXE),       xeX.
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Then G(E): X—> Y is obviously linear. Moreover,

||G(£)[x]|| = ||/(xXE)|| ^ ||/||p(xX£) = ||/1| ||x||p(v£)

for xe X; whence G(E) e B(X, Y). Another examination reveals that for xe X,

Ex, E2 eS0, Ex n E2 = 0, the following equalities hold:

G(Ex u £2)[x] = t(xXEi^2) = t(xXEl) + t(xxE2) = (G(Ex) + G(E2))[x].

Hence G is finitely additive on the S-ring 20. Moreover, if p(E) = 0 then G(£) = 0

(the zero operator in B(X, Y)). We shall refer to this as "vanishing" on ci-null sets.

Thus t\-> G sets up a correspondence between members of j6(Ua Lp(X), Y) sind

B(X, F)-valued set functions which are finitely additive and "vanish" on ti-null

sets. Next the relationship between the action of / and its corresponding operator-

valued set function G will be investigated.

To this end, let/e \J^L%X). Then for any partition n,

\EJdp     \      _ t((JEifdriXSl)      v G(Ei)UEJdpi]

= 0, lim, \\t(f„]

t(f) = lim 2

P-(Ei)

Now, since lim, P(f-flt) = f), Hm, ||t(fn)-t(f)\\ =0 and

G(Et)[\EJdp]

is a representation of / in terms of its corresponding set function G. This representa-

tion motivates the following question: What Banach space of vector measures is

isometrically isomorphic to B(LP(X), Y) under the correspondence established

above? The next paragraph discusses this question.

One obvious way to sort out the required space of set functions is to define, for a

B(X, F)-valued set function G,

||G|| = sup
n /   n \

2 G(£¡)[^i]   : x¡ e X, E¡ e S0, p   ]> XiV£l
í = i \i = i        /

< 1

This is nothing more than saying that ||G|| =sup {||/(/)|| :/ simple, p(f)Sl} if

íh-G as above. Some authors have chosen this norm in the L°(X) case and it

does give the desired norm to the vector measures in question. On the other hand,

it is just translating properties of / over to the representing set function G. It is

analogous to defining the norm in L™,

ll/IU = sup^jjgdp :geL\\\g\\xúlj   for/e£-,

rather than defining the £°° norm directly as

\\f\\x = inf{a>0:p({x: \\f\\ > a}) = 0}.

Such a procedure skirts the issue. In addition it tends to obscure the structure of the

space in question. What is needed here is a direct approach which defines an

independent space of measures endowed with its own intrinsic structure and then

relates this space to B(\JA LP(X), Y). This is the goal of the following definitions.
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Definition 2.1. Let Z be a Banach space and p be a function norm. If G : S0

is a finitely additive set function, the p-variation of G is

^-T'dStW
where the supremum is taken over all partitions wc:£00.

Actually this is simply lim„ /j(2„ (G(Ex)/p(E))xEt) since p has property (J). (It is

easily seen that if p has (J), then p(fXl) á p(fn2) whenever tt2 is a finer partition than

tt^.) The following definition furnishes the required set of measures.

Definition 2.2. Let p be a function norm. (Recall, in this paper, p is assumed to

have the weak Fatou property and (J).) U^(B(X, Y)) is the space of all B(X, Y)-

valued set functions on S0 such that

(a) G "vanishes" on /¿-null sets,

(b) G is finitely additive on S0,

(c) p'(\\y*G\\x.)<oo for each y* e Y*, and

(d) | G || a, = raft**! /»'( Il y*G || *.) < °o.
The above definition allows the formulation of

Theorem 2.3. The spaces B({J&L$(X), Y) and Up.(B(X, Y)) are isometrically

isomorphic under the correspondence defined for t e B([JA L£( X), Y), G e Uß-(B(X, Y))

by í(xxe) = G(E)[x] for all x e X, Ee£0. Moreover, if t*-* G as above then for

/6UaW),

"      x P\hi)

Proof. Let t e 5((Ja Lp(X), Y) and let G be defined as above. The early discus-

sion of this section shows that G vanishes on /¿-null sets and is finitely additive on

S0. Now, for any y* e Y* and any partition n, consider

,(\\^y*G(Ei)     ¡I   \        ,/v \\y*G(Ei)\\x.     \

= sup{Iœ(?2:w^^) *:/eL*"^ á l-w = l}

= sup 2^%£íM
e(/)Si  « K£i)

(since A*if /<//*) = f  /i*(/) ¿/¿ for all h* e X*\

=  sup y*t(f„)

Ú  sup  \\y*\\ ||i||/,(/„) ^ b*|| Ii||    since p has (J).

Hence p'(yC) ^ ||r|| ||j*|| and \\G\\Up. = supMSl P'(y*G)ú \\t\\.



268 N. E. GRETSKY AND J. J. UHL, JR. [May

To complete the proof of the theorem, let G 6 U0'(B(X, Y)) and define / on each

simple function/= 2"= i x¡xE,, Et e20, x¡ e X by

/(/) = J G(Et)[xt].

Usual arguments show / is well defined. Moreover, for each such simple function/,

rfn     ,-    y G(Ei)[UJdp]

trivially. Hence if y* e Y* sind ||y*\\ ̂  1,

*t(*     v    v y*G(Ei)[$Eifdp] r  / r^y*G(Ei)     \y*t(f) = Hm J-m- = Hm ̂ <^; ¿ __ Xe¡) dp

= pdl/llxVdl^^x^HJ ^ /»CONk-
Thus / is bounded on the linear manifold offe \J¿, LP(X) such that/,=/for some

partition n. But for fe (JA LP(X), Hm, p(f—/,) = 0. Hence, if / is defined for

fe\JAL*(X)by

.,rs      v     ,//••>       r     ^G(Ei)[$Ejdp.]t(f) = Hm /(/,) = hm 2-TTTT-»
* J!  IT        m£j)

/ is extended to a member, still denoted by /, of B(\JA Lp'(X), Y), which surely

satisfies

t(xXE) = G(£)[x]    for £ £ S„, x e X.

Also the above computation shows ||/|| ¿ ¡GH^.. Hence ||i|| = ||G||iv Since the

correspondence / <-> G is evidently linear, this correspondence is an isometric

isomorphism between 5((Ja Lap(X), Y) sind UP,(B(X, Y)).   Q.E.D.

The representation

G(Ei)[UJdp]t,~    y   y G(Ei)[EJdp]     r
?(/) = hf|      KEÙ      =lfdG

is sometimes called a generalized Hellinger integral. Although in its raw form it

has some utility, it does become somewhat unwieldy at times. For this reason, it is

good to call attention to the fact that a small modification (no modification if

Í2 eS0) of the Bartle integral [1] results in the representation

/(/) = Bartle-Í fdG.
Jn

A somewhat more detailed theorem becomes available in the event that there is

some A such that LP=LP. Luxemburg [10] showed that this is the case if and only

if £„' = (£")*. The reason for not assuming this throughout is that common Banach

function spaces such as £™ or the associate spaces of the Banach function spaces

discussed in [11] do not satisfy this assumption. In fact, in these three cases ££ = {0}.

We assume a little stronger hypothesis for the next corollary.
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Definition 2.4. Let p be a function norm. WP(B(X, Y)) is the space of all

B(X, F)-valued measures defined on S0 such that

(a) G is /¿-continuous,

(b) G is countably additive on S0)

(c) p'(y*G) < oo for each y* e Y*,

(d) lGllw„.=sup||!;.||S1 p(y*G)<co.

Corollary 2.5. Assume that L^=Lpfor every A. Then the spaces B(LP(X), Y)

and WP(B(X, Y)) are isometrically isomorphic under the correspondence defined by

G(E) = t(xXE),       xeX,EelZ0,

t(f) = hm 2-7T7T->       fe L"p(X),

where t e B(LaD(X), Y) and G e WP.(B(X, Y)).

Proof. All that needs proof is that for / e B(LP(X), Y) the corresponding G is

countable additive and /¿-continuous. G is countably additive in the B(X, Y)

topology since if {£n}<=S0 and En\0, then

\\G(En)\\ =   sup   ||G(£n)M|| Ú   sup   ||i|| \\x\\p(xEn)
IMIS1 lljcllgl

implies lim„ G(£n) = 0 since limn p(xE„) = 0, because Lp = \J¿Lp>. The same com-

putation also shows lim/1(E)_0 ||G(£)|| =0 on S0.    Q.E.D.

From Theorem 2.4 there is a corollary concerning ({J^L^(X))*. This shall not

concern us here. What is of interest is the following. For a Banach space X and a

function norm p, denote by VP-(X) the space of all /¿-continuous countably additive

set functions G: 20 -> X which satisfy p'(G)<oo. A specialization of Corollary 2.5

to the case of B(LP(X), R) yields the following information on the dual of LaD(X).

Corollary 2.6. Let Lap=Làp for each A. Then (La0(X))* and VP.(X*) are iso-

metrically isomorphic with

le(Ll(X))*^GeVp.(X*)

if and only if

l(f)=\fdG,      feLD(X).

Proof. Here (Lap(X))* = B(Lap(X), R)^ WD.(B(X, R))= Wp.(X*) which collapses

to Vp,(X*).

A more detailed investigation of the structure of (LP(X))* is the aim of the

next section.

3. The dual of Lap(X). If X= R, then with the assumption that LAP =L% for some

A, we have Lap(X)* = (Lap)*=Lp.=Lp(X*). Throughout §3 we will assume that

Lp=LA for all A. The section is devoted to characterizing those Banach spaces X

for which (Lp(X))*=Lp-(X*). The fact that this equality is not true for all Banach

spaces is a consequence of the following.
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Example. Let Í2 = [0, 1] with Lebesgue measure p. Let £„=£2 and X=l1. Then

£fl=£„=£*• We note that p is a function norm with Fatou property and property

(J) and that £?=£„. Consider f=(fx,f2, --.,-. -)eL2(ll). Then

'i\\2 dp)'2 <oo.«-(LC!1*)*)
Let {yn} be the Rademacher functions on [0, 1]; i.e. if 5 e [0, 1] and

s = 2 aB(j)/2»
71=1

is the binary expansion of j, set yn(s)= 1 —2an(s). Now note that

[0, 1] « [y„ = +1]U [yn = -1]    and   M[yn = +1] = \.

Also recall the well-known fact that, as random variables, the {yn} sire stochastically

independent. Define / on L2(lx) by

Kf) = Í ( I r-/-) &•    / - CA,/«, ...,/*...) e W).
Jn \n= 1 /

Then / is linear and |/(/)|gJ0 2T-i \vJ*\ <¥ú¡a 2f-i |/.| *=J0 |/||i> 4*^
(in 11/1111 401,a= 11/11 iV) by the Holder inequality. Hence le^l1))*. Now
suppose there exists g=(gi, g2, • • -, gn, ■ ■ ■) eL2(l'°)=L2((l1)*) such that

1(f) = í <f,g>dp= f   Zfngndp.
Jo Ja« = i

It follows quickly that gn=yn a.e. [p.] for all n. Hence it may be assumed without

loss of generality that g = (yx, y2, y3, ■ ■■)■ But since geL2(l'°), g is in particular

strongly measurable. Hence there exists a strongly measurable simple function

9: Q ->./- such that p[\\<p-g|| *\]<\. Write £= [||<p-g|| <\] and set £/= [Yi=j],

i=l, 2,... ;j— ± 1. Then //.(£)> J and p(E()=\ for all i,/ Consider now £f and

Ex1. Clearly £ intersects both of these sets on a set of positive measure. Hence q>

takes two distinct values on £. Next note that by the independence of the yn's,

p(E{ n ££)=\ for j,k=±l. Hence at least | of the sets {£/ n ££ : y, k= ± 1}

intersect £ on a set of positive measure. Therefore <p takes on at least three distinct

values on £. Proceeding, look at {£{ n Ei n E3; i,j, k= ± 1}. There are 23 of

these each with measure 1/23 by independence. Hence at least f of them intersect

£ on a set of positive measure. Hence <p must take on at least (|)23 distinct values

on £. Continuing in this way shows that <p must take at least (f )2" distinct values

on £ for any positive integer n. Hence <p must take on an infinite number of distinct

values. This contradicts the fact that <p is simple and shows that such a g cannot

exist in £2(/°°). Thus it is not always true that (L"P(X))* can be identified with

LP^(X*). The obvious question now is: When can (LP(X))* be identified with

LP.(X*)1

Moving toward an answer to this question, reconsider the above example. Let

/ be the linear functional defined above and suppose /<-> G e V„'(lm). A moment's
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reflection shows that there must be no strongly measurable geL2(lx) such that

for E measurable

G(E) = Bochner-    g dp.
JE

For if there were such a g then an easy computation shows l(f)=)a </> g) dp for

all f e L2(lr). This fact motivates the recollection of the following concept.

Definition 3.1 [2]. A Banach space X has the Radon-Nikodym property with

respect to a finite measure /¿ if every G: S -> X with the properties

(i) G is /¿-continuous,

(ii) G is countably additive, and

(iii) G is of bounded variation

admits the representation G(E) = Bochner-JE g dp for some strongly measurable g

and all £eS.

According to the Dunford-Pettis theorem [5] and the Phillips version of the

Radon-Nikodym theorem [13], all Banach spaces which are separable duals of

another Banach space or Banach spaces which are reflexive have the Radon-

Nikodym property with respect to any finite measure /¿. On the other hand, it is

easily seen that if /¿ is a purely atomic finite measure, then any Banach space has

the Radon-Nikodym property with respect to /¿. The importance of the Radon-

Nikodym property in this connection was first observed by Mills [12] who proved

an important special case of the following theorem. This theorem constitutes the

main result of this section.

Theorem 3.2. Assume that Lap=LA for all A. Then (Lap(X))* and Lp.(X*) are

isometrically isomorphic under the correspondence

le(L°p(X))*^geLp.(X*)

defined by

Kf) - f <f,g>dp,      feL°p(X),
Jn

if and only if, for each set E0 e 200, X* has the Radon-Nikodym property with respect

to the measure /¿£o defined on1> n E0 by pEo(E) = p(E0 n E).

Proof. (Sufficiency) Let G e VP-(X*) and E0 e£00 be arbitrary. Let Tr = {Em}*=1

be a partition such that Em<^E0 for each m= 1, 2,..., n. Then

n n

2 \\G(Em)\\ =  2    sup  G(Em)[xm] =  2    sup l(xmXEm),

where G <-> / in the sense of Corollary 2.6,

n

SUP 2   KXmXEm)
H*illál.ll*2llSl.llXnllSl   m = 1

(n IK n

2 xmXEm\),   since 2 xmxEmeLap,

=   \\1\\P(XE0).
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Since -n- is arbitrary, it follows that G is of bounded variation on E0. Since it was

proved earlier (Corollary 2.5) that G is /¿-continuous and countably additive inside

S00 sets, the fact that X* has the Radon-Nikodym property with respect to pEo

produces a g defined on E0 with G(E)=jE g dp., E<^E0. Defining g in this way for

each E0 e 200 and piecing the results together produces a strongly measurable g

such that G(E) = \Eg dp for Eel,00. (The strong measurability follows from the

fact that Q. can be written as a countable collection of 200 sets.)

Next the Lp,(X*) norm of g will be computed. Since (Lap)* =LP-, L" is norm

determining for L0.. Hence

p'(lklU-) = sup ̂J\\g\\x. dp. :feLQ, P(f) ¿ lj

= suplí <f,g>dp :feL"p(X),p(\\f\\) í 1
Un

= sup {I   </,*> dp :f X00-simple,feLap(X), P(\\f\\) Ú 1
K-'a

= sup j j   / 2 x'Xex, g^ dp.: {Ex} c S00 disjoint,

Xi e X, />( 2 xiXEt J =i 1

= sup < 2 G(Ex)[xx] : same conditions as above >,

since Bochner integration and application of linear functionals commute,

= sup < I i 2 XíXeí) '• same conditions as above I = ||/||tj|(X)' = p'(G).

Hence g eLp.(X*) and P'(\\g\\) = P'(G). Consequently, P'(\\g\\)= \\l\\, and VP,(X*)

and Lp.(X*) are isometrically isomorphic. Now since g e Lp.(X*), the Holder

inequality ensures that J"n</, g} dp, exists for feLp(X) and defines a bounded

linear functional on Lap(X). Clearly this functional agrees with / on the simple

functions in Lap(X), and hence l(f) = $n </, g} dp for all/eL"(A'). This completes

the proof of the sufficiency.

(Necessity) Let E0 e 200 be a fixed set of positive measure. Let H be a countably

additive /¿-continuous X*-valued measure defined on the 200-sets which are subsets

of E0. (200 n ii0.) Let \H\ be the variation of H.

Digressing for a moment, we recall that the space ca (T, T) of all bounded

countably additive set functions on the a-algebra P of sets in T is a Banach space

under the variation norm and, in fact, is a Banach lattice under "setwise" order.

Moreover, to define the greatest lower bound of À and v in ca (T, Y) we have, for

EeY,

(A A v)(E) = inf{X(A) + v(E\A) \AeT,A^E}.
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We now return to our situation and consider |>7| AnpEo in ca (£0, S00 n £0)

for each positive integer n. In this case we have that both \H\ sind pEo sire non-

negative and that \H\ is absolutely continuous with respect to pEo. Let £„ =

{eu e £0 : (d\H\/dpEo)(oj)<n}. Then, for each n, we have the decompositions

(\H\ A npEo)(E) = \H\(E n En)+np(E n ££)   for £eS00 n £0.

This can be seen by noting that

(\H\ A npEo)(E) = inf{|//|L4) + «^0(£V4) \A s £}

=inf{I0(^^+^)-^

Since the integrand is nonnegative, it is easily seen that the integral is minimized

for A = En n £, which result gives the required decomposition.

Now consider for each n, Hn(E) = H(E n £n). Then Hn is a vector measure

satisfying \\Hn(E)\\^np(E) for all £eS00. It follows quickly that Hne VD.(X*).

But the assumption that Lp.(X*)^ VP.(X*) establishes hneLp.(X*) such that

*E0\AçEr.

Hn(E) = \ hndp.   for £ e S00 n £0.

Clearly each /in vanishes outside En and hnxEm = hm a.e. for «^w. Now define A on

£0by

h(w) = hx(oS)       if eu e Ex,

= hn + 1(a>)   ifojeEn + 1-E„,n > I,

= 0 otherwise.

Then h is strongly measurable. Moreover, since His /x-continuous, p(E0 — {JnEn)

= 0. Hence the monotone convergence theorem implies

I     ||%. dp = Hm f    ||A|| dp = Hm \H\(En) = \H\(E0).
Je0 n    JEn n

Hence h is Bochner integrable. Finally, if £ e S00 n £0,

Jhdp = Hm hdp = Hm hn dp
E n    jEnEn n    jEnEn

= Hm Hn(E n £n) = Hm H(E n £n) = //(£).
n n

This proves the necessity.   Q.E.D.

In view of the discussion preceding the statement of Theorem 3.2 the following

corollaries are immediate:

Corollary 3.3. Assume Lp=Lpfor each admissible sequence A. If X is reflexive

or if X* is separable, or if p. is purely atomic, then (Lap(X))^Lp.(X*).
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The following corollary has been obtained by Mills [12] with a separability

condition imposed on X.

Corollary 3.4. LP(X) is reflexive if and only if both Lp and X are reflexive.

4. Compact members of B(Lap(X), Y). This section is concerned with applica-

tions of the earlier representation theorems to the problem of characterizing the

compact members of B(LP(X), Y). The work here bears some similarity to the work

of [17] where the related problem for Orlicz spaces is treated. Also included in this

section are some comments on the approximation problem and the existence of a

projection of B(LP(X) Y) onto the space of compact members of B(LP(X), Y).

Theorem 4.1. Suppose that the p-integrable, simple functions are dense in LP< and

suppose (Lap(X))*^Lp.(X*). Then t e B(WP(X), Y) is compact if and only if

(i) for each £0t20 the operator T(E): X-> Y defined by T(E)[x] = t(xxE) is

compact, and

(ii) Hm, || / o En —1\\ =0 in the uniform operator topology.

Note that the hypothesis on Lp- will be satisfied if Lp • =££< or if LP. = (J&L%.

Proof. (Sufficiency) Let 7r={£j} be a partition. Then for feLap(X),

UJdp     \      v t(SEtfdpxEi) _ v T(Et)UEJdp]t rtf\     tNbiîÉO:     \     ^'(¡Ejdp-XEj     s
'•^ = 'I? 7(1»- *«) = ?    p(Ei)    = ? KEt)

By (i), £(£) sends bounded sets into conditionally compact sets in F. Now if

P(\\f\\)è l,feL%X), then \\jE(fdp\\íP'(xE¡) by the Holder inequality. Hence

fdp : P(f) S 1
<E,

is a bounded set in X for each £¡. Thus {£(£;) [j^/ifc] : p(|/|)^ l,feLap(X)} is

conditionally compact in F for each £¡. Looking at the form of /•£, above, one

sees immediately that /•£, is compact. By (ii), Hm, |/-£, —/|| =0. Hence / is

compact.

(Necessity) Suppose / e B(LP(X), Y) is compact. For £eS0, consider 5*=

{7Y£)[x] : ||x|| S 1}. Since T(E)[x] = t(xxE) for xe X and since {xXe : \\x\\ S 1} is a

bounded set in Lap(X), the compactness of / ensures the conditional compactness

of S. This proves the necessity of condition (i).

To establish (ii), let y* e Y* be fixed. Then y*t e (Lap(X))*?Lp.(X*) under the

current hypothesis. Hence there exists ageL0(X*) such that, for all feLP(X),

y*t(f)= Í <f,g>dp.
Ja

Now for the same y*, consider for a partition n,

y*t-£,(/) = Í <EJ,g>dp = Í <f,Engydp
Ja Ja
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by a short computation. Hence if y*t <-> g, then y*tEn <-> E„g. But since the in-

tegrable simple functions are dense and since p has (J), hmnEKg=g strongly in

Lp-(X*). Thus, y*tEn->y*t in (Lap(X))*; i.e. (tEn)*y* -* i V in (/.«(*))*• There-

fore lim„ (tEn)* = t* in the strong operator topology from Y* to (L%X))*.

Moreover, the fact that />' has (J) guarantees that \(t-E¿f(y*)\ = \y*t-Ex\ =

p\\Exg\\x') = p'(\g\\) = \y*t\\ = \t*(y*)\\. Also the compactness of t implies t* is

compact. Hence by the dominated convergence theorem for compact operators [17,

Theorem 4, p. 212] and Vala [18], lim» \\(t-En)*-t*\\ =0. Thus

lim \\t-E„-t\\ = lim !(*■£,)*-r*|| = 0
n n

as required.   Q.E.D.

Theorem 4.1 has an immediate application to the problem of approximating

compact operators by operators with finite rank.

Corollary 4.2. Under the hypothesis of Theorem 4.1 and with the additional

assumption that every compact member ofB(X, Y) can be approximated in the uniform

operator topology by members of B(X, Y) with a finite dimensional range, then the

same statement is true for compact members of B(La0(X), Y).

Proof. Let t e B(La0(X), Y) be compact and let e>0 be given. According to

Theorem 4.1, there is a partition tt such that ¡i-i-^H <e/2. Now for each En e n,

consider T(En)[-] = t(-xE„) e B(X, Y). By Theorem 4.1, T(En) is compact. For each

n, choose an operator of finite rank SneB(X, Y) such that \\T(En)/p(En) — Sn\\

<e/2n+1(p'(XEn)+l); define s on L"P(X) by í(/) = 2* Sn(\EJdp). Then

\t.-s\ =    sup    \\(tx-s)(f)\\
o(ll/ll)Sl

sup
»0I/10S1

< ÏÏE. 2

?@SMÜ>]|
T(En)

pwmi P-(En)      1
Sn p(\\f\\)p'(xEn),

by the triangle inequality and the Holder inequality,

<2(*/2n + 1)^/2.

Hence ||i-i|| <e, as required.   Q.E.D.

The next result couples Theorem 4.1 and the representation Theorem 2.5 to show

that members of WP(B(X, Y)) corresponding to compact members of B(L"P(X), Y)

can be identified intrinsically in W#(B(X, Y)).

Theorem 4.3. Let p be a function norm such that the p-integrable simple functions

are dense in LD. and suppose (L"0(X))*^LP(X*). Then Ge Wp,(B(X, Y)) represents

a compact member of B(L"P(X), Y) if and only if

(i) G is compact-valued, i.e. G(E) e B(X, Y) is compact for all £eS0, and
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(ii) if G, is defined on S0o for each partition n by

G»(20 = 2§FvM£»r,£),

then lim, |G-GB||Wa.=0.

Proof. The proof follows immediately from the definition of G and the fact that

G, represents /•£, if G represents / e B(LP(X), Y).

The considerations of this section combine to give an easy proof of the following

theorem.

Theorem 4.4. Let p be a function norm such that the p-integrable simple functions

are dense in L0<. Then there is no bounded projection of B(LP, Y) onto the space of

all compact members of B(LP, Y) unless all the members of B(LP, Y) are compact.

Proof. Suppose there is a bounded projection P mapping B(L"D, Y) onto the

closed subspace of compact members of B(LP, Y). Let / e B(Lap, Y) be arbitrary.

The argument used in the proof of Theorem 4.1 shows that /■£, is compact for all

partitions ir. Hence (£/)•£,=£(/■£,) = /•£, for all partitions n. Furthermore the

hypothesis of Theorem 4.1 is obviously satisfied by the current hypothesis. Accord-

ing to Theorem 1, Hm, (£/)£,=£/ in the uniform operator topology. Hence

Hm, /•£,=£/ in the uniform operator topology. But, if feLp is arbitrary,

Hm /•£,(/) = /(Hm £,(/)) = t(f).

Hence Pt(f) = t(f) for all/e£^, i.e. Pt = t for all / e B(Lap, Y).   Q.E.D.

This result seems to improve on some results of Tong [15] who treats the case of

sequence spaces.
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